Skip to main content

Glutamine-Cycling Pathway in Metabolic Syndrome: Systems Biology-Based Characterization of the Glutamate-Related Metabolotype and Advances for Diagnosis and Treatment in Translational Medicine

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

In this chapter we introduce the hypothesis that the glutamine-cycling pathway participates in the pathogenesis of MS and might be prominently involved in the development of the systemic underlying metabolic derangement. In addition, we postulate the critical role that some enzymatic reactions occurring in the liver tissue, such as the transamination reactions, play in the pathogenesis of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  2. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  CAS  PubMed  Google Scholar 

  3. Reaven GM. The metabolic syndrome: is this diagnosis necessary? Am J Clin Nutr. 2006;83:1237–47.

    CAS  PubMed  Google Scholar 

  4. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Huffman KM, Shah SH, Stevens RD, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32:1678–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010;5:e15234.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wurtz P, Makinen VP, Soininen P, et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes. 2012;61:1372–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125:2222–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3:207–14.

    Article  CAS  PubMed  Google Scholar 

  11. Felig P, Marliss E, Cahill Jr GF. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 1969;281:811–6.

    Article  CAS  PubMed  Google Scholar 

  12. Patti ME, Brambilla E, Luzi L, Landaker EJ, Kahn CR. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998;101:1519–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Krebs M, Brehm A, Krssak M, et al. Direct and indirect effects of amino acids on hepatic glucose metabolism in humans. Diabetologia. 2003;46:917–25.

    Article  CAS  PubMed  Google Scholar 

  14. van Loon LJ, Kruijshoop M, Menheere PP, Wagenmakers AJ, Saris WH, Keizer HA. Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care. 2003;26:625–30.

    Article  PubMed  Google Scholar 

  15. Brand K, Von HJ, Langer K, Fekl W. Pathways of glutamine and glutamate metabolism in resting and proliferating rat thymocytes: comparison between free and peptide-bound glutamine. J Cell Physiol. 1987;132:559–64.

    Article  CAS  PubMed  Google Scholar 

  16. Lindblom P, Rafter I, Copley C, et al. Isoforms of alanine aminotransferases in human tissues and serum—differential tissue expression using novel antibodies. Arch Biochem Biophys. 2007;466:66–77.

    Article  CAS  PubMed  Google Scholar 

  17. Goessling W, Massaro JM, Vasan RS, D'Agostino Sr RB, Ellison RC, Fox CS. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology. 2008;135:1935–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Porter SA, Pedley A, Massaro JM, Vasan RS, Hoffmann U, Fox CS. Aminotransferase levels are associated with cardiometabolic risk above and beyond visceral fat and insulin resistance: the framingham heart study. Arterioscler Thromb Vasc Biol. 2013;33:139–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Qu HQ, Li Q, Grove ML, et al. Population-based risk factors for elevated alanine aminotransferase in a South Texas Mexican-American population. Arch Med Res. 2012;43:482–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino Jr RB, Haffner SM. Liver markers and development of the metabolic syndrome: the insulin resistance atherosclerosis study. Diabetes. 2005;54:3140–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kain K, Carter AM, Grant PJ, Scott EM. Alanine aminotransferase is associated with atherothrombotic risk factors in a British South Asian population. J Thromb Haemost. 2008;6:737–41.

    Article  CAS  PubMed  Google Scholar 

  22. Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev. 2006;22:437–43.

    Article  CAS  PubMed  Google Scholar 

  23. Nguyen QM, Srinivasan SR, Xu JH, et al. Elevated liver function enzymes are related to the development of prediabetes and type 2 diabetes in younger adults: the bogalusa heart study. Diabetes Care. 2011;34:2603–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Olynyk JK, Knuiman MW, Divitini ML, Davis TM, Beilby J, Hung J. Serum alanine aminotransferase, metabolic syndrome, and cardiovascular disease in an Australian population. Am J Gastroenterol. 2009;104:1715–22.

    Article  CAS  PubMed  Google Scholar 

  25. Monami M, Bardini G, Lamanna C, et al. Liver enzymes and risk of diabetes and cardiovascular disease: results of the Firenze Bagno a Ripoli (FIBAR) study. Metabolism. 2008;57:387–92.

    Article  CAS  PubMed  Google Scholar 

  26. Vozarova B, Stefan N, Lindsay RS, et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51:1889–95.

    Article  CAS  PubMed  Google Scholar 

  27. Sinner MF, Wang N, Fox CS, et al. Relation of circulating liver transaminase concentrations to risk of new-onset atrial fibrillation. Am J Cardiol. 2013;111:219–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Burgueno AL, Gianotti TF, Mansilla NG, Pirola CJ, Sookoian S. Cardiovascular disease is associated with high-fat-diet-induced liver damage and up-regulation of the hepatic expression of hypoxia-inducible factor 1alpha in a rat model. Clin Sci (Lond). 2013;124:53–63.

    Article  CAS  Google Scholar 

  29. Sookoian S, Pirola CJ. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J Gastroenterol. 2012;18:3775–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Meton I, Mediavilla D, Caseras A, Canto E, Fernandez F, Baanante IV. Effect of diet composition and ration size on key enzyme activities of glycolysis-gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). Br J Nutr. 1999;82:223–32.

    CAS  PubMed  Google Scholar 

  31. Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007;5:305–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Thulin P, Rafter I, Stockling K, et al. PPARalpha regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes. Toxicol Appl Pharmacol. 2008;231:1–9.

    Article  CAS  PubMed  Google Scholar 

  33. Horio Y, Tanaka T, Taketoshi M, Uno T, Wada H. Rat cytosolic aspartate aminotransferase: regulation of its mRNA and contribution to gluconeogenesis. J Biochem. 1988;103:805–8.

    CAS  PubMed  Google Scholar 

  34. Barbosa-Silva A, Fontaine JF, Donnard ER, Stussi F, Ortega JM, Andrade-Navarro MA. PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries. BMC Bioinformatics. 2011;12:435.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Boutin P, Dina C, Vasseur F, et al. GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol. 2003;1:E68.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Meyre D, Boutin P, Tounian A, et al. Is glutamate decarboxylase 2 (GAD2) a genetic link between low birth weight and subsequent development of obesity in children? J Clin Endocrinol Metab. 2005;90:2384–90.

    Article  CAS  PubMed  Google Scholar 

  37. Choquette AC, Lemieux S, Tremblay A, et al. GAD2 gene sequence variations are associated with eating behaviors and weight gain in women from the Quebec family study. Physiol Behav. 2009;98:505–10.

    Article  CAS  PubMed  Google Scholar 

  38. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ruderman NB, Xu XJ, Nelson L, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010;298:E751–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Oehler R, Roth E. Regulative capacity of glutamine. Curr Opin Clin Nutr Metab Care. 2003;6:277–82.

    CAS  PubMed  Google Scholar 

  41. Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep. 2011;13:149–57.

    Article  CAS  PubMed  Google Scholar 

  42. Stancakova A, Civelek M, Saleem NK, et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61(7):1895–902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Suhre K, Shin SY, Petersen AK, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477:54–60.

    Article  CAS  PubMed  Google Scholar 

  44. Krumsiek J, Suhre K, Evans AM, et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 2012;8:e1003005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Adamski J, Suhre K. Metabolomics platforms for genome wide association studies-linking the genome to the metabolome. Curr Opin Biotechnol. 2013;24:39–47.

    Article  CAS  PubMed  Google Scholar 

  46. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287:356–9.

    Article  PubMed  Google Scholar 

  47. Johnson WD, Kroon JJ, Greenway FL, Bouchard C, Ryan D, Katzmarzyk PT. Prevalence of risk factors for metabolic syndrome in adolescents: National Health and Nutrition Examination Survey (NHANES), 2001–2006. Arch Pediatr Adolesc Med. 2009;163:371–7.

    Article  PubMed  Google Scholar 

  48. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation. 2004;110:2494–7.

    Article  PubMed  Google Scholar 

  49. Barker DJ, Clark PM. Fetal undernutrition and disease in later life. Rev Reprod. 1997;2:105–12.

    Article  CAS  PubMed  Google Scholar 

  50. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  CAS  PubMed  Google Scholar 

  51. Poston L. Gestational weight gain: influences on the long-term health of the child. Curr Opin Clin Nutr Metab Care. 2012;15:252–7.

    Article  PubMed  Google Scholar 

  52. Sookoian S, Fernandez GT, Burgueno A, Pirola CJ. Fetal metabolic programming and epigenetic modifications: a systems biology approach. Pediatr Res. 2013;73:531–42.

    Article  CAS  PubMed  Google Scholar 

  53. Hermanussen M, Tresguerres JA. Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. J Perinat Med. 2003;31:489–95.

    Article  CAS  PubMed  Google Scholar 

  54. Battaglia FC. Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr. 2000;130:974S–7S.

    CAS  PubMed  Google Scholar 

  55. Vaughn PR, Lobo C, Battaglia FC, Fennessey PV, Wilkening RB, Meschia G. Glutamine-glutamate exchange between placenta and fetal liver. Am J Physiol. 1995;268:E705–11.

    CAS  PubMed  Google Scholar 

  56. Hermanussen M, Garcia AP, Sunder M, Voigt M, Salazar V, Tresguerres JA. Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur J Clin Nutr. 2006;60:25–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding Support

This study was partially supported by grants PICT 2008-1521 and 2010-0441 (Agencia Nacional de Promoción Científica y Tecnológica), and UBACYT CM04 (Universidad de Buenos Aires). SS and CJP belong to CONICET.

Potential competing interests

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Sookoian M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sookoian, S., Pirola, C.J. (2015). Glutamine-Cycling Pathway in Metabolic Syndrome: Systems Biology-Based Characterization of the Glutamate-Related Metabolotype and Advances for Diagnosis and Treatment in Translational Medicine. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics