Skip to main content

Small Intestinal Hypoxic Injury and Use of Arginyl-Glutamine Dipeptide: Applications to Pediatrics

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Premature infants are exposed to various perinatal stresses, including hypotension, hypoxia, hyperoxia, hypothermia, feeding, anemia, and umbilical vessel catheterization. Hypoxia-associated small intestinal injury may occur in a variety of severe pathophysiologic conditions in pediatric patients such as perinatal asphyxia, shock, or other hypoxic–ischemic states. It has been speculated that when such events occur, intestinal blood flow will diminish [1] via the diving seal reflex (reflex with circulatory shunting to selectively perfuse the brain, heart, and kidneys at the expense of other “nonvital” organs such as intestine and extremities), which can result in intestinal injury, systemic inflammatory response syndrome (SIRS), bacterial translocation, distal organ injury, and even multiple organ failure. Hypoxic intestinal injury-related diseases can have a profound impact on children’s health. For example, necrotizing enterocolitis (NEC) is one of the most common and devastating diseases found in premature infants in neonatal intensive care units (NICU) with high mortality, long hospitalization, and high financial cost [2]. It can also affect distant organs such as the brain and place affected infants at substantially increased risk for neurodevelopmental delays. Although evidence shows that the most common form of NEC seen in preterm infants is not triggered by a primary hypoxic–ischemic event [3], hypoxic/ischemic injury of the bowel has been thought to be one of the main risk factors in term infants, especially those with congenital heart disease who have low blood flows to the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Arg-Gln:

Arginyl-glutamine

ELBW:

Extremely low birth weights

ET-1:

Endothelin-1

H/R:

Hypoxia/reoxygenation

IL:

Interleukin

LDH:

Lactate dehydrogenase

NEC:

Necrotizing enterocolitis

NICU:

Neonatal intensive care units

NO:

Nitric oxide

PAF:

Platelet-activating factor

SIRS:

Systemic inflammatory response syndrome

TNF:

Tumor necrosis factor

TPN:

Total parenteral nutrition

VLBW:

Very low birth weight

References

  1. Koc E, Arsan S, Ozcan H, et al. The effect of asphyxia on gut blood flow in term neonates. Indian J Pediatr. 1998;65(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  2. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Young CM, Kingma SD, Neu J. Ischemia-reperfusion and neonatal intestinal injury. J Pediatr. 2011;158(2 Suppl):e25–8.

    Article  PubMed  Google Scholar 

  4. Sencan AB, Sencan A, Aktas S, et al. Treatment and prophylaxis with sucralfate ameliorates hypoxia/reoxygenation-induced intestinal injury in pup rats. Med Sci Monit. 2005;11(4):BR126–30.

    CAS  PubMed  Google Scholar 

  5. Ozen S, Akisu M, Baka M, et al. Insulin-like growth factor attenuates apoptosis and mucosal damage in hypoxia/reoxygenation-induced intestinal injury. Biol Neonate. 2005;87(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ozdemir OM, Ergin H, Yenisey C, et al. Protective effects of Ginkgo biloba extract in rats with hypoxia/reoxygenation-induced intestinal injury. J Pediatr Surg. 2011;46(4):685–90.

    Article  PubMed  Google Scholar 

  7. Sasaki M, Joh T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J Clin Biochem Nutr. 2007;40(1):1–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Turrens JF, Giulivi C, Pinus C, et al. Low level chemiluminescence from isolated rat hepatocytes, intact lung and intestine in situ. Basic Life Sci. 1988;49:239–42.

    CAS  PubMed  Google Scholar 

  9. Kabaroglu C, Akisu M, Habif S, et al. Effects of L-arginine and L-carnitine in hypoxia/reoxygenation-induced intestinal injury. Pediatr Int. 2005;47(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  10. Xu DZ, Lu Q, Kubicka R, et al. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells. J Trauma. 1999;46(2):280–5.

    Article  CAS  PubMed  Google Scholar 

  11. Caplan MS, Hedlund E, Hill N, et al. The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats. Gastroenterology. 1994;106(2):346–52.

    CAS  PubMed  Google Scholar 

  12. Akisu M, Baka M, Huseyinov A, et al. The role of dietary supplementation with L-glutamine in inflammatory mediator release and intestinal injury in hypoxia/reoxygenation-induced experimental necrotizing enterocolitis. Ann Nutr Metab. 2003;47(6):262–6.

    Article  CAS  PubMed  Google Scholar 

  13. Markel TA, Crisostomo PR, Wairiuko GM, et al. Cytokines in necrotizing enterocolitis. Shock. 2006;25(4):329–37.

    Article  CAS  PubMed  Google Scholar 

  14. Gellen B, Kovacs J, Nemeth L, et al. Vascular changes play a role in the pathogenesis of necrotizing enterocolitis in asphyxiated newborn pigs. Pediatr Surg Int. 2003;19(5):380–4.

    Article  CAS  PubMed  Google Scholar 

  15. Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97(5):906–11.

    Article  CAS  PubMed  Google Scholar 

  16. Neu J. Glutamine supplements in premature infants: why and how. J Pediatr Gastroenterol Nutr. 2003;37(5):533–5.

    Article  PubMed  Google Scholar 

  17. Becker RM, Wu G, Galanko JA, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr. 2000;137(6):785–93.

    Article  CAS  PubMed  Google Scholar 

  18. Neu J, Li N. Pathophysiology of glutamine and glutamate metabolism in premature infants. Curr Opin Clin Nutr Metab Care. 2007;10(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Langkamp-Henken B, Suzuki K, et al. Glutamine prevents parenteral nutrition-induced increases in intestinal permeability. JPEN J Parenter Enteral Nutr. 1994;18(4):303–7.

    Article  CAS  PubMed  Google Scholar 

  20. Li N, Neu J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr. 2009;139(4):710–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ban K, Kozar RA. Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1344–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wischmeyer PE, Musch MW, Madonna MB, et al. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol. 1997;272(4 Pt 1):G879–84.

    CAS  PubMed  Google Scholar 

  23. Yuan ZQ, Zhang Y, Li XL, et al. HSP70 protects intestinal epithelial cells from hypoxia/reoxygenation injury via a mechanism that involves the mitochondrial pathways. Eur J Pharmacol. 2010;643(2–3):282–8.

    Article  CAS  PubMed  Google Scholar 

  24. Li N, Liboni K, Fang MZ, et al. Glutamine decreases lipopolysaccharide-induced intestinal inflammation in infant rats. Am J Physiol Gastrointest Liver Physiol. 2004;286(6):G914–21.

    Article  CAS  PubMed  Google Scholar 

  25. Wu G, Jaeger LA, Bazer FW, et al. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004;15(8):442–51.

    Article  CAS  PubMed  Google Scholar 

  26. Klein CJ. Nutrient requirements for preterm infant formulas. J Nutr. 2002;132(6 Suppl 1):1395S–577S.

    CAS  PubMed  Google Scholar 

  27. Chokshi NK, Guner YS, Hunter CJ, et al. The role of nitric oxide in intestinal epithelial injury and restitution in neonatal necrotizing enterocolitis. Semin Perinatol. 2008;32(2):92–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kilic I, Kilic BA, Guven C, et al. Role of nitric oxide in hypoxia-induced changes in newborn rats. Biol Neonate. 2000;78(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chapman JC, Liu Y, Zhu L, et al. Arginine and citrulline protect intestinal cell monolayer tight junctions from hypoxia-induced injury in piglets. Pediatr Res. 2012;72(6):576–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Mondello S, Galuppo M, Mazzon E, et al. Glutamine treatment attenuates the development of ischaemia/reperfusion injury of the gut. Eur J Pharmacol. 2010;643(2–3):304–15.

    Article  CAS  PubMed  Google Scholar 

  31. Cintra AE, Martins JL, Patricio FR, et al. Nitric oxide levels in the intestines of mice submitted to ischemia and reperfusion: L-arginine effects. Transplant Proc. 2008;40(3):830–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kul M, Vurucu S, Demirkaya E, et al. Enteral glutamine and/or arginine supplementation have favorable effects on oxidative stress parameters in neonatal rat intestine. J Pediatr Gastroenterol Nutr. 2009;49(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lacey JM, Crouch JB, Benfell K, et al. The effects of glutamine-supplemented parenteral nutrition in premature infants. JPEN J Parenter Enteral Nutr. 1996;20(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  34. Poindexter BB, Ehrenkranz RA, Stoll BJ, et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics. 2004;113(5):1209–15.

    Article  PubMed  Google Scholar 

  35. Dallas MJ, Bowling D, Roig JC, et al. Enteral glutamine supplementation for very-low-birth-weight infants decreases hospital costs. JPEN J Parenter Enteral Nutr. 1998;22(6):352–6.

    Article  CAS  PubMed  Google Scholar 

  36. Neu J, Roig JC, Meetze WH, et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr. 1997;131(5):691–9.

    Article  CAS  PubMed  Google Scholar 

  37. Barbosa E, Moreira EA, Goes JE, et al. Pilot study with a glutamine-supplemented enteral formula in critically ill infants. Revista do Hospital das Clinicas. 1999;54(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  38. Korkmaz A, Yurdakok M, Yigit S, et al. Long-term enteral glutamine supplementation in very low birth weight infants: effects on growth parameters. Turk J Pediatr. 2007;49(1):37–44.

    PubMed  Google Scholar 

  39. van Zwol A, Moll HA, Fetter WP, et al. Glutamine-enriched enteral nutrition in very low birthweight infants and allergic and infectious diseases at 6 years of age. Paediatr Perinat Epidemiol. 2011;25(1):60–6.

    Article  PubMed  Google Scholar 

  40. de Kieviet JF, Oosterlaan J, Vermeulen RJ, et al. Effects of glutamine on brain development in very preterm children at school age. Pediatrics. 2012;130(23071202):1121–7.

    Article  Google Scholar 

  41. Vaughn P, Thomas P, Clark R, et al. Enteral glutamine supplementation and morbidity in low birth weight infants. J Pediatr. 2003;142(6):662–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sevastiadou S, Malamitsi-Puchner A, Costalos C, et al. The impact of oral glutamine supplementation on the intestinal permeability and incidence of necrotizing enterocolitis/septicemia in premature neonates. J Matern Fetal Neonatal Med. 2011;24(21463215):1294–300.

    Article  CAS  PubMed  Google Scholar 

  43. van den Berg A, van Elburg RM, Teerlink T, et al. A randomized controlled trial of enteral glutamine supplementation in very low birth weight infants: plasma amino acid concentrations. J Pediatr Gastroenterol Nutr. 2005;41(1):66–71.

    Article  PubMed  Google Scholar 

  44. Panigrahi P, Gewolb IH, Bamford P, et al. Role of glutamine in bacterial transcytosis and epithelial cell injury. JPEN J Parenter Enteral Nutr. 1997;21(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  45. Moe-Byrne T, Wagner JV, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012;3:CD001457.

    PubMed  Google Scholar 

  46. Briassouli E, Briassoulis G. Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies. Clin Dev Immunol. 2012;2012:749189.

    Article  PubMed Central  PubMed  Google Scholar 

  47. van Zwol A, Neu J, van Elburg RM. Long-term effects of neonatal glutamine-enriched nutrition in very-low-birth-weight infants. Nutr Rev. 2011;69(1):2–8.

    Article  PubMed  Google Scholar 

  48. Amin HJ, Zamora SA, McMillan DD, et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr. 2002;140(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  49. Shah P, Shah V. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev. 2004;4:CD004339.

    PubMed  Google Scholar 

  50. Shah P, Shah V. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev. 2007;3:CD004339.

    PubMed  Google Scholar 

  51. Amin HJ, Soraisham AS, Sauve RS. Neurodevelopmental outcomes of premature infants treated with l-arginine for prevention of necrotising enterocolitis. J Paediatr Child Health. 2009;45(4):219–23.

    Article  PubMed  Google Scholar 

  52. Polycarpou E, Zachaki S, Tsolia M, et al. Enteral L-arginine supplementation for prevention of necrotizing enterocolitis in very low birth weight neonates: a double-blind randomized pilot study of efficacy and safety. JPEN J Parenter Enteral Nutr. 2013;37:617.

    Article  CAS  PubMed  Google Scholar 

  53. Furst P. New developments in glutamine delivery. J Nutr. 2001;131(9 Suppl):2562S–8S.

    CAS  PubMed  Google Scholar 

  54. Adibi SA. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology. 1997;113(1):332–40.

    Article  CAS  PubMed  Google Scholar 

  55. Tazuke Y, Wasa M, Shimizu Y, Wang HS, et al. Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats. JPEN J Parenter Enteral Nutr. 2003;27(2):110–5.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang JW, Zheng SS, Xue F, et al. Enteral feeding of glycyl-glutamine dipeptide improves the structure and absorptive function of the small intestine after allogenetic liver transplantation in rats. Hepatobiliary Pancreat Dis Int. 2006;5(2):199–204.

    CAS  PubMed  Google Scholar 

  57. Bober-Olesinska K, Kornacka MK. Effects of glutamine supplemented parenteral nutrition on the incidence of necrotizing enterocolitis, nosocomial sepsis and length of hospital stay in very low birth weight infants. Med Wieku Rozwoj. 2005;9(3 Pt 1):325–33.

    PubMed  Google Scholar 

  58. Furst P, Albers S, Stehle P. Glutamine-containing dipeptides in parenteral nutrition. JPEN J Parenter Enteral Nutr. 1990;14(4 Suppl):118S–24S.

    Article  CAS  PubMed  Google Scholar 

  59. Neu J, Afzal A, Pan H, et al. The dipeptide Arg-Gln inhibits retinal neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 2006;47(7):3151–5.

    Article  PubMed  Google Scholar 

  60. Li N, Ma L, Liu X, et al. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice. J Pediatr Gastroenterol Nutr. 2012;54(4):499–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ma L, Li N, Liu X, et al. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice. Nutrition. 2012;28(11–12):1186–91.

    Article  CAS  PubMed  Google Scholar 

  62. Giannone PJ, Bauer JA, Schanbacher BL, et al. Effects of hyperoxia on postnatal intestinal development. Biotech Histochem. 2007;82(1):17–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Neu M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ma, L., Li, N., Neu, J. (2015). Small Intestinal Hypoxic Injury and Use of Arginyl-Glutamine Dipeptide: Applications to Pediatrics. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics