Skip to main content

Cooperative Strategies for End-to-End Energy Saving and QoS Control

  • Chapter
  • First Online:
Novel 3D Media Technologies

Abstract

Energy efficiency and Quality of Service (QoS) have become major requirements in the research and commercial community to develop green communication technologies for cost-effective and seamless convergence of all services (e.g., data, 3D media, Haptics, etc.) over the Internet. In particular, efforts in wireless networks demonstrate that energy saving can be achieved through cooperative communication techniques such as multihop communications or cooperative relaying. Game-theoretic techniques are known to analyze interactions between collaborating entities in which each player can dynamically adopt a strategy that maximizes the number of bits successfully transmitted per unit of energy consumed, contributing to the overall optimization of the network in a distributed fashion. As for the core networks, recent findings claimed that resource over-provisioning is promising since it allows for dynamically booking more resources in advance, and multiple service requests can be admitted in a network without incurring the traditional per-flow signaling, while guaranteeing differentiated QoS. Indeed, heavy control signaling load has recently raised unprecedented concerns due to the related undue processing overhead in terms of energy, CPU and memory consumption. While cooperative communication and resource over-provisioning have been researched for many years, the former focuses on wireless access and the latter on the wired core networks only. Therefore, this chapter investigates existing solutions in these fields and proposes new design approach and guidelines to integrate both access and core technologies in such a way as to provide a scalable and energy-efficient support for end-to-end QoS-enabled communication control. This is of paramount importance to ensure rapid development of attractive 3D media streaming in the current and future Internet.

Hugo Marques is also with the Instituto Politécnico de Castelo Branco, Portugal

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gartner (2007) Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emissions. http://www.gartner.com/newsroom/id/503867. Accessed 11 July 2014

  2. The Zettabyte Era—Trends and Analysis (2014). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html. Accessed 30 June 2014

  3. Cisco (2010) Cisco visual networking index: global mobile data traffic forecast update, 2010–2015. http://newsroom.cisco.com/dlls/ekits/Cisco_VNI_Global_Mobile_Data_Traffic_Forecast_2010_2015.pdf. Accessed 9 July 2014

  4. Fehske A et al (2011) The global footprint of mobile communications: the ecological and economic perspective. IEEE Commun Mag 49(8):55–62

    Article  Google Scholar 

  5. Fitzek F, Katz MD (eds) (2006) Cooperation in wireless networks: principles and applications: real egoistic behavior is to cooperate. Springer, New York

    Google Scholar 

  6. GreenTouch (2014) Energy efficient wireless networks beyond 2020. ITU-R Workshop on Research Views on IMT Beyond 2020. http://www.greentouch.org/uploads/GreenTouch_ITU-R_Workshop_Research_Views_on_IMT_Beyond_2020_02-14-2014.pdf. Accessed: 9 July 2014

  7. Dejonghe A et al (2007) Green reconfigurable radio systems. IEEE Signal Process Mag 24(3):90–101

    Article  Google Scholar 

  8. Saghezchi FB, Radwan A, Alam M, Rodriguez J (2013) Cooperative strategies for power saving in multi-standard wireless devices. In: Galis A, Gavras A (eds) The future internet. Springer, Berlin, pp 284–296

    Chapter  Google Scholar 

  9. Allot Mobile Trends Report (2014) Measuring the mobile video experience. New insight on video delivery quality in mobile networks

    Google Scholar 

  10. Braden R, Clark D, Shenker S (1994) Integrated Services in the internet architecture: an overview. IETF RFC 1633

    Google Scholar 

  11. Braden R, Zhang L, Berson S, Herzog S, Jamin S (1997) Resource Reservation Protocol (RSVP) – Version 1 Functional Specification. IETF RFC 2205

    Google Scholar 

  12. Manner J, Fu X (2005) Analysis of existing quality-of-service signalling protocols. IETF RFC 4094

    Google Scholar 

  13. Changho Y, Harry P (2010) QoS control for NGN: a survey of techniques. Springer J Network Syst Manage 18(4):447–461

    Article  Google Scholar 

  14. Blake S, Black D, Carlson M, Davies E, Wang Z, Weiss W (1998) An architecture for differentiated services. IETF RFC 2475

    Google Scholar 

  15. Baker F, Iturralde C, Le Faucheur F, Davie B (2001) Aggregation of RSVP for IPv4 and IPv6 reservations. IETF RFC 3175

    Google Scholar 

  16. Bless R (2004) Dynamic aggregation of reservations for internet services. Telecommun Syst 26(1):33–52

    Article  Google Scholar 

  17. Neto A, Cerqueira E, Curado M, Monteiro E, Mendes P (2008) Scalable resource provisioning for multi-user communications in next generation networks. In: IEEE Global Telecommunications Conference (IEEE GLOBECOM), New Orleans, LA, USA

    Google Scholar 

  18. Prior R, Susana S (2007) Scalable Reservation-Based QoS Architecture—SRBQ. In: Encyclopedia of internet technologies and applications, doi: 10.4018/978-1-59140-993-9.ch067

  19. Logota E, Campos C, Sargento S, Neto A (2013) Advanced multicast class-based bandwidth over-provisioning. Comput Networks 57(9):2075–2092. doi:10.1016/j.comnet.2013.04.009

    Article  Google Scholar 

  20. Castrucci M, Cecchi M, Priscoli FD, Fogliati L, Garino P, Suraci V (2011) Key concepts for the Future Internet architecture. Future Network & Mobile Summit (FutureNetw), Warsaw, Poland

  21. Feamster N et al (2004) The case for separating routing from routers. In: Proceedings of ACM SIGCOMM workshop on future directions in network architecture

    Google Scholar 

  22. The Open Networking Foundation (2013) OpenFlow Switch Specification, Version 1.4.0 (Wire Protocol 0x05)

    Google Scholar 

  23. Logota E, Sargento S, Neto A (2010) Um Método para Controlo Avançado de Sobre-reservas Baseado em Classes de Serviço e Sistema para a sua Execução (A Method and apparatus for Advanced Class-based Bandwidth Over-reservation Control. Patent 105305

  24. IETF Mobile Ad Hoc Network (MANET) Working Group. http://datatracker.ietf.org/wg/manet/documents. Accessed 10 July 2014

  25. Cover T, Gamal AE (1979) Capacity theorems for the relay channel. IEEE Trans Inform Theory 25(5):572–584

    Article  MATH  MathSciNet  Google Scholar 

  26. Van der Meulen EC (1971) Three-terminal communication channels. Adv Appl Probab 3:120–154

    Article  MATH  Google Scholar 

  27. Laneman JN, Tse DNC, Wornell W (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inform Theory 50(12):3062–3080

    Article  MATH  MathSciNet  Google Scholar 

  28. Laneman JN, Wornell GW (2003) Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans Inform Theory 49(10):2415–2425

    Article  MATH  MathSciNet  Google Scholar 

  29. Sendonaris A, Erkip E, Azhang B (2003) User cooperation diversity – part I: system description. IEEE Trans Commun 51(11):1927–1938

    Article  Google Scholar 

  30. Sendonaris A, Erkip E, Azhang B (2003) User cooperation diversity – part II: implementation aspects and performance analysis. IEEE Trans Commun 51(11):1939–1948

    Article  Google Scholar 

  31. Hunter TE, Nosratinia A (2006) Diversity through coded cooperation. IEEE Trans Wireless Commun 5(2):283–289

    Article  MathSciNet  Google Scholar 

  32. Janani M, Hedayat A, Huntter TE, Nosratinia A (2004) Coded cooperation in wireless communications: space-time transmission and iterative coding. IEEE Trans Signal Process 52(2):362–371

    Article  MathSciNet  Google Scholar 

  33. Sadek AK, Su W, Liu KJR (2007) Multinode cooperative communications in wireless networks. IEEE Trans Signal Process 55(1):341–355

    Article  MathSciNet  Google Scholar 

  34. Boyer J, Falconer DD, Yanikomeroglu H (2004) Multihop diversity in wireless relaying channels. IEEE Trans Commun 52(10):1820–1830

    Article  Google Scholar 

  35. Kramer G, Gaspar M, Gupta P (2005) Cooperative strategies and capacity theorems for relay networks. IEEE Trans Inform Theory 51(9):3037–3063

    Article  MATH  MathSciNet  Google Scholar 

  36. Zheng L, Tse DNC (2003) Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Trans Inform Theory 49(5):1073–1096

    Article  MATH  Google Scholar 

  37. Nosratinia A, Hunter TE, Hedayat A (2004) Cooperative communication in wireless networks. IEEE Commun Mag 42(10):74–80

    Article  Google Scholar 

  38. Nagpal V (2012) Cooperative multiplexing in wireless relay networks. Dissertation, University of California, Berkeley

    Google Scholar 

  39. Yijia F, Chao W, Poor HV, Thompson JS (2009) Cooperative multiplexing: toward higher spectral efficiency in multiple-antenna relay networks. IEEE Trans Inform Theory 55(9):3909–3926

    Article  MathSciNet  Google Scholar 

  40. Lin Y, Hsu Y (2000) Multihop cellular: a new architecture for wireless communications. In: Proceedings of 19th IEEE conference on INFOCOM, vol. 3, pp 1273–1282

    Google Scholar 

  41. Le L, Hossain E (2007) Multihop cellular networks: potential gains, research challenges, and a resource allocation framework. IEEE Commun Mag 45(9):66–73

    Article  Google Scholar 

  42. Salem NB, Buttyán L, Hubaux JP, Jakobsson M (2006) Node cooperation in hybrid ad hoc networks. IEEE Trans Mobile Comput 5(4):365–376

    Article  Google Scholar 

  43. 3GPP (1999) TR 25.924 version 1.0.0.0: Opportunity Driven Multiple Access

    Google Scholar 

  44. 3GPP (2010) TR 36.806 V9.0.0: Relay Architecture for E-UTRA (LTE-Advanced) (Release 9)

    Google Scholar 

  45. 3GPP (2012) TS 36.216 V11.0.0: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer for relaying operation (Release 11)

    Google Scholar 

  46. 3GPP (2014) TR 36.836 V2.1.0: Study on Mobile Relay for Evolved Universal Terrestrial Radio Access (E-UTRA) (Release 12)

    Google Scholar 

  47. Iwamura M, Takahashi H, Nagata S (2010) Relay technology in LTE-advanced. NTT Docomo Technical J 12(2):29–36

    Google Scholar 

  48. Aggélou GN, Tafazolli R (2001) On the relaying capability of next-generation GSM cellular networks. IEEE Personal Commun 8(1):40–47

    Article  Google Scholar 

  49. Pabst R et al (2004) Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Commun Mag 45(9):80–89

    Article  Google Scholar 

  50. FP7 EU Project (2014) C2POWER: Cognitive radio and cooperative strategies for power saving in multi-standard wireless devices. http://www.ict-c2power.eu. Accessed 9 July 2014

  51. FP7 EU Project (2014) GREENT: Green terminals for next generation wireless systems. http://greent.av.it.pt. Accessed 9 July 2014

  52. Radwan A, Rodriguez J (2012) Energy saving in multi-standard mobile terminals through short-range cooperation. EURASIP J Wireless Commun Networking 2012(159):1–15

    Google Scholar 

  53. Saghezchi FB, Radwan A, Rodriguez J (2013) Energy efficiency performance of wiFi/WiMedia relaying in hybrid ad-hoc networks. In: Proceedings of IEEE 3rd International Conference on Communications and Information Technology (ICCIT), Beirut, pp 285–289

    Google Scholar 

  54. MacKenzie AB, DaSilva LA (2006) Game theory for wireless engineers. Morgan and Claypool Publishers, California

    Google Scholar 

  55. Felegyhazi M, Hubaux J (2006) Game theory in wireless networks: a tutorial. Technical Report LCA- REPORT-2006-002, EPFL

    Google Scholar 

  56. Saad W, Han Z, Debbah M, Hjørungnes A, Basar T (2009) Coalitional game theory for communication networks. IEEE Signal Process Mag 26(5):77–97

    Article  Google Scholar 

  57. Saghezchi FB, Nascimento A, Albano M, Radwan A, Rodriguez J (2011) A novel relay selection game in cooperative wireless networks based on combinatorial optimizations. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest

    Google Scholar 

  58. Saghezchi FB, Radwan A, Nascimento A, Rodriguez J (2012) An incentive mechanism based on coalitional game for fair cooperation of mobile users in HANETs. In: Proceedings of IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Barcelona, pp 378–382

    Google Scholar 

  59. Saghezchi FB, Radwan A, Rodriguez J, Dagiuklas T (2013) Coalition formation game toward green mobile terminals in heterogeneous wireless networks. IEEE Wireless Commun Mag 20(5):85–91. doi:10.1109/MWC.2013.6664478

    Article  Google Scholar 

  60. Srivastava V et al (2005) Using game theory to analyze wireless ad hoc networks. IEEE Commun Surv Tutorials 7(4):46–56

    Article  Google Scholar 

  61. Félegyázi M, Hubaux J, Buttyán L (2006) Nash equilibrium of packet forwarding strategies in wireless ad hoc networks. IEEE Trans Mobile Comput 5(5):463–476

    Article  Google Scholar 

  62. Yang J, Klein AG, Brown DR III (2009) Natural cooperation in wireless networks. IEEE Signal Process Mag 26(5):98–106

    Article  Google Scholar 

  63. Srinivasan V, Nuggehalli P, Chiasserini CF, Rao RR (2005) An analytical approach to the study of cooperation in wireless ad hoc networks. IEEE Trans Wireless Commun 4(2):722–733

    Article  Google Scholar 

  64. Buttyán L, Hubaux, JP (2001) Nuglets: a virtual currency to stimulate cooperation in self organized mobile ad hoc networks. Technical report, no. DSC/2001

    Google Scholar 

  65. Jakobsson M, Hubaux JP, Buttyán L (2003) A micro-payment scheme encouraging collaboration in multi-hop cellular networks. Financial cryptography. Springer, Berlin, pp 15–33

    Google Scholar 

  66. Salem NB, Levente B, Hubaux JP, Jakobsson M (2003) A charging and rewarding scheme for packet forwarding in multi-hop cellular networks. In: Proceedings of MOBIHOC’03, Maryland, USA

    Google Scholar 

  67. Zhong S, Chen J, Yang YR (2003) Sprite: a simple, cheat- proof, credit-based system for mobile ad hoc networks. In: IEEE INFOCOM’03, vol. 3, San Francisco, pp 1987–1997

    Google Scholar 

  68. Buchegger S, Boudec JL (2002) Performance analysis of the CONFIDANT protocol. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing, Lausanne, pp 226–236

    Google Scholar 

  69. Michiardi P, Molva R (2002) CORE: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. In: Proceedings of IFIP communication and multi-media security conference

    Google Scholar 

  70. Bansal S, Baker M (2003) Observation-based cooperation enforcement in ad hoc networks. http://arxiv.org/pdf/cs/0307012v2. Accessed 9 July 2014

    Google Scholar 

  71. He Q, Wu D, Khosla P (2004) SORI: A Secure And Objective Reputation-based Incentive Scheme for Ad Hoc Networks. In: IEEE wireless communications and networking conference, pp 825–830

    Google Scholar 

  72. Rebahi Y,Mujica V, Simons C, Sisalem D (2005) SAFE: Securing packet forwarding in Ad Hoc networks. In: Proceeding of the 5th Workshop on Applications and Services in Wireless Networks (ASWN), Paris

    Google Scholar 

  73. Jaramillo JJ, Srikant R (2007) DARWIN: distributed and adaptive reputation mechanism for wireless ad-hoc networks. In: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking (MOBICOM’07), Montréal

    Google Scholar 

  74. Saghezchi FB, Radwan A, Rodriguez J, Taha AM (2014) Coalitional relay selection game to extend battery lifetime of multi-standard mobile terminals. In: IEEE International Conference on Communications (ICC), Sydney, pp 508–513

    Google Scholar 

  75. Saghezchi FB, Radwan A, Rodriguez J (2014) A coalitional game-theoretic approach to isolate selfish nodes in multihop cellular network. In: The 9th IEEE Symposium on Computers and Communications, (ISCC), Madeira

    Google Scholar 

  76. ITU-T Recommendation (2004) Y.2001: General overview of NGN

    Google Scholar 

  77. http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND/QoSIntro.html. Accessed 30 June 2014

  78. Sofia R (2004) SICAP, a shared-segment inter-domain control aggregation protocol. Dissertation, Universidade de Lisboa, Portugal

    Google Scholar 

  79. Logota E, Neto A, Sargento S (2010) A new strategy for efficient decentralized network control. In: IEEE Global Telecommunications Conference, (IEEE GLOBECOM)

    Google Scholar 

  80. Golestani S-J (1994) A self-clocked fair queueing scheme for broadband applications. In: INFOCOM. Networking for Global Communications, Toronto, pp 12–16

    Google Scholar 

  81. Evariste L, Campos C, Sargento S, Neto A (2013) Scalable resource and admission management in class-based networks. In: IEEE International Conference on Communications 2013 (ICC’13) – 3rd IEEE International Workshop on Smart Communication Protocols and Algorithms (SCPA 2013) – (‘ICC’13–IEEE ICC’13–Workshop SCPA’), Budapest, Hungary

    Google Scholar 

  82. The Zettabyte Era — Trends and Analysis. http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html. Accessed 30 June 2014

  83. ITU-T Study Group 12 (2008) Performance monitoring points for IPTV. ITU-T Recommendation G.1081

    Google Scholar 

  84. Lima SR, Carvalho P (2011) Enabling self-adaptive QoE/QoS control. In: Proceedings of IEEE 36th Conference on Local Computer Networks (LCN), Bonn, pp 239–242

    Google Scholar 

  85. Salehin KM, Rojas-Cessa R (2010) Combined methodology for measurement of available bandwidth and link capacity in wired packet networks. IET Commun 4(2):240–252

    Article  Google Scholar 

  86. Moi J (1998) OSPF version 2. IETF RFC2328

    Google Scholar 

  87. Pan P, Hahne E, Schulzrinne H (2000) BGRP: a tree-based aggregation protocol for inter-domain reservations. J Commun Networks 2(2):157–167

    Article  Google Scholar 

  88. Pinto P, Santos A, Amaral P, Bernardo L (2007) SIDSP: Simple inter-domain QoS signaling protocol. In: Proceedings of IEEE Military Communications Conference, Orlando, FL, USA

    Google Scholar 

  89. Bless R (2002) Dynamic aggregation of reservations for internet services. In: Proceedings of 10th Int. Conf. on Telecommunication. Systems – Modeling and Analysis (ICTSM’10), vol 1, pp 26–38

    Google Scholar 

  90. Sofia R, Guerin R, Veiga P (2003) SICAP, a shared-segment inter-domain control aggregation protocol. In: Proceedings of Int. Conf. in High Performance Switching and Routing, Turin, Italy

    Google Scholar 

  91. The Network Simulator – ns-2.31. http://www.isi.edu/nsnam/ns/. Accessed 7 July 2014

  92. Babiarz J, Chan K, Baker F (2006) Configuration Guidelines for DiffServ Service Classes. IETF RFC 4594

    Google Scholar 

  93. Demers A, Keshav S, Shenker S (1989) Analysis and simulation of a fair queueing algorithm. In: ACM SIGCOMM’89, vol. 19, pp 1–12

    Google Scholar 

  94. Evariste L, Hugo M, Jonathan R (2013) A cross-layer resource over-provisioning architecture for P2P networks. In: Proceedings of 18th international conference on digital signal processing – special session on 3D immersive & interactive multimedia over the future internet, Santorini, Greece

    Google Scholar 

  95. Katz D (1997) IP Router Alert Option. IETF RFC 2113, Feb 1997

    Google Scholar 

  96. Hancock R, Karagiannis G, Loughney J, Van den Bosch S (2005) Next Steps in Signalling (NSIS): Framework. IETF RFC 4080

    Google Scholar 

  97. Manner J, Karagiannis G, McDonald A (2008) NSLP for quality-of-service signaling. Draft-ietf-nsis-qos-nslp-16 (work in progress)

    Google Scholar 

  98. Vasseur J-P, Ali Z, Sivabalan S (2006) Definition of a Record Route Object (RRO) Node-Id Sub-Object. IETF RFC 4561

    Google Scholar 

  99. Rekhter Y, Li T, Hares S (2006) A Border Gateway Protocol 4 (BGP-4). IETF RFC 4271

    Google Scholar 

  100. Rosenberg J et al (2002) SIP: Session Initiation Protocol. IETF RFC 3261

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support given by the ROMEO project (grant number: 287896), which was funded by the EC FP7 ICT collaborative research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evariste Logota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Logota, E., Saghezchi, F.B., Marques, H., Rodriguez, J. (2015). Cooperative Strategies for End-to-End Energy Saving and QoS Control. In: Kondoz, A., Dagiuklas, T. (eds) Novel 3D Media Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2026-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2026-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2025-9

  • Online ISBN: 978-1-4939-2026-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics