Skip to main content

New Molecular Markers of Diagnosis and Prognosis in Prostate Cancer

  • Chapter
  • First Online:
Genitourinary Pathology

Abstract

Serum prostate-specific antigen (PSA) has remained the mainstay biomarker for prostate cancer diagnosis and management since its wide spread utilization as a screening tool almost 25 years ago. Although it has led to a dramatic increase in prostate cancer detection, PSA has substantial drawbacks both with sensitivity and specificity. Detection of clinically insignificant disease is another important issue. Together, these drawbacks of PSA emphasize the need for biomarkers that can supplement PSA as a diagnostic test, provide better cancer specificity than currently available tissue-based markers, reduce the number of unnecessary biopsies, and distinguish indolent from clinically significant prostate cancer. New genomic and bioinformatics technologies have allowed the discovery and study of an expanding universe of novel tissue-, urine-, or body fluid-based biomarkers due to their higher cancer specificity and their prognostic or predictive utilities. Such efforts have also produced several notable success stories that involve rapidly moving biomarkers from the bench to the clinic. α-Methylacyl-CoA racemase (AMACR), ERG fusion protein, phosphatase and tensin homolog (PTEN), and prostate cancer antigen 3 (PCA3) are important examples of biomarkers, which have found their way from bench to clinic. This chapter summarizes selected novel promising prostate cancer biomarkers of utility for the diagnosis, biological stratification, and prognosis of prostate cancer. The biomarkers addressed in the chapter are classified based on their diagnostic and prognostic applications as well as their functions as tissue- and urine-based markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, et al. Alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002;287(13):1662–70.

    Article  CAS  PubMed  Google Scholar 

  2. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62(8):2220–6.

    CAS  PubMed  Google Scholar 

  3. Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA. Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002;26(7):926–31.

    Article  PubMed  Google Scholar 

  4. Kunju LP, Chinnaiyan AM, Shah RB. Comparison of monoclonal antibody (P504S) and polyclonal antibody to alpha methylacyl-CoA racemase (AMACR) in the work-up of prostate cancer. Histopathology. 2005;47(6):587–96.

    Article  CAS  PubMed  Google Scholar 

  5. Paner GP, Luthringer DJ, Amin MB. Best practice in diagnostic immunohistochemistry: prostate carcinoma and its mimics in needle core biopsies. Arch Pathol Lab Med. 2008;132(9):1388–96.

    PubMed  Google Scholar 

  6. Kunju LP, Rubin MA, Chinnaiyan AM, Shah RB. Diagnostic usefulness of monoclonal antibody P504S in the workup of atypical prostatic glandular proliferations. Am J Clin Pathol. 2003;120(5):737–45.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou M, Jiang Z, Epstein JI. Expression and diagnostic utility of alpha-methylacyl-CoA-racemase (P504S) in foamy gland and pseudohyperplastic prostate cancer. Am J Surg Pathol. 2003;27(6):772–8.

    Article  PubMed  Google Scholar 

  8. Yang XJ, Laven B, Tretiakova M, Blute RD Jr., Woda BA, Steinberg GD, et al. Detection of alpha-methylacyl-coenzyme A racemase in postradiation prostatic adenocarcinoma. Urology. 2003;62(2):282–6.

    Article  PubMed  Google Scholar 

  9. Zhou M, Aydin H, Kanane H, Epstein JI. How often does alpha-methylacyl-CoA-racemase contribute to resolving an atypical diagnosis on prostate needle biopsy beyond that provided by basal cell markers? Am J Surg Pathol. 2004;28(2):239–43.

    Article  PubMed  Google Scholar 

  10. Przybycin CG, Kunju LP, Wu AJ, Shah RB. Partial atrophy in prostate needle biopsies: a detailed analysis of its morphology, immunophenotype, and cellular kinetics. Am J Surg Pathol. 2008;32(1):58–64.

    Article  PubMed  Google Scholar 

  11. Skinnider BF, Oliva E, Young RH, Amin MB. Expression of alpha-methylacyl-CoA racemase (P504S) in nephrogenic adenoma: a significant immunohistochemical pitfall compounding the differential diagnosis with prostatic adenocarcinoma. Am J Surg Pathol. 2004;28(6):701–5.

    Article  PubMed  Google Scholar 

  12. Yang XJ, Wu CL, Woda BA, Dresser K, Tretiakova M, Fanger GR, et al. Expression of alpha-Methylacyl-CoA racemase (P504S) in atypical adenomatous hyperplasia of the prostate. Am J Surg Pathol. 2002;26(7):921–5.

    Article  PubMed  Google Scholar 

  13. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  CAS  PubMed  Google Scholar 

  14. Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, Wei JT, et al. Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol. 2007;20(5):538–44.

    Article  CAS  PubMed  Google Scholar 

  15. Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Bueti G, et al. Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res. 2009;15(14):4706–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66(17):8337–41.

    Article  CAS  PubMed  Google Scholar 

  17. Shah RB, Chinnaiyan AM. The discovery of common recurrent transmembrane protease serine 2 (TMPRSS2)-erythroblastosis virus E26 transforming sequence (ETS) gene fusions in prostate cancer: significance and clinical implications. Adv Anat Pathol. 2009;16(3):145–53.

    Article  CAS  PubMed  Google Scholar 

  18. Han B, Mehra R, Dhanasekaran SM, Yu J, Menon A, Lonigro RJ, et al. A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer. Cancer Res. 2008;68(18):7629–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, et al. Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 2008;68(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  20. Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol. 2007;31(6):882–8.

    Article  PubMed  Google Scholar 

  21. Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 2007;67(17):7991–5.

    Article  CAS  PubMed  Google Scholar 

  22. Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res. 2008;68(10):3584–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shah RB, Tadros Y, Brummell B, Zhou M. The diagnostic use of ERG in resolving an “atypical glands suspicious for cancer” diagnosis in prostate biopsies beyond that provided by basal cell and alpha-methylacyl-CoA-racemase markers. Hum Pathol. 2013;44(5):786–94.

    Article  CAS  PubMed  Google Scholar 

  24. Tomlins SA, Palanisamy N, Siddiqui J, Chinnaiyan AM, Kunju LP. Antibody-based detection of ERG rearrangements in prostate core biopsies, including diagnostically challenging cases: ERG staining in prostate core biopsies. Arch Pathol Lab Med. 2012;136(8):935–46.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Shah RB. Clinical applications of novel ERG immunohistochemistry in prostate cancer diagnosis and management. Adv Anat Pathol. 2013;20(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  26. Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, Mehra R, et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia. 2010;12(7):590–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Chaux A, Albadine R, Toubaji A, Hicks J, Meeker A, Platz EA, et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol. 2011;35(7):1014–20.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Falzarano SM, Zhou M, Carver P, Tsuzuki T, Simmerman K, He H, et al. ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Arch. 2011;459(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  29. van Leenders GJ, Boormans JL, Vissers CJ, Hoogland AM, Bressers AA, Furusato B, et al. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod Pathol. 2011;24(8):1128–38.

    Article  CAS  PubMed  Google Scholar 

  30. Braun M, Goltz D, Shaikhibrahim Z, Vogel W, Bohm D, Scheble V, et al. ERG protein expression and genomic rearrangement status in primary and metastatic prostate cancer—a comparative study of two monoclonal antibodies. Prostate Cancer Prostatic Dis. 2012;15(2):165–9.

    Article  CAS  PubMed  Google Scholar 

  31. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA, et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis. 2010;13(3):228–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hameed O, Humphrey PA. Immunohistochemistry in diagnostic surgical pathology of the prostate. Semin Diagn Pathol. 2005;22(1):88–104.

    Article  PubMed  Google Scholar 

  33. Varma M, Jasani B. Diagnostic utility of immunohistochemistry in morphologically difficult prostate cancer: review of current literature. Histopathology. 2005;47(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  34. He H, Magi-Galluzzi C, Li J, Carver P, Falzarano S, Smith K, et al. The diagnostic utility of novel immunohistochemical marker ERG in the workup of prostate biopsies with “atypical glands suspicious for cancer”. Am J Surg Pathol. 2011;35(4):608–14.

    Article  PubMed  Google Scholar 

  35. Yaskiv O, Zhang X, Simmerman K, Daly T, He H, Falzarano S, et al. The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsies. Am J Surg Pathol. 2011;35(7):1062–8.

    Article  PubMed  Google Scholar 

  36. Gao X, Li LY, Zhou FJ, Xie KJ, Shao CK, Su ZL, et al. ERG rearrangement for predicting subsequent cancer diagnosis in high-grade prostatic intraepithelial neoplasia and lymph node metastasis. Clin Cancer Res. 2012;18(15):4163–72.

    Article  CAS  PubMed  Google Scholar 

  37. He H, Osunkoya AO, Carver P, Falzarano S, Klein E, Magi-Galluzzi C, et al. Expression of ERG protein, a prostate cancer specific marker, in high grade prostatic intraepithelial neoplasia (HGPIN): lack of utility to stratify cancer risks associated with HGPIN. BJU Int. 2012;110(11 Pt B):E751–5.

    Google Scholar 

  38. Shah RB, Zhou M. Atypical cribriform lesions of the prostate: clinical significance, differential diagnosis and current concept of intraductal carcinoma of the prostate. Adv Anat Pathol. 2012;19(4):270–8.

    Article  PubMed  Google Scholar 

  39. Epstein JI, Herawi M. Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care. J Urol. 2006; 175(3 Pt 1):820–34.

    Article  PubMed  Google Scholar 

  40. Shah RB, Magi-Galluzzi C, Han B, Zhou M. Atypical cribriform lesions of the prostate: relationship to prostatic carcinoma and implication for diagnosis in prostate biopsies. Am J Surg Pathol. 2010;34(4):470–7.

    Article  PubMed  Google Scholar 

  41. Miettinen M, Wang ZF, Paetau A, Tan SH, Dobi A, Srivastava S, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol. 2011;35(3):432–41.

    Article  PubMed  Google Scholar 

  42. Wang WL, Patel NR, Caragea M, Hogendoorn PC, Lopez-Terrada D, Hornick JL, et al. Expression of ERG, an ETS family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol. 2012;25(10):1378–83.

    Article  CAS  PubMed  Google Scholar 

  43. Minner S, Luebke AM, Kluth M, Bokemeyer C, Janicke F, Izbicki J, et al. High level of ETS-related gene expression has high specificity for prostate cancer: a tissue microarray study of 11 483 cancers. Histopathology. 2012;61(3):445–53.

    Article  PubMed  Google Scholar 

  44. Guo CC, Dancer JY, Wang Y, Aparicio A, Navone NM, Troncoso P, et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum Pathol. 2011;42(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  45. Han B, Mehra R, Suleman K, Tomlins SA, Wang L, Singhal N, et al. Characterization of ETS gene aberrations in select histologic variants of prostate carcinoma. Mod Pathol. 2009;22(9):1176–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology. 2007;39(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  47. Ellinger J, Bastian PJ, Jurgan T, Biermann K, Kahl P, Heukamp LC, et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology. 2008;71(1):161–7.

    Article  PubMed  Google Scholar 

  48. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. [Research Support, Non-U.S. Gov’t]. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  49. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, et al. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62(9):2695–8.

    CAS  PubMed  Google Scholar 

  50. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. [Comparative Study]. 2003;44(1):8–15; discussion 6.

    Article  CAS  PubMed  Google Scholar 

  51. Vlaeminck-Guillem V, Ruffion A, Andre J, Devonec M, Paparel P. Urinary prostate cancer 3 test: toward the age of reason? Urology. [Review]. 2010;75(2):447–53.

    Article  PubMed  Google Scholar 

  52. Truong M, Yang B, Jarrard DF. Toward the detection of prostate cancer in urine: a critical analysis. J Urol. 2013;189(2):422–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. van Poppel H, Haese A, Graefen M, de la Taille A, Irani J, de Reijke T, et al. The relationship between prostate cancer gene 3 (PCA3) and prostate cancer significance. BJU Int. [Meta-Analysis]. 2012;109(3):360–6.

    Article  PubMed  Google Scholar 

  54. Leyten GH, Hessels D, Jannink SA, Smit FP, de Jong H, Cornel EB, et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol. 2014;65(3):534–42.

    Article  CAS  PubMed  Google Scholar 

  55. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, et al. TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res. 2006;66(7):3396–400.

    Article  CAS  PubMed  Google Scholar 

  56. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J. Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res. 2008;68(9):3094–8.

    Article  CAS  PubMed  Google Scholar 

  57. Attard G, Clark J, Ambroisine L, Mills IG, Fisher G, Flohr P, et al. Heterogeneity and clinical significance of ETV1 translocations in human prostate cancer. Br J Cancer. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’t]. 2008;99(2):314–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature. 2007;448(7153):595–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8(7):497–511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 2009;56(2):275–86.

    Article  CAS  PubMed  Google Scholar 

  61. Young A, Palanisamy N, Siddiqui J, Wood DP, Wei JT, Chinnaiyan AM, et al. Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden. Am J Clin Pathol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2012;138(5):685–96.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia. 2006;8(10):885–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Hessels D, Smit FP, Verhaegh GW, Witjes JA, Cornel EB, Schalken JA. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clin Cancer Res. 2007;13(17):5103–8.

    Article  CAS  PubMed  Google Scholar 

  64. Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2011;3(94):94ra72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31(5):566–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Salagierski M, Schalken JA. Molecular diagnosis of prostate cancer: PCA3 and TMPRSS2:ERG gene fusion. J Urol. [Research Support, Non-U.S. Gov’t Review]. 2012;187(3):795–801.

    Article  CAS  PubMed  Google Scholar 

  67. Karnes RJ, Cheville JC, Ida CM, Sebo TJ, Nair AA, Tang H, et al. The ability of biomarkers to predict systemic progression in men with high-risk prostate cancer treated surgically is dependent on ERG status. Cancer Res. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;70(22):8994–9002.

    Article  CAS  PubMed  Google Scholar 

  68. Kristiansen G, Fritzsche FR, Wassermann K, Jager C, Tolls A, Lein M, et al. GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer. 2008;99(6):939–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68(3):645–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Han B, Mehra R, Lonigro RJ, Wang L, Suleman K, Menon A, et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod Pathol. 2009;22(8):1083–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Halvorsen OJ, Haukaas SA, Akslen LA. Combined loss of PTEN and p27 expression is associated with tumor cell proliferation by Ki-67 and increased risk of recurrent disease in localized prostate cancer. Clin Cancer Res. 2003;9(4):1474–9.

    CAS  PubMed  Google Scholar 

  72. Lotan TL, Gurel B, Sutcliffe S, Esopi D, Liu W, Xu J, et al. PTEN protein loss by immunostaining: analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin Cancer Res. 2011;17(20):6563–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. McCall P, Witton CJ, Grimsley S, Nielsen KV, Edwards J. Is PTEN loss associated with clinical outcome measures in human prostate cancer? Br J Cancer. 2008;99(8):1296–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates .with high Gleason score and advanced stage. Cancer Res. 1999;59(17):4291–6.

    CAS  PubMed  Google Scholar 

  75. Schmitz M, Grignard G, Margue C, Dippel W, Capesius C, Mossong J, et al. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer. 2007;120(6):1284–92.

    Article  CAS  PubMed  Google Scholar 

  76. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci U S A. 1998;95(9):5246–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Yoshimoto M, Cunha IW, Coudry RA, Fonseca FP, Torres CH, Soares FA, et al. FISH analysis of 107 prostate cancers shows that PTEN genomic deletion is associated with poor clinical outcome. Br J Cancer. 2007;97(5):678–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Yoshimoto M, Cutz JC, Nuin PA, Joshua AM, Bayani J, Evans AJ, et al. Interphase FISH analysis of PTEN in histologic sections shows genomic deletions in 68 % of primary prostate cancer and 23 % of high-grade prostatic intra-epithelial neoplasias. Cancer Genet Cytogenet. 2006;169(2):128–37.

    Article  CAS  PubMed  Google Scholar 

  79. Chaux A, Peskoe SB, Gonzalez-Roibon N, Schultz L, Albadine R, Hicks J, et al. Loss of PTEN expression is associated with increased risk of recurrence after prostatectomy for clinically localized prostate cancer. Mod Pathol. 2012;25(11):1543–9.

    Article  CAS  PubMed  Google Scholar 

  80. Krohn A, Diedler T, Burkhardt L, Mayer PS, De Silva C, Meyer-Kornblum M, et al. Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol. 2012;181(2):401–12.

    Article  CAS  PubMed  Google Scholar 

  81. Yoshimoto M, Joshua AM, Cunha IW, Coudry RA, Fonseca FP, Ludkovski O, et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol. 2008;21(12):1451–60.

    Article  CAS  PubMed  Google Scholar 

  82. Bertram J, Peacock JW, Fazli L, Mui AL, Chung SW, Cox ME, et al. Loss of PTEN is associated with progression to androgen independence. Prostate. 2006;66(9):895–902.

    Article  CAS  PubMed  Google Scholar 

  83. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene. 2007;26(31):4596–9.

    Article  CAS  PubMed  Google Scholar 

  85. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH, et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther. 2007;6(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  86. Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 2009;69(4):1400–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Hermans KG, Boormans JL, Gasi D, van Leenders GJ, Jenster G, Verhagen PC, et al. Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res. 2009;15(20):6398–403.

    Article  CAS  PubMed  Google Scholar 

  88. Hoogland AM, Jenster G, van Weerden WM, Trapman J, van der Kwast T, Roobol MJ, et al. ERG immunohistochemistry is not predictive for PSA recurrence, local recurrence or overall survival after radical prostatectomy for prostate cancer. Mod Pathol. 2012;25(3):471–9.

    Article  CAS  PubMed  Google Scholar 

  89. Minner S, Enodien M, Sirma H, Luebke AM, Krohn A, Mayer PS, et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin Cancer Res. 2011;17(18):5878–88.

    Article  CAS  PubMed  Google Scholar 

  90. Pettersson A, Graff RE, Bauer SR, Pitt MJ, Lis RT, Stack EC, et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2012;21(9):1497–509.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Reid AH, Attard G, Ambroisine L, Fisher G, Kovacs G, Brewer D, et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br J Cancer. 2010;102(4):678–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell. 2008;13(6):519–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Lukkonen A, Lintula S, von Boguslawski K, Carpen O, Ljungberg B, Landberg G, et al. Tumor-associated trypsin inhibitor in normal and malignant renal tissue and in serum of renal-cell carcinoma patients. Int J Cancer. [Research Support, Non-U.S. Gov’t]. 1999;83(4):486–90.

    Article  CAS  PubMed  Google Scholar 

  94. Kelloniemi E, Rintala E, Finne P, Stenman UH, Finnbladder G. Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology. 2003;62(2):249–53.

    Article  PubMed  Google Scholar 

  95. Haglund C, Huhtala ML, Halila H, Nordling S, Roberts PJ, Scheinin TM, et al. Tumour-associated trypsin inhibitor, TATI, in patients with pancreatic cancer, pancreatitis and benign biliary diseases. Br J Cancer. [Research Support, Non-U.S. Gov’t]. 1986;54(2):297–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Higashiyama M, Monden T, Tomita N, Murotani M, Kawasaki Y, Morimoto H, et al. Expression of pancreatic secretory trypsin inhibitor (PSTI) in colorectal cancer. Br J Cancer. [Research Support, Non-U.S. Gov’t]. 1990;62(6):954–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Huhtala ML, Kahanpaa K, Seppala M, Halila H, Stenman UH. Excretion of a tumor-associated trypsin inhibitor (TATI) in urine of patients with gynecological malignancy. Int J Cancer. [Comparative Study Research Support, Non-U.S. Gov’t]. 1983;31(6):711–4.

    Article  CAS  PubMed  Google Scholar 

  98. Paju A, Vartiainen J, Haglund C, Itkonen O, von Boguslawski K, Leminen A, et al. Expression of trypsinogen-1, trypsinogen-2, and tumor-associated trypsin inhibitor in ovarian cancer: prognostic study on tissue and serum. Clin Cancer Res. [Research Support, Non-U.S. Gov’t]. 2004;10(14):4761–8.

    Article  CAS  PubMed  Google Scholar 

  99. Ohmachi Y, Murata A, Matsuura N, Yasuda T, Yasuda T, Monden M, et al. Specific expression of the pancreatic-secretory-trypsin-inhibitor (PSTI) gene in hepatocellular carcinoma. Int J Cancer. 1993;55(5):728–34.

    Article  CAS  PubMed  Google Scholar 

  100. Kazal LA, Spicer DS, Brahinsky RA. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc. 1948;70(9):3034–40.

    Article  CAS  PubMed  Google Scholar 

  101. Bjartell A, Paju A, Zhang WM, Gadaleanu V, Hansson J, Landberg G, et al. Expression of tumor-associated trypsinogens (TAT-1 and TAT-2) in prostate cancer. Prostate. [In Vitro Research Support, Non-U.S. Gov’t]. 2005;64(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  102. Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X, et al. Therapeutic targeting of SPINK1-positive prostate cancer. Sci Transl Med. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 2011;3(72):72ra17.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. [Research Support, Non-U.S. Gov’t]. 2003;22(20):5323–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Pasini D, Bracken AP, Helin K. Polycomb group proteins in cell cycle progression and cancer. Cell Cycle. [Research Support, Non-U.S. Gov’t]. 2004;3(4):396–400.

    Article  CAS  PubMed  Google Scholar 

  105. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. 2008;322(5908):1695–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, et al. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2010;9:108.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. [Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. 2002;419(6907):624–9.

    Article  CAS  PubMed  Google Scholar 

  108. Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. [Research Support, Non-U.S. Gov’t]. 2012;31(3–4):753–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Nallasivam Palanisamy, PhD, Michigan Center for Translational Pathology, University of Michigan for providing Fig. 9.6b; M. Carmen Frias-Kletecka, MD, LSU, for critical reading of the chapter; and Monica Brynes, graphics manager, LSU, for assistance with the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajal B. Shah MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shah, R., Bhalla, R. (2015). New Molecular Markers of Diagnosis and Prognosis in Prostate Cancer. In: Magi-Galluzzi, C., Przybycin, C. (eds) Genitourinary Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2044-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2044-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2043-3

  • Online ISBN: 978-1-4939-2044-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics