Skip to main content

Development of Additive Manufacturing Technology

  • Chapter
Additive Manufacturing Technologies

Abstract

It is important to understand that AM was not developed in isolation from other technologies. For example it would not be possible for AM to exist were it not for innovations in areas like 3D graphics and Computer-Aided Design software. This chapter highlights some of the key moments that catalogue the development of Additive Manufacturing technology. It will describe how the different technologies converged to a state where they could be integrated into AM machines. It will also discuss milestone AM technologies and how they have contributed to increase the range of AM applications. Furthermore, we will discuss how the application of Additive Manufacturing has evolved to include greater functionality and embrace a wider range of applications beyond the initial intention of just prototyping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuse Z3 Computer. http://www.zib.de/zuse

  2. Goldstine HH, Goldstine A (1946) The electronic numerical integrator and computer (ENIAC). Math Tables Other Aids Comput 2(15):97–110

    Article  MathSciNet  MATH  Google Scholar 

  3. Wilkes MV, Renwick W (1949) The EDSAC – an electronic calculating machine. J Sci Instrum 26:385–391

    Article  MathSciNet  Google Scholar 

  4. Waterloo Computer Science Club, talk by Bill Gates. http://csclub.uwaterloo.ca/media

  5. Gatlin J (1999) Bill Gates – the path to the future. Quill, New York, p 39

    Google Scholar 

  6. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  7. Jamieson R, Hacker H (1995) Direct slicing of CAD models for rapid prototyping. Rapid Prototyping J 1(2):4–12

    Article  Google Scholar 

  8. 3D Systems Inc. (1989) Stereolithography interface specification. 3D Systems, Valencia

    Google Scholar 

  9. Protoform. Space Puzzle Moulding. http://www.protoform.de

  10. LiD, Architects. http://www.lid-architecture.net

  11. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. Ann CIRP 47(2):525–540

    Article  Google Scholar 

  12. Burns M (1993) Automated fabrication: improving productivity in manufacturing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  13. Chua CK, Leong KF (1998) Rapid prototyping: principles and applications in manufacturing. Wiley, New York

    Google Scholar 

  14. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10–11):1257–1287

    Article  Google Scholar 

  15. MCor. http://www.mcortechnologies.com

  16. Fab@home. http://www.fabathome.org

  17. Reprap. http://www.reprap.org

  18. Objet technologies. http://www.objet.com

  19. Microtec. http://www.microtec-d.com

  20. 3D Systems. Stereolithography and selective laser sintering machines. http://www.3dsystems.com

  21. EOS. http://www.eos.info

  22. Sachs EM, Cima MJ, Williams P, Brancazio D, Cornie J (1992) Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind 114(4):481–488

    Article  Google Scholar 

  23. ZCorp. http://www.zcorp.com

  24. Soligen. http://www.soligen.com

  25. Stratasys. http://www.stratasys.com

  26. Solidscape. http://www.solid-scape.com

  27. Kira. Solid Center machine. www.kiracorp.co.jp/EG/pro/rp/top.html

  28. MCor Technologies. http://www.mcortechnologies.com

  29. Stucker BE, Janaki Ram GD (2007) Layer-based additive manufacturing technologies. In: Groza J et al (eds) CRC materials processing handbook. CRC, Boca Raton, pp 26.1–26.31

    Google Scholar 

  30. Atwood C, Ensz M, Greene D et al (1998) Laser engineered net shaping (LENS(TM)): a tool for direct fabrication of metal parts. Paper presented at the 17th International Congress on Applications of Lasers and Electro-Optics, Orlando, 16–19 November 1998. http://www.osti.gov/energycitations

  31. Optomec. LENS process. http://www.optomec.com

  32. White D (2003) Ultrasonic object consolidation. US Patent 6,519,500 B1

    Google Scholar 

  33. Arcam. Electron Beam Melting. http://www.arcam.com

  34. Stratoconception. Thick layer hybrid AM. http://www.stratoconception.com

  35. Roland. SRP technology. http://www.rolanddga.com/solutions/rapidprototyping/

  36. Weiss L, Prinz F (1998) Novel applications and implementations of shape deposition manufacturing. Naval research reviews, vol L(3). Office of Naval Research, Arlington

    Google Scholar 

  37. Phenix. Metal RP technology. http://www.phenix-systems.com

  38. Materialise. AM software systems and service provider. http://www.materialise.com

  39. CMET. Stereolithography technology. http://www.cmet.co.jp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gibson, I., Rosen, D., Stucker, B. (2015). Development of Additive Manufacturing Technology. In: Additive Manufacturing Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2113-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2113-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2112-6

  • Online ISBN: 978-1-4939-2113-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics