Skip to main content

Design Fire Curves

  • Chapter
  • First Online:
Tunnel Fire Dynamics

Abstract

An overview of design fires in tunnels is given. Design fires are obtained from guidelines or standards, or exclusively for a specific tunnel project. They can be represented as a single constant design value or as a time dependent fire curve, either given in form of heat release rates (HRRs), temperatures or combustion products. Various ways exists to represent a design fire curve for tunnels. These can include different growth rates or combinations of growth rates with constant levels of design maximum values coupled to a decay period. The different type of design fire curves are put into the context of fire development in vehicles and tunnel fire dynamics. Mathematical representations of design fire curves are presented and discussed. An example of a new concept for creating a design fire curve is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire and Smoke Control in Road Tunnels (1999). PIARC

    Google Scholar 

  2. NFPA 502– Standard for Road Tunnels, Bridges, and Other Limited Access Highways (2014). National Fire Protection Association, 2014 Edition

    Google Scholar 

  3. Lacroix D Guidelines for Fire Safe Design: Synthesis and Current Harmonisation Processes. In: 1st International Symposium on Safe & Reliable Tunnels, Prague, Czech Republic, 4–6 February 2004. CUR, pp 107–115

    Google Scholar 

  4. Richtlinien für Ausstattung und Betrieb von Tunneln (RABT) (1985). Ausgabe 1985 edn. Forschungsgesellschaft für Straßen- und Verkehrswesen

    Google Scholar 

  5. Thematic Network on Fires in Tunnels (FIT) – Technical Report Part 1– Design Fire Scenarios (2001–2004). European Commission under the 5th Framework Program

    Google Scholar 

  6. Peacock R, Reneke P, Jones W, Bukowski R (1995) Concept for fire protection of passenger rail transportation vehicles:pas, present and future. Fire and Materials 19:71–87

    Article  Google Scholar 

  7. Standard for Fixed Guideway Transit and Passenger Rail Systems (2003). 2003 edn. National Fire Protection Association

    Google Scholar 

  8. ISO/TS 16733 Fire safety engineering – Selection of design fire scenarios and design fires (2006). International Organisation of Standardization

    Google Scholar 

  9. Maevski IY (2011) NCHRP Synthesis 415– Design Fires in Road Tunnels. A Synthesis of Highway Practice. National cooperative highway research program

    Google Scholar 

  10. Ingason H Design Fires in Tunnels. In: Conference Proceedings of Asiaflam 95, Hong Kong, 15–16 March 1995. Interscience Communications Ltd., pp 77–86

    Google Scholar 

  11. Lacroix D New French Recommendations for Fire Ventilation in Road Tunnels. In: 9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels, Aosta Valley, Italy, 6–8 October 1997

    Google Scholar 

  12. Ingason H (2009) Design fire curves in tunnels. Fire Safety Journal 44 (2):259–265

    Article  Google Scholar 

  13. Marlair G, Lemaire T, Öhlin M Fire Scenarios and accidents in the past – Draft final report (1) task 2.1, part 1, UPTUN WP2 Report

    Google Scholar 

  14. Opstad K (2005) Fire scenarios to be recommended by UPTUN WP2 Task leader meeting of WP2

    Google Scholar 

  15. Ingason H Design fire in tunnels. In: Safe & Reliable Tunnels Innovative European Achievements, Second International Symposium, Lausanne, 2006

    Google Scholar 

  16. Fire-resistance tests – Elements of building construction – Part 1: General requirements (1999). First edn. International Organization for Standardization

    Google Scholar 

  17. Fire resistance tests – Part 2: Alternative and additional procedures (1999). First edn. European Committee for Standardization

    Google Scholar 

  18. Beproeving van het gedrag bij verhitting van twee isolatiematerialen ter bescherming van tunnels bij brand (1979). Instituut TNO voor Bouwmaterialen en Bouwconstructies, Delft, The Netherlands

    Google Scholar 

  19. Ingason H Fire Development in Large Tunnel Fires. In: 8th International Symposium on Fire Safety Science, Beijing, China, 18–23 September 2005. International Association for Fire Safety Science (IAFSS), pp 1497–1508

    Google Scholar 

  20. Ingason H Modelling of Real World Fire Data. In: 2nd International Symposium on Tunnel Safety & Security (ISTSS), March 15–17, 2006 Madrid, Spain, 2006. pp 7–13

    Google Scholar 

  21. Numajiri F, Furukawa K (1998) Short Communication: Mathematical Expression of Heat Release Rate Curve and Proposal of ’Burning Index’. Fire and Materials 22:39–42

    Article  Google Scholar 

  22. Hansen R, Ingason H (2012) Heat release rates of multiple objects at varying distances. Fire Safety Journal 52:1–10

    Article  Google Scholar 

  23. Hansen R, Ingason H (2011) An Engineering tool to calculate heat release rates of multiple objects in underground structures. Fire Safety Journal 46 (4):194–203. doi:10.1016/j.firesaf.2011.02.001

    Article  Google Scholar 

  24. Li YZ, Ingason H A new methodology of design fires for train carriages. In: ISTSS 6th International Symposium on Tunnel Safety and Security, Marseille, 2014.

    Google Scholar 

  25. Li YZ, Ingason H, Lönnermark A (2013) Correlations in different scales of metro carriage fire tests. SP Report 2013:13. SP Technical Research Institute of Sweden, Borås, Sweden

    Google Scholar 

  26. Li YZ, Ingason H, Lönnermark A Fire development in different scales of a train carriages. In: 11th International Symposium on Fire Safety Science, New Zealand, 2014.

    Google Scholar 

  27. Ingason H, Kumm M, Nilsson D, Lönnermark A, Claesson A, Li YZ, Fridolf K, Åkerstedt R, Nyman H, Dittmer T, Forsén R, Janzon B, Meyer G, Bryntse A, Carlberg T, Newlove-Eriksson L, Palm A (2012) The METRO project – Final Report 2010:08. Mälardalen University, Västerås

    Google Scholar 

  28. Bowditch P. A., Sargeant A. J., Leonard J. E., Macindoe L. (2006) Window and Glazing Exposure to Laboratory-Simulated Bushfires. CMIT Doc 2006–205. Bushfire CRC, Melbounre, Australia

    Google Scholar 

  29. Harada K., Enomoto A., Uede K., T W An experimental study on glass cracking and fallout by radiant heat exposure. In: Fire Safety Science – Proceedings of the 6th International Symposium, London, 3–7 March 2000. IAFSS

    Google Scholar 

  30. Mowrer F.W. (1998) Window Breakage Induced by Exterior Fires. National Institute of Standards and Technology, Gaithersburg, MD, USA

    Google Scholar 

  31. Strege S. LBY, Beyler C. (2003) Fire Induced Failure of Polycarbonate Windows in Railcars. Fire and Materials

    Google Scholar 

  32. Ingason H, Lönnermark A (2005) Heat Release Rates from Heavy Goods Vehicle Trailers in Tunnels. Fire Safety Journal 40:646–668

    Article  Google Scholar 

  33. Lönnermark A, Lindström J, Li YZ, Ingason H, Kumm M Large-scale Commuter Train Tests – Results from the METRO Project. In: Proceedings from the Fifth International Symposium on Tunnel Safety and Security (ISTSS 2012), New York, USA, 14–16 March 2012. SP Technical Research Institute of Sweden, pp pp. 447–456

    Google Scholar 

  34. Ingason H, Li YZ New concept for design fires in tunnels. In: Proceedings from the Fifth International Symposium on Tunnel Safety and Security (ISTSS 2012), New York, USA, 14–16 March 2012. SP Technical Research Institute of Sweden, pp 603–612

    Google Scholar 

  35. Oka Y, Atkinson GT (1995) Control of Smoke Flow in Tunnel Fires. Fire Safety Journal 25:305–322

    Article  Google Scholar 

  36. Li YZ, Ingason H (2010) Maximum Temperature beneath Ceiling in a Tunnel Fire. SP Report 2010:51, SP Technical Research Institute of Sweden, Borås, Sweden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haukur Ingason .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingason, H., Li, Y., Lönnermark, A. (2015). Design Fire Curves. In: Tunnel Fire Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2199-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2199-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2198-0

  • Online ISBN: 978-1-4939-2199-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics