Skip to main content

Breeding and Biotech Approaches Towards Improving Yield in Soybean

  • Chapter
  • First Online:
Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants

Abstract

Soybean (Glycine max (L.) Merrill) is the most widely cultivated oilseed crop accounting for more than 50 % of the world’s oilseed production. Yield gain in soybean estimated to be 0.5–0.7 % per year in North America has been driven by the adoption of agronomic or management practices and genetic improvement. While genetic improvement through breeding will continue to play a significant role in enhancing yield by the development of cultivars adapted to a wide range of latitudes, biotech traits such as enhanced insect protection and weed control contribute indirectly to yield improvement. An understanding of physiological traits associated with genetic gain in yield offers vast opportunities for further advances in yield improvement. Potential targets for genetic improvement include source capacity (leaf area index, leaf area duration, carbon and nitrogen assimilation, and dry matter partitioning), sink strength (number of primary and secondary yield components, seed-filling rate and duration), and tolerance to suboptimal conditions (water limitation and high/low temperature). Manipulating single or multiple traits using breeding and biotechnology approaches will help to improve intrinsic yield potential and yield stability traits in soybean. Application of multiple technologies to improve yield gain is vital, with the changing climatic conditions and increasing global demand for food and feed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah G, Nada R, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    CAS  PubMed  Google Scholar 

  • Ackerson RC, Havelka UD, Boyle MG (1984) CO2-enrichment effects on soybean physiology II Effects of stage-specific CO2 exposure. Crop Sci 24:1150–1154

    CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Env 35:38–52

    CAS  Google Scholar 

  • Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andrade FH, Ferreiro M (1996) Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Res 48:155–165

    Google Scholar 

  • Aref S, Pike DR (1998) Midwest farmers’ perceptions of crop pest infestations. Agron J 90:819–825

    Google Scholar 

  • ASA (2013) Introduction American Soybean Association, St Louis, Missouri. http://soystats.com. Accessed May 2014

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    PubMed Central  CAS  PubMed  Google Scholar 

  • Atkins CA, Smith PM (2007) Translocation in legumes: assimilates, nutrients, and signaling molecules. Plant Physiol 144:550–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    CAS  PubMed  Google Scholar 

  • Bahieldin A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA et al (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    CAS  Google Scholar 

  • Bakhetia M, Urwin PE, Atkinson HJ (2007) qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol Plant Microbe Int 20:306–312

    CAS  Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+ PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L). Plant Sci 176:232–240

    CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    CAS  Google Scholar 

  • Baud S, Wuilleme S, Lemoine R, Kronenberger J, Caboche M, Lepiniec L, Rochat C (2005) The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant J 43:824–836

    CAS  PubMed  Google Scholar 

  • Board JE, Harville BG (1998) Late-planted soybean yield response to reproductive source/sink stress. Crop Sci 38:763–771

    Google Scholar 

  • Board JE, Kahlon CS (2011) Soybean yield formation: what controls it and how it can be improved. In: El-Shemy HA (ed.) Soybean physiology and biochemistry. Intech publishing, pp. 1–36. http://www.intechopen.com/articles/show/title/soybean-yield-formation-what-controls-itand-how-it-can-be-improved

  • Board JE, Wier AT, Boethel DJ (1994) Soybean yield reductions caused by defoliation during mid to late seed filling. Agron J 86:1074–1079

    Google Scholar 

  • Board JE, Wier AT, Boethel DJ (1995) Source strength influence on soybean yield formation during early and late reproductive development. Crop Sci 35:1104–1110

    Google Scholar 

  • Board JE, Kumudini S, Omielan J, Prior E, Kahlon CS (2010) Yield response of soybean to partial and total defoliation during the seed-filling period. Crop Sci 50:703–712

    Google Scholar 

  • Boerma RL (1979) Comparison of past and recently developed soybean cultivars in maturity groups VI, VII and VIII. Crop Sci 19:611–613

    Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of Maize. Plant Cell 18:574–585

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson DR, Brun WA (1984) Alteration of C-assimilate partitioning in leaves of soybeans having increased reproductive loads at one node. Plant Physiol 75:887–890

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caviness CE, Thomas JD (1980) Yield reduction from defoliation of irrigated and non-irrigated soybeans. Agron J 72:977–980

    Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription factor based agricultural biotechnology products. Plant Physiol 147:20–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen LM, Li KZ, Miwa T, Izui K (2004) Overexpression of a cyanobacterial phosphoenol pyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes in amino acid metabolism. Planta 219:440–449

    CAS  PubMed  Google Scholar 

  • Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283

    CAS  PubMed  Google Scholar 

  • Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO (2010) Arabidopsis DREB2 C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochem Biophys Res Commun 401:238–244

    CAS  PubMed  Google Scholar 

  • Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C (2008) Sucrose transporter StSUT4 from potato affects flowering, tuberization and shade avoidance response. Plant Physiol 146:515–528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    CAS  PubMed  Google Scholar 

  • Cho MH, Jang A, Bhoo SH, Jeon JS, Hahn TR (2012) Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynthesis Res 111:261–268

    CAS  Google Scholar 

  • Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/ hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv Dotaerang). Plant Cell Rep 30:867–877

    CAS  PubMed  Google Scholar 

  • Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426:15–22

    CAS  PubMed  Google Scholar 

  • Collier R, Tegeder M (2012) Soybean ureide transporters play a critical role in nodule development, function and nitrogen export. Plant J 72:355–367

    CAS  PubMed  Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Ann Rev Plant Physiol 27:507–528

    Google Scholar 

  • Cortina C, Culianez-Macia F (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Dalley CD, Kells JJ, Renner KA (2001) Weed interference in glyphosate resistant soybean and corn as influenced by timing of weed control and crop row spacing. Weed Sci Soc Am 41:5

    Google Scholar 

  • De Bruin JL, Pedersen P (2009) Growth, yield and yield component changes among old and new soybean cultivars. Agron J 101:124–130

    Google Scholar 

  • de Souza PI, Egli DB, Bruening WP (1997) Water stress during seed filling and leaf senescence in soybean. Agron J 89:807–812

    Google Scholar 

  • Desclaux D, Huynh TT, Roumet P (2000) Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci 40:716–722

    Google Scholar 

  • Desimone M, Catoni E, Ludewig U, Hilpert M, Schneider A, Kunze R, Tegeder M, Frommer WB, Schumacher K (2002) A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. Plant Cell 14:847–856

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Trans Res 7:77–84

    CAS  Google Scholar 

  • Doebley J, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    CAS  PubMed  Google Scholar 

  • Dogan E, Kirnak H, Copur O (2007) Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crop Res 103:154–159

    Google Scholar 

  • Dornbos DL, Mullen RE, Shibles RM (1989) Drought stress effects during seed fill on soybean seed germination and vigor. Crop Sci 29:476–480

    Google Scholar 

  • Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74–77

    CAS  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards GE, Furbank RT, Hatch MD, Osmond CB (2001) What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiol 125:46–49

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egli DB (1998) Seed biology and the yield of grain crops. CAB, Wallingford, p 178

    Google Scholar 

  • Egli DB (1999) Variation in leaf starch and sink limitations during seed filling in soybean. Crop Sci 39:1361–1368

    CAS  Google Scholar 

  • Egli DB, Bruening WP (2001) Source-sink relationships, seed sucrose levels and seed growth rates in soybean. Ann Bot 88:235–242

    Google Scholar 

  • Egli DB, Donald LS (2004) Seed-fill duration and yield of grain crops. Advances in agronomy. Academic, Waltham, pp 243–279

    Google Scholar 

  • Egli DB, Leggett JE (1976) Rate of dry matter accumulation in soybean seed with varying source-sink ratios. Agron J 68:371–374

    Google Scholar 

  • Egli DB, Leggett JE (1985) Nitrogen mobilization during seed fill in soybeans. In: Shibles R (ed) Proceedings of the third world soybean research conference, Ames. Westview, Boulder, pp 884–890

    Google Scholar 

  • Egli DB, Leggett JE, Cheniae A (1980) Carbohydrate levels in soybean leaves during reproductive growth. Crop Sci 20:468–473

    Google Scholar 

  • Egli DB, Ramseur EL, Zhenwen Y, Sullivan CH (1989) Source-sink alterations affect the number of cells in soybean cotyledons. Crop Sci 29:732–735

    Google Scholar 

  • Evans LT (1975) Beyond photosynthesis-the role of respiration, translocation and growth potential in determining productivity. In: Cooper IP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambride, pp 501–507

    Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation, and yield. Cambridge University Press, Cambridge, pp 500

    Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential: its definition, measurement and significance. Crop Sci 39:1544–1551

    Google Scholar 

  • FAO (2013) Crop water information:Soybean. In FAO water, land and water division.http://www.fao.org/nr/water/cropinfo_soybean.html

  • Farrar JF (1988) Temperature and the partitioning and translocation of carbon. In: Long SP, Woodward FI (eds) Plants and temperature. Symposium of the society of experimental biology 42. Company of Biologists, Cambridge, pp 203–235

    Google Scholar 

  • Fehr WR, Caviness CE (1981) Reproductive stages of soybean development. Iowa State University Cooperative Extension, Ames, pp 6–7

    Google Scholar 

  • Feng L, Han Y, Liu G, An B, Yang J, Yang G et al (2007) Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Func Plant Biol 34:822–834

    CAS  Google Scholar 

  • Fischer RA, Edmeades GO (2010) Breeding and cereal yield progress. Crop Sci 50:85–98

    Google Scholar 

  • Floyd RA, Nagy ZS (1984) Formation of long lived hydroxyl free radical adducts of proline and hydroxy-proline in a Fenton reaction. Biochem Biophys Acta 790:94–97

    CAS  PubMed  Google Scholar 

  • Foulkes MJ, Reynolds MP, Sylvester-Bradley R (2009) Genetic improvement of grain crops: yield potential. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy. Elsevier, Burlington, pp 355–385

    Google Scholar 

  • Froissard M, Belgareh-Touze N, Buisson N, Desimone M, Frommer WB, Haguenauer-Tsapis R (2006) Heterologous expression of a plant uracil transporter in yeast: improvement of plasma membrane targeting in mutants of the Rsp5p ubiquitin protein ligase. Biotechnol J 1:308–320

    CAS  PubMed  Google Scholar 

  • Fu JM, Zhang GL, Su F, Wang ZL, Dong Y, Shi CY (1999) Partitioning of 14 C-Assimilates and effects of source-sink manipulation at seed-filling in soybean. Acta Agronomica Sinica 25:170–173 (Chinese)

    Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li LC, Xu HJ, Tang YM, Zhao X, Ma YZ (2011a) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011b) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156

    Google Scholar 

  • Garay AF, Wilhelm WW (1983) Root system characteristics of two soybean isolines undergoing water stress conditions. Agron J 75:973–977

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gatehouse LN (1995) Novel genes for insect resistance in transgenic plants. PhD Thesis University of Durham, UK

    Google Scholar 

  • Gatehouse AMR, Shi Y, Powell KS, Brough C, Hilder VA, Hamilton WDO et al (1993) Approaches to insect resistance using transgenic plants. Phil Trans Roy Soc Lond 342:279–286

    Google Scholar 

  • Gbikpi PJ, Crookston RK (1981) Effect of flowering date on accumulation of dry matter and protein in soybean seeds. Crop Sci 21:652–655

    Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning and yield. Ann Rev Plant Physiol 32:485–509

    CAS  Google Scholar 

  • Giroux MJ, Shaw J, Barry G, Cobb GB, Greene T, Okita T, Hannah CL (1996) A single gene mutation that increases maize seed weight. Proc Natl Acad Sci U S A 93:5824–5829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goli A, Weaver DB (1986) Defoliation responses of determinate and indeterminate late planted soybean. Crop Sci 26:156–159

    Google Scholar 

  • Good AG, Johnson SJ, DePauw M, Carroll RT, Savidov N, Vidmar JJ, Lu Z, Taylor GT, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    CAS  Google Scholar 

  • Gordon AJ, Ryle GJA, Mitchell DF, Powell CE (1985) The flux of 14C labeled photosynthate through soybean root nodules during N2 fixation. J Exp Bot 36:756–769

    CAS  Google Scholar 

  • Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the lateral suppressor gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grossi-de-Sa MF, Pelegrini PB, Fragoso RR (2011) Genetically modified soybean for insect-pests and disease control. In: Sudaric A (ed) Soybean—molecular aspects of breeding. ISBN:978-953-307-240-1, InTech, Rijeka

    Google Scholar 

  • Gubis R, Vankova V, Cervena M, Dragunova M, Hudcovicova H, Lichtnerovia et al (2007) Transformed tobacco plants with increased tolerance to drought. South Afr J Bot 73:505–511

    Google Scholar 

  • Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W (2008) Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. J Plant Physiol 165:1745–1755

    CAS  PubMed  Google Scholar 

  • Haigler CH, Singh B, Zhang D, Hwang S, Wu C, Cai WX et al (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol 63:815–832

    CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155

    CAS  Google Scholar 

  • Han T, Wu C, Tong Z, Mentreddy RS, Tan K, Gai J (2006) Post flowering photoperiod regulates vegetative growth and reproductive development of soybean. Env Exp Bot 55:120–129

    Google Scholar 

  • Hanway JJ, Thompson HE (1967) How a soybean plant develops. Iowa State University Special Report, Ames, pp 20

    Google Scholar 

  • Harding JA (1976) Heliothis species: seasonal occurrence, hosts and host importance in the lower Rio Grande Valley. Env Ent 5:666–668

    Google Scholar 

  • Hardman LL, Brun WA (1971) Effect of atmospheric carbon dioxide enrichment at different developmental stages on growth and yield components of soybean. Crop Sci 11:886–888

    Google Scholar 

  • Harper JE (1987) Nitrogen metabolism. In: Wilcox JR (ed) Soybeans: improvement, production, and uses. 2nd edn. ASA, Madison, pp 497–533

    Google Scholar 

  • Hartman GL, Hill CB (2010) Diseases of soybean and their management. In: Singh G (ed) Soybean: botany, production, and uses. CAB, Wallingford, pp 276–299

    Google Scholar 

  • Hartman GL, Wang TC, Tschanz AT (1991) Soybean rust development and the quantitative relationship between rust severity and soybean yield. Plant Dis 75:596–600

    Google Scholar 

  • Hartman GL, Sinclair JB, Rupe JC (1999) (eds) Compendium of soybean diseases, 4th edn. American Phytopathological Society, St Paul, pp 1–128

    Google Scholar 

  • Hartman GL, West ED, Herman TK (2011) Crops that feed the World 2 Soybean—worldwide production, use and constraints caused by pathogens and pests. Food Sec 3:5–17

    Google Scholar 

  • He CM, Zhang WW, Gao QA, Yang AF, Hu XR, Zhang JR (2011) Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica 177:151–167

    CAS  Google Scholar 

  • Heatherly LG, Elmore RW (2004) Managing inputs for peak production. In: Boerma HR, Specht JE (eds) Soybean: improvement, production and uses. ASA, Madison, pp 451–536

    Google Scholar 

  • Heindl JC, Brun WA (1983) Light and shade effects on abscission and C-photoassimilate partitioning among reproductive structures in Soybean. Plant Physiol 73:434–439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson JB, Kamprath EJ (1970) Nutrient and dry matter accumulation by soybean. Technical Bulletin. North Carolina State University Agricultural Experiment Station, Raleigh, pp 27

    Google Scholar 

  • Heyer AG, Raap M, Schoreer B, Marty B, Willmitzer L (2004) Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. Plant J 39:161–169

    CAS  PubMed  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr Opin Plant Biol 11:228–231

    CAS  PubMed  Google Scholar 

  • Hicks DR, Pendleton JW (1969) Effect of floral bud removal on performance of soybeans. Crop Sci 9:435–437

    Google Scholar 

  • Higley LG, Boethel DJ (1994) Handbook of soybean insect pests. The Entomological Society of America, Maryland, pp 1–10

    Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Baker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    CAS  Google Scholar 

  • Hinson K, Nino RH, Boote KJ (1978) Characteristics of removed leaflets and yield response of artificially defoliated soybeans. Soil Crop Sci Soc Fla Proc 37:104–109

    Google Scholar 

  • Hirasawa T, Tanaka K, Miyamoto D, Takei M, Ishihara K (1994) Effects of pre-flowering moisture deficits on dry matter production and ecophysiological characteristics in soybean plants under drought conditions during grain filling. Jpn J Crop Sci 63:721–730

    CAS  Google Scholar 

  • Ho LC (1979) Regulation of assimilate translocation between leaves and fruits in the tomato. Ann Bot 43:437–448

    CAS  Google Scholar 

  • Ho LC (1984) Partitioning of assimilates in fruiting tomato plants. Plant Growth Regul 2:277–285

    CAS  Google Scholar 

  • Ho LC (1988) Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength. Ann Rev Plant Physiol Plant Mol Biol 39:355–378

    CAS  Google Scholar 

  • Hoeft RG, Nafziger ED, Johnson RR, Aldrich SR (2000) Soybean as a crop. In: Aldrich SR, Nafziger ED, Johnson RR (eds) Modern corn and soybean production. MCSP, Illinois, pp 1–353

    Google Scholar 

  • Holmstrom KO, Mantyla E, Welin B, Mandal A, Tunnela OE, Londesborough J, Palva ET (1996) Drought tolerance in tobacco. Nature 379:683–684

    Google Scholar 

  • Holshouser DL (2010) Days to soybean physiological maturity. Virginia Cooperative Extension, Blacksburg, pp 1009–1459

    Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci U S A 106:6410–6415

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya S, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    CAS  PubMed  Google Scholar 

  • Hu Y, Xie Q, Nam-Hai C (2003) The Arabidopsis Auxin-Inducible Gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Y, Poh HM, Nam-Hai C (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. The Plant J 47:1–9

    CAS  PubMed  Google Scholar 

  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H (2009a) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009b) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Google Scholar 

  • Huck MG, Ishihara K, Peterson CM, Ushijima T (1983) Soybean adaptation to water stress at selected stages of growth. Plant Physiol 73:422–427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huff A, Dybing D (1980) Factors affecting shedding of flowers in soybean (Glycine max (L) Merrill). J Exp Bot 31:751–762

    CAS  Google Scholar 

  • Hufstetler EV, Boerma HR, Carter TE, Earl HG (2007) Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Sci 47(25-):35

    Google Scholar 

  • Hunt TE, Baldin ELL (2012) Soybean insects: ecology and control. In: Cookosn R (ed)Encyclopedia of pest management. (Published online 08 Aug), Taylor and Francis, New York, pp 1–4

    Google Scholar 

  • Hymowitz T (1970) On domestication of soybean. Econ Bot 24:408–421

    Google Scholar 

  • Hymowitz T, Newell CA (1981) Taxonomy of the genus Glycine, domestication and uses of soybeans. Econ Bot 35:272–288

    Google Scholar 

  • Hymowitz T, Shurtleff WR (2005) Debunking soybean myths and legends in the historical and popular literature. Crop Sci 45:473–476

    Google Scholar 

  • Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Leister D (2004) Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J 37:839–852

    CAS  PubMed  Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opinion Plant Biol 13:83–89

    CAS  Google Scholar 

  • Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426:302–306

    CAS  PubMed  Google Scholar 

  • Imsande J (1988) Interrelationship between plant development stage, plant growth rate, nitrate utilization and nitrogen fixation in hydroponically grown soybean. J Exp Bot 39:775–785

    Google Scholar 

  • Ingram KT, Herzog DC, Boote KJ, Jones JW, Barfield CS (1981) Effects of defoliating pests on soybeans canopy CO2 exchange and reproductive growth. Crop Sci 21:961–968

    CAS  Google Scholar 

  • Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R (2008) Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Prod Sci 11:104–107

    CAS  Google Scholar 

  • James RF, Carl RC, Philip JB (2001) Drought stress effects on branch and main seed yield and yield components of determinate soybean. Crop Sci 41:759–763

    Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops. The International Service for the Acquisition of Agri-biotech Application (ISAAA) Brief No 41. ISAAA: Ithaca

    Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenner CF (1985) Control of the accumulation of starch and protein in cereal grains. In: Jeffcoat B, Hawkins AF, Stead AD (eds) Regulation of sources and sinks in crop plants. British Plant Growth Regulator Group, Long Ashton, pp 195–209

    Google Scholar 

  • Jenner CF, Ugalde TD, Aspinall D (1991) The physiology of starch and protein deposition in the endosperm of wheat. Aust J Plant Physiol 18:211–226

    CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Letts 32:1173–1179

    CAS  Google Scholar 

  • Jones P, Allen LH Jr, Jones JW, Boote KJ, Campbell WJ (1984) Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment. Agron J 76:633–637

    CAS  Google Scholar 

  • Kadhem FA, Specht JE, Williams JH (1985) Soybean irrigation serially timed during stages R1 to R6 II Yield component responses. Agron J 77:299–304

    Google Scholar 

  • Kallarackal J, Milburn JA (1984) Specific mass transfer and sink-controlled phloem translocation in castor bean. Austr J Plant Physiol 11:483–490

    Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    CAS  PubMed  Google Scholar 

  • Kaplan SL, Koller HR (1974) Variation among soybean cultivars in seed growth rate during the linear phase of seed growth. Crop Sci 14:613–614

    Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    CAS  PubMed  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (2009) (eds) Global climate change impacts in the United States. Cambridge University Press, New York, pp 196

    Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1 A gene and stress inducible rd29 A promoter improved drought- and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    CAS  PubMed  Google Scholar 

  • Kavi-Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotech 25:593–599

    CAS  Google Scholar 

  • Keller T, Abbott J, Moritz T, Doernera P (2006) Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18:598–611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MH, Sasaki K, Imai R (2009) Cold shock domain Protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 284:23454–23460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klink VP, Alkharouf N, Macdonald M, Matthews B (2005) Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). Plant Mol Biol 59:965–979

    CAS  PubMed  Google Scholar 

  • Klink VP, Kim KH, Martins V, Macdonald MH, Beard HS, Alkharouf NW et al (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    CAS  PubMed  Google Scholar 

  • Kocsy G, Laurie R, Szalai G, Szilagyi V, Simon-Sarkadi L, Galiba G et al (2005) Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Plant 124:227–235

    CAS  Google Scholar 

  • Kokubun M, Watanabe K (1983) Analysis of the yield determining process of field grown soybeans in relation to canopy structure VII Effects of source and sink manipulations during reproductive growth on yield and yield components. Japan J Crop Sci 52:215–219

    Google Scholar 

  • Kokubun M, Shimada S, Takahashi M (2001) Flower abortion caused by pre-anthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci 4:1517–1521

    Google Scholar 

  • Kumar A, Li C, Portis AR Jr (2009) Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100:143–153

    CAS  PubMed  Google Scholar 

  • Kunz HH, Hausler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge UI, Schneider A (2010) The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol 1:115–128

    Google Scholar 

  • Labate MT, Ko K, Ko ZW, Pinto LS, Real MJ, Romano MR, Barja PR, Granell A, Friso G, van Wijk KJ, Brugnoli E, Labate CA (2004) Constitutive expression of pea Lhcb 1-2 in tobacco affects plant development, morphology and photosynthetic capacity. Plant Mol Biol 55:701–714

    CAS  PubMed  Google Scholar 

  • Lang A, During H (1991) Partitioning control by water potential gradient: evidence for compartmentation breakdown in grape berries. J Exp Bot 42:1117–1122

    Google Scholar 

  • Lang A, Thorpe MR (1986) Water potential, translocation and assimilate partitioning. J Exp Bot 37:495–503

    Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    CAS  PubMed  Google Scholar 

  • Layzell DB, LaRue TA (1982) Modeling C and N transport to developing soybean fruits. Plant Physiol 70:1290–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lecardonnel A, Chauvin L, Jouanin L, Beaujean A, Prevost G, Sangwan B (1999) Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci 140:71–79

    CAS  Google Scholar 

  • Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L). Plant Mol Biol 65:531–546

    CAS  PubMed  Google Scholar 

  • Lee SK, Jeon JS, Börnke F, Voll L, Cho JI, Goh CH, Jeong SW, Park YI, Kim SJ, Choi SB, Miyao A, Hirochika H, An G, Cho MH, Bhoo SH, Sonnewald U, Hahn TR (2008) Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Env 31:1851–1863

    CAS  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer W, Riesmeier J, Willmitzer L, Fernie A (2003) Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta 217:158–167

    CAS  PubMed  Google Scholar 

  • Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GL (2008) Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27:1217–1225

    CAS  PubMed  Google Scholar 

  • Li S, Yin D, Wu F, Wang S, Deng Q, Tang Y, Zhou H, Ping L (2006) Introduction of the PPF1 gene into rice (Oryza sativa L.) results in delayed leaf senescence. Euphytica 153:257–265

    Google Scholar 

  • Li F, Ma C, Wang X, Gao C, Zhang J, Wang y, Cong N, Li X, Wen J, Yi B, Shen J, Tu J, Fu T (2011a) Characterization of sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L. BMC Plant Biol 11:168–181

    Google Scholar 

  • Li N, Zhang S, Zhao Y, Li B, Zhang J (2011b) Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta 233:241–250

    Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011c) Heterologous expression of the Arabidopsis DREB1 A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotech Rep 5:61–69

    Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZCT (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    CAS  PubMed  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R, Marcus Y, Kaplan A (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3—accumulation in cyanobacteria. Plant Biotech J 1:43–50

    CAS  Google Scholar 

  • Lilley CJ, Goodchild SA, Atkinson HJ, Urwin PE (2005) Cloning and characterization of a Heterodera glycines aminopeptidase cDNA. Int J Parasitol 35:1577–1585

    CAS  PubMed  Google Scholar 

  • Liu F, Andersen MN, Jensen CR (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct Plant Biol 30:271–280

    CAS  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009a) Identification and characterization of HTD2:a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009b) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Int Plant Biol 51:825–833

    Google Scholar 

  • Liu B, Xiao-Bing L, Wang C, Yan-Sheng L, Jin J, Herbert SJ (2010) Long distance transport of assimilates is shown to exist in soybean plants. African J Agric Res 5:551–554

    Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006a) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Sci 312:1918–1921

    Google Scholar 

  • Long SP, Xin-Guang Z, Naidu SL, Ort DR (2006b) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    CAS  PubMed  Google Scholar 

  • Luedders VD (1977) Genetic improvement in yield of soybeans. Crop Sci 17:971–972

    Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci U S A 102:17531–17536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophila H+ -PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    CAS  PubMed  Google Scholar 

  • Lytovchenko A, Schauer N, Willmitzer L, Fernie AR (2005) Tuber-specific cytosolic expression of a bacterial phosphoglucomutase in potato (Solanum tuberosum L) dramatically alters carbon partitioning. Plant Cell Physiol 46:588–597

    CAS  PubMed  Google Scholar 

  • Ma Y, Baker RF, Magallanes-Lundback M, DellaPenna D, Braun DM (2008) Tie-dyed1 and sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 227:527–538

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacRae TC, Baur ME, Boethel DJ, Fitzpatrick BJ, Gao AG, Gamundi JC et al (2005) Laboratory and field evaluations of transgenic soybean exhibiting high dose expression of a synthetic Bacillus thuringiensis cry1 A gene for control of Lepidoptera. J Econ Entomol 98:577–587

    PubMed  Google Scholar 

  • Major DJ, Johnson DR, Tanner JW, Anderson IC (1975) Effects of daylength and temperature on soybean development. Crop Sci 15:174–179

    Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy M, Kaul T (2011) Expression of OsDREB2 A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L). Biotechnol Letts 33:1689–1697

    CAS  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maqbool B, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sabzikar R, Sticklen B (2002) Competence of oat (Avena sativa L) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor Appl Genet 105:201–208

    CAS  PubMed  Google Scholar 

  • Marcelis LFM (1996) Sink strength as a determinant of dry matter partitioning in the whole plant. J Exp Bot 47:1281–1291

    CAS  PubMed  Google Scholar 

  • Masumoto C, Shin-Ichi M, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc Natl Acad Sci U S A 107:5226–5531

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Gent 283:185–196

    CAS  Google Scholar 

  • McAlister DF, Krober OA (1958) Response of soybean to leaf and pod removal. Agron J 50:674–677

    CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O 1996) Water deficit tolerance and field performance of transgenic Alfalfa overexpressing Superoxide Dismutase. Plant Physiol 111:1177–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mcpherson RM, Macrae TC (2009) Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1 A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol 102:1640–1648

    CAS  PubMed  Google Scholar 

  • McWilliams DA, Berglund DR, Endres GJ (2004) Soybean growth and management: quick guide. North Dakota State University Extension Service, Fargo, pp 8

    Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 17:272–280

    Google Scholar 

  • Meng Z, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    Google Scholar 

  • Meyer S, Melzer M, Tuernit E, Hummer C, Besenbeck R, Stadler R, Sauer N (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J 24:869–882

    CAS  PubMed  Google Scholar 

  • Mian MAR, Mailey MA, Ashley DA, Wells R, Carter TE, Parrot WA et al (1996) Molecular markers associated with water use efficiency and leaf ash in soybean. Crop Sci 36:1252–1257

    CAS  Google Scholar 

  • Miklos JA, Alibhai MF, Bledig SA, Connor-Ward DC, Gao AG, Holmes BA et al (2007) Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1 A transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci 47:148–157

    CAS  Google Scholar 

  • Mishra M, Mahajan N, Tamhane VA, Kulkarni MJ, Baldwin IT, Gupta VS, Giri AP (2012) Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC Plant Biol 12(217):14

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–497

    CAS  PubMed  Google Scholar 

  • Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J et al (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249

    CAS  Google Scholar 

  • Morrison MJ, Voldeng HD, Cober ER (2000) Physiological changes from fifty-eight years of genetic improvement of short-season cultivars in Canada. Agron J 92:780–784

    Google Scholar 

  • Mueller TA, Miles MR, Morel W, Marios JJ, Wright DL, Kemerait RC et al (2009) Effect of fungicide and timing of application on soybean rust severity and yield. Plant Dis 93:243–248

    Google Scholar 

  • Munier-Jolain NG, Munier-Jolain NM, Roche R, Ney B, Duthion C (1998) Seed growth rate in grain legumes I: effect of photoassimilate availability on seed growth rate. J Exp Bot 49:1963–1969

    CAS  Google Scholar 

  • Munoz-Bertomeu J, Cascales-Minana B, Mulet JM, Baroja-Fernandez E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murchie EH, Sarrobert C, Contard P, Betsche T, Foyer CH, Galtier N (1999) Overexpression of sucrose phosphate synthase in tomato plants grown with carbondioxide enrichment leads to decreased foliar carbohydrate accumulation relative to untransformed controls. Plant Physiol Biochem 37:251–260

    CAS  Google Scholar 

  • Na-Gyong L, Stein B, Suzuki H, Verma DS (1993) Expression of antisense nodulin-35 RNA in Vigna aconitifolia transgenic root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J 3:599–606

    Google Scholar 

  • Nakagawa H, Chang-Jie J, Sakakibara H, Kojima M, Honda I, Ajisaka H, Nishijima T, Koshioka M, Homma T, Mander LN, Takatsuji H (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523

    CAS  PubMed  Google Scholar 

  • Nakamoto H, Hasegawa M (1999) Targeted Inactivation of the gene psaK encoding a subunit of photosystem I from the cyanobacterium, Synechocystis sp PCC 6803. Plant Cell Physiol 40:9–16

    CAS  PubMed  Google Scholar 

  • Nakamoto H, Shao-Hui Z, Tanaka K, Yamazaki A, Furuya T, Iwaya-Inoue M, Fukuyama M (2004) Effects of carbon dioxide enrichment during different growth periods on flowering, pod set and seed yield in soybean. Plant Prod Sci 7(1):11–15

    Google Scholar 

  • Niblack TL, Chen S (2004) Cropping systems. In: Schmitt DP, Wrather JA, Riggs RD (eds) Biology and management of the soybean cyst nematode, 2nd edn. Schmitt and Associates, Marceline, pp 181–206

    Google Scholar 

  • Niittyla T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A preciously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    PubMed  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X et al (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    CAS  PubMed  Google Scholar 

  • Obana Y, Omoto D, Kato C, Matsumoto K, Nagai Y, Kavakli H et al (2006) Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana. Plant Sci 170:1–11

    CAS  Google Scholar 

  • Oberschall A, Deak M, Torok K, Saa L, Vass I, Kovacs I et al (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446

    CAS  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M et al (2005) Arabidopsis CBF3/DREB1 A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohyama T, Kawai S (1982) Nitrogen assimilation and transport in soybean leaves: investigation by petiole girdling treatment. Soil Sci Nutr 29:227–231

    Google Scholar 

  • Okita TW, Sun J, Sakulringharoj C, Choi SB, Edwards GE, Kato C, Ito H, Matsui H (2001) Increasing rice productivity and yield by manipulation of starch synthesis. Novartis Found Symp 236:135–146

    CAS  PubMed  Google Scholar 

  • Ort DR, Zhu XG, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park JY, Canam T, Kyu-Young K, Ellise DD, Mansfield SD (2008) Over-expression of an Arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Trans Res 17:181–192

    CAS  Google Scholar 

  • Park GG, Park JJ, Yoon J, Yu SN, An GA (2010) RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478

    CAS  PubMed  Google Scholar 

  • Parry MAJ, Madgwick PJ, Carvalho JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci 145:31–43

    CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X et al (2011) Expression of an Arabidopsis vacuolar H+ -pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J 9:88–99

    CAS  Google Scholar 

  • Pate and coworkers (1977) Nutrition of a developing legume fruit. Plant Physiol 59:506–510

    Google Scholar 

  • Patrick JW (1988) Assimilate partitioning in relation to crop productivity. Hort Sci 23:33–40

    Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Ann Rev Plant Physiol Plant Mol Biol 48:191–222

    CAS  Google Scholar 

  • Patten KD, Patterson ME, Proebsting EL (1986) Factors accounting for the within-tree variation of fruit quality in sweet cherries. J Amer Soc Hort Sci 111:356–360

    Google Scholar 

  • Paul C, Hartman GL (2009) Sources of soybean rust resistance challenged with single-spored isolates of Phakopsora pachyrhizi collected from the USA. Crop Sci 49:1781–1785

    Google Scholar 

  • Pedersen P (2008) Weed management matters in soybean. Iowa Soybean Review, Iowa Soybean Association, Spring:13. extension.agron.iastate.edu/soybean/aboutus_techpubs2.html.

    Google Scholar 

  • Pedersen P, Kumudini S, Board J, Conley S (2007) Soybean growth and development. In: Dorrance AE (ed) Using foliar fungicides to manage soybean rust. Dep. of Plant Pathology Extension Publication, The Ohio State University, Columbus, pp 41–47

    Google Scholar 

  • Peet MM, Kramer PJ (1980) Effects of decreasing source/sink ratio in soybeans on photosynthesis, photorespiration, transpiration and yield. Plant Cell Env 3:201–206

    Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech J 9:747–758

    CAS  Google Scholar 

  • Pelissier HC, Frerich A, Desimone M, Schumacher K, Tegeder M (2004) PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol 134:664–675

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1 A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  PubMed  Google Scholar 

  • Peterhansel C, Niessen M, Kebeish R (2008) Metabolic engineering towards the enhancement of photosynthesis. Photochem Photobiol 84:1317–1321

    CAS  PubMed  Google Scholar 

  • Pham TA, Miles MR, Frederick RD, Hill CB, Hartman GL (2009) Differential responses of resistant soybean genotypes to ten isolates of Phakopsora pachyrhizi. Plant Dis 93:224–228

    Google Scholar 

  • Pickle CS, Caviness CE (1984) Yield reduction from defoliation and plant cut-off of determinate and semi-determinate soybean. Agron J 76:474–476

    Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    CAS  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Biochem 37:313–317

    CAS  Google Scholar 

  • Preuss SB, Meister R, Xu Z, Urwin CP, Tripodi FA, Screen SE, Anil VS, Zhu Z, Morrell JA, Liu G, Ratcliffe OJ, Reuber TL, Khanna R, Goldman BS, Bell E, Ziegler TE, McClerren AL, Ruff TG, Petracek ME (2012) Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield. PLoS ONE 7:e30717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Purcell LC, Specht JE (2004) Physiological traits for ameliorating drought stress. In: Specht JE, Boema HR (eds) Soybeans: improvement, production, and uses. Agronomy monographs, 3rd edn. ASA, Madison, pp 569–620

    Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Zhang Z, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotech J 8:476–488

    CAS  Google Scholar 

  • Que Q, Chilton MDM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: Challenges and opportunities. GM Crops 1:220–229

    PubMed  Google Scholar 

  • Rainbird RM, Thorne JH, Hardy RW (1984) Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiol 74:329–334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raper CD, Kramer PJ (1987) Stress physiology. In: Wilcox JR (ed) Soybeans: improvement, production, and uses, 2nd edn. ASA, Madison, pp 589–641

    Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278:38921–38925

    CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robson PRH, McCormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol 14:995–998

    CAS  PubMed  Google Scholar 

  • Rogers HH, Cure JD, Thomas JF, Smith JM (1984) Influence of elevated CO2 on growth of soybean plants. Crop Sci 24:361–366

    Google Scholar 

  • Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech J 2:211–219

    CAS  Google Scholar 

  • Rolletschek H, Nguyen TH, Hausler RE, Rutten T, Gobel C, Feussner I, Radchuk R, Tewes A, Claus B, Klukas C, Linemann U, Weber H, Wobus U, Borisjuk L (2007) Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage. Plant J 51:468–484

    CAS  PubMed  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    CAS  PubMed  Google Scholar 

  • Rosche E, Blackmore D, Tegeder M, Richardson T, Schroeder H, Higgins TJV, Frommer WB, Offler CE, Patrick JW (2002) Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons. Plant J 30:165–175

    CAS  PubMed  Google Scholar 

  • Rosche EG, Blackmore D, Offler CE, Patrick JW (2005) Increased capacity for sucrose uptake leads to earlier onset of protein accumulation in developing pea seeds. Func Plant Biol 32:997–1007

    CAS  Google Scholar 

  • Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123–134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    CAS  PubMed  Google Scholar 

  • Sahrawy M, Avila C, Chueca A, Canovas FM, Lopez-Gorge J (2004) Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase. J Exp Bot 55:2495–2503

    CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+ -dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2 A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18822–18827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanders A, Collier R, Tretheway A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulated import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552

    CAS  PubMed  Google Scholar 

  • Satyendra R, Stewart JM, Wilkins T (1998) Assessment of resistance of cotton transformed with lectin genes to tobacco budworm. Special Report Arkansas Agricultural Experiment Station, Fayetteville, USA, No 188, pp 95–98

    Google Scholar 

  • Schaik PH, Probst AH (1958) The inheritance of inflorescence type, peduncle length, flower per node and percent flower shedding in soybeans. Agron J 50:98–102

    Google Scholar 

  • Schmidt A, Su YH, Kunze R, Warner S, Hewitt M, Slocum RD, Ludewig U, Frommer WB, Desimone M (2004) UPS1 and UPS2 from Arabidopsis mediate high affinity transport of uracil and 5-fluorouracil. J Biol Chem 279:44817–44824

    CAS  PubMed  Google Scholar 

  • Schmidt A, Baumann R, Schwarzkopf A, Frommer WB, Desimone M (2006) Comparative studies on ureide permeases in Arabidopsis thaliana and analysis of two alternative splice variants of AtUPS5. Planta 22:1329–1340

    Google Scholar 

  • Schmitt DP, Barker KR, Riggs RD (2004) Potential means of management. In: Schmitt DP, Wrather JA, Riggs RD (eds) Biology and management of soybean cyst nematode, 2nd edn. Schmitt and Associates, Marceline, pp 57–72

    Google Scholar 

  • Schou JB, Jeffers DL, Streeter JG (1978) Effects of reflectors, black boards, or shades applied at different stages of plant development on yield of soybeans. Crop Sci 18:29–34

    Google Scholar 

  • Schubert KR (1981) Enzymes of purine biosynthesis and catabolism in Glycine max I Comparison of activities with N2 fixation and composition of xylem exudate during nodule development. Plant Physiol 68:1115–1122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CL, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot 58:483–495

    CAS  PubMed  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Do Choi Y (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    CAS  PubMed  Google Scholar 

  • Shan J, Zhu MZ, Shi M, Gao JP, Lin HX (2009) Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff). Theor Appl Gen 119:827–836

    CAS  Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. Electronic J Biotech 3:1–20

    Google Scholar 

  • Shaw RH, Laing DR (1966) Moisture stress and plant response. In: Pierre WH, Kirkham D, Pesek J, Shaw RH (eds) Plant environment and efficient water use. American Society of Agronomy, Madison, pp 73–94

    Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shibles RM, Anderson IC, Gibson AH (1975) Soybean. In: Evans LT (ed) Crop physiology. Cambridge University Press, London, pp 151–190

    Google Scholar 

  • Shibles RM, Secor J, Ford DM (1987) Carbon assimilation and metabolism. In: Wilcox JR (Ed) Soybeans: improvement, production and uses, 2nd edn. ASA, Madison, pp 535–588

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    CAS  PubMed  Google Scholar 

  • Shou-Min X, Brill E, llewellyn DJ, Furbank RT, Yong-Ling R (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5:430–441

    Google Scholar 

  • Shpak ED, Lakeman MB, Torii KU (2003) Dominant-Negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue specific expression of alanine aminotransferase. Plant Biotech J 6:722–732

    CAS  Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siefritz F, Tyree MT, Lovisolo C, Schubert A, Kaldenhoff R (2002) PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14:869–876

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinclair TR, Serraj R (1995) Legume nitrogen fixation and drought. Nature 378:344

    CAS  Google Scholar 

  • Sinclair TR, Purcell LC, King CA, Sneller CH, Chen P, Vadez V (2007) Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Res 107:68–71

    Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu RI (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    CAS  PubMed  Google Scholar 

  • Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof PLC, Perroux JM, Ward JM (2006) Arabidopsis sucrose transporter AtSUC9, high-affinity transport activity, intragenic control of expression and early flowering mutant phenotype. Plant Physiol 143:188–198

    PubMed  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci U S A 99:1724–1729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smidansky ED, Martin JM, Hannah CL, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    CAS  PubMed  Google Scholar 

  • Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2007) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta 225:965–976

    CAS  PubMed  Google Scholar 

  • Smith PMC, Atkins CA (2002) Purine biosynthesis: big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith PM, Winter H, Storer PJ, Bussell JD, Schuller KA, Atkins CA (2002) Effect of short-term N2 deficiency on expression of the ureide pathway in cowpea root nodules. Plant Physiol 129:1216–1221

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13:594–603

    PubMed Central  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    CAS  PubMed  Google Scholar 

  • Sonnewald U, Mohammad Reza H, Kossmann J, Heyer A, Trethewey RN, Willmitzer L (1997) Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat Biotechnol 15:794–797

    CAS  PubMed  Google Scholar 

  • Sorefan K (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soria-Guerra R, Rosales-Mendoza S, Chang S, Haudenshield JS, Padmanaban A, Rodriguez-Zas S et al (2010) Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. Theor Appl Genet 120:1315–1333

    CAS  PubMed  Google Scholar 

  • Specht JE, Williams JH (1984) Contribution of genetic technology to soybean productivity—retrospect and prospect. In: Fehr WR (ed) Genetic contributions of yield gains of five major crop plants. CSSA, Wisconsin, pp 49–74 (Chapter 3)

    Google Scholar 

  • Specht JE, Williams JH, Pearson DR (1985) Near-isogenic analyses of soybean pubescence genes. Crop Sci 25:92–96

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential—a genetic and physiological perspective. Crop Sci 39:1560–1570

    Google Scholar 

  • Spollen WG, Wiebold WJ, Glenn DS (1986) Intra-raceme competition in field-grown soybean. Agron J 78:280–283

    Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions and possibilities for a better enzyme. Ann Rev Plant Biol 53:449–475

    CAS  Google Scholar 

  • Staswick PE (1989) Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression in soybean leaves. Plant Physiol 89:309–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    CAS  Google Scholar 

  • Streeter JG, Jeffers DL (1979) Distribution of total nonstructural carbohydrates in soybean plants having increased reproductive load. Crop Sci 19:729–234

    Google Scholar 

  • Stewart CN, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D et al (1996) Genetic transformation, recovery and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:121–129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sugano S, Kaminaka H, Rybka Z, Catala R, Salinas J, Matsui K, Ohme-Takagi M, Takatsuji H (2003) Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. Plant J 36:830–841

    CAS  PubMed  Google Scholar 

  • Sun J, Zhang J, Larue C, Huber SC (2011) Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant Cell Env 34:592–604

    CAS  Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Plant Cell Env 32:417–427

    CAS  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Müller B, Eichacker LA, Stern DB, Bassi R, Herrmann RG, Francis-André W (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13:1347–1367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Gen 284:173–183

    CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of Fructose-1,6-bisphosphatase and Sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin Cycle in transgenic plants. Plant Cell Physiol 47:380–390

    CAS  PubMed  Google Scholar 

  • Tarantino D, Vannini C, Bracale M, Campa M, Soave C, Murgia I (2005) Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide induced cell death. Planta 221:757–765

    CAS  PubMed  Google Scholar 

  • Thiele A, Herold M, Lenk I, Quail PH, Gatz C (1999) Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol 120:73–82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thipyapong P, Hunt MD, Steffens JC (2004) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117

    CAS  PubMed  Google Scholar 

  • Thompson JF, Madison JT, Muenster AE (1977) In vitro culture of immature cotyledons of soya bean (Glycine max L Merrill). Ann Bot 41:29–39

    Google Scholar 

  • Thorne JH (1985) Phloem unloading of C and N assimilates in developing seeds. Ann Rev Plant Physiol 36:317–343

    CAS  Google Scholar 

  • Tian H, Ma L, Zhao C, Hao H, Gong B, Yu X, Wang X (2010) Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochem Biophys Res Commun 393:365–370

    CAS  PubMed  Google Scholar 

  • Todd JW, Morgan LW (1972) Effect of hand defoliation on yield and seed weight of soybeans. J Econ Ent Lanham 65:567–570

    Google Scholar 

  • Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447–462

    CAS  PubMed  Google Scholar 

  • Trujillo LE, Sotolongo M, Menéndez C, Ochogavia ME, Coll Y, Hernández I et al (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49:512–525

    CAS  PubMed  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water limited environments. Adv Agron 71:193–123

    Google Scholar 

  • Turnipseed SG (1972) Response of soybeans to foliage losses in South Carolina. J Econ Ent Lanham 65:224–229

    Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805

    CAS  PubMed  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H (2012a) Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis. J Plant Physiol 169:1454–1462

    Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H (2012b) Increased fructose 1,6 bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interaction 15:747–752

    CAS  Google Scholar 

  • USDA-NASS (2012) Crop production summary. US Department of Agriculture, National Agricultural Statistics Service, Washington, DC 2013. http://www.nass.usda.gov. Accessed May 2014

  • USDA-NASS (2013) Crop production summary. US Department of Agriculture, National Agricultural Statistics Service, Washington, DC 2013. http://www.nass.usda.gov

  • Valente MAS, Faria JAQA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG et al (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • Van Ittersum RR (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Res 52:197–208

    Google Scholar 

  • Varatto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F et al (2000) Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 22:115–124

    Google Scholar 

  • Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Molinari HB, Marur CJ et al (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    CAS  PubMed  Google Scholar 

  • Verkleij FN, Challa H (1988) Diurnal export and carbon economy in an expanding source leaf of cucumber at contrasting source and sink temperature. Physiol Plant 74:284–293

    Google Scholar 

  • Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T et al (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311

    CAS  PubMed  Google Scholar 

  • Voldeng HD, Cober ER, Hume DJ, Gillard C, Morrison MJ (1997) Fifty-eight years of genetic improvement of short-season soybean cultivars in Canada. Crop Sci 37:428–431

    Google Scholar 

  • von Caemmerer S, Evans JR (2010) Enhancing C3 photosynthesis. Plant Physiol 154:589–592

    Google Scholar 

  • Waclawovsky AJ, Loureiro ME, Freitas RL, da Silva RC, Cano MAO, Fontes EPB (2006) Evidence for the sucrose-binding protein role in carbohydrate metabolism and transport at early developmental stage. Physiol Plant 128:391–404

    CAS  Google Scholar 

  • Walker DR, All JN, Mcpherson RM, Boerma HR, Parrott WA (2000) Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 93:613–622

    CAS  PubMed  Google Scholar 

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QTL that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057

    PubMed  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    CAS  PubMed  Google Scholar 

  • Wang B, Sang Y, Song J, Gao XQ, Zhang X (2009a) Expression of a rice OsARGOS gene in Arabidopsis promotes cell division and expansion and increases organ size. J Genet Gen 36:31–40

    Google Scholar 

  • Wang J, Nakazaki T, Chen S, Chen W, Saito H, Tsukiyama T et al (2009b) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L). Theor Appl Genet 119:85–91

    Google Scholar 

  • Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvas C et al (2009c) Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol Plant 2:191–200

    Google Scholar 

  • Wang GP, Hui Z, Li F, Zhao MR, Zhang J, Wang W (2010) Improvement of heat and drought photosynthetic tolerance in wheat by over-accumulation of glycine betaine. Plant Biotech Rep 4:213–222

    Google Scholar 

  • Wang X, Liu B, Huang C, Zhang X, Luo C, Cheng X, Yu R, Wu Z (2012) Over expression of Zmda1-1 gene increases seed mass of corn. African J Biotech 11:13387–13395

    CAS  Google Scholar 

  • Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381

    CAS  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Ann Rev Plant Biol 56:253–279

    CAS  Google Scholar 

  • Wei A, He C, Li B, Li N, Zhang J (2011) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotech J 9:216–229

    CAS  Google Scholar 

  • Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J et al (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152:688–710

    Google Scholar 

  • Westgate ME (2001) Physiology of high yielding corn and soybeans. Iowa State University, Department of Agronomy, Ames, Iowa. brasil.ipni.net/ipniweb/region/brasil.nsf/…/Palestra%20do%20Westgate.pdf. Accessed Dec 2013

    Google Scholar 

  • Westgate ME, Peterson CM (1993) Flower and pod development in water deficient soybean. J Exp Bot 258:109–117

    Google Scholar 

  • Wilcox JR, Schapaugh WT Jr, Bernard RL, Cooper RL, Fehr WR, Niehaus MH (1979) Genetic improvement of soybeans in the Midwest. Crop Sci 19:803–805

    Google Scholar 

  • Wolswinkel P (1985) Phloem unloading and turgor-sensitive transport: factors involved in sink control of assimilate partitioning. Physiol Plant 65:331–339

    Google Scholar 

  • Wright G (1996) Review of ACIAR selection for water use efficiency in legumes project recommends further research. ACIAR Food Legume Newslett 1996:2–3

    Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    CAS  PubMed  Google Scholar 

  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Joshi CP (2010) Overexpression of aspen sucrose synthase gene promotes growth and development of transgenic Arabidopsis plants. Adv BioSci Biotech 1:426–438

    CAS  Google Scholar 

  • Xu C, Jing R, Mao X, Jia X, Chang XA (2007) wheat (Triticum aestivum) protein phosphatase 2 A catalytic subunit gene provides enhanced drought tolerance in tobacco. Ann Bot 99:439–450

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep 30(10):1949–1957

    Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    CAS  PubMed  Google Scholar 

  • Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712

    CAS  PubMed  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takada T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:912–925

    Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K et al (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    CAS  PubMed  Google Scholar 

  • Yasuno N, Yasui Y, Takamure I, Kato K (2007) Genetic interaction between 2 tillering genes, Reduced Culm Number 1 (rcn1) and Tillering Dwarf Gene d3, in rice. J Hered 98:169–172

    CAS  PubMed  Google Scholar 

  • Yin Z, Meng F, Song H, Wang X, Xu X, Yu D (2010) Expression quantitative trait loc analysis of two genes encoding Rubisco activase in soybean. Plant Physiol 152:1625–1637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J et al (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2 A stress-regulatory system. Biochem Biophys Res Commun 368:515–521

    CAS  PubMed  Google Scholar 

  • Zapata F, Danso SKA, Hardarson G, Fried M (1987) Time course of nitrogen fixation in field grown soybean using nitrogen-15 methodology. Agron J 79:172–176

    Google Scholar 

  • Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J (2007) Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L). Plant Mol Biol 65:501–509

    CAS  PubMed  Google Scholar 

  • Zhang XL, Zhang ZJ, Chen J, Chen Q, Wang XC, Huang RF (2005) Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta 222:494–501

    CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007a) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    Google Scholar 

  • Zhang WH, Zhou Y, Dibley KE, Tyerman SD, Furbank RT, Patrick JW (2007b) Nutrient loading of developing seeds. Func Plant Biol 4:314–331

    Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    CAS  PubMed  Google Scholar 

  • Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF et al (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH313 activation. Plant Physiol 151:1889–1901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang A, Li F, Li D, Zhang H, Huang R (2010a) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774

    Google Scholar 

  • Zhang H, Liu W, Wan L, Li F, Dai L, Li D et al (2010b) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Trans Res 19:809–818

    Google Scholar 

  • Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M (2010c) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22:3603–3620

    Google Scholar 

  • Zhang S, Li N, Gao F, Yang A, Zhang J (2010d) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465

    Google Scholar 

  • Zhang L, Xiao S, Li W, Feng W, Li J, Wu Z et al (2011a) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62:4229–4238

    Google Scholar 

  • Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H et al (2011b) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotech Lett 33:403–409

    Google Scholar 

  • Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1 A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528

    CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    CAS  PubMed  Google Scholar 

  • Zhu BC, Su J, Chan MC, Verma DPS, Fan YL, Wu R (1998) Over-expression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci 139:41–48

    CAS  Google Scholar 

  • Zhu XG, Portis AR Jr, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Env 27:155–165

    CAS  Google Scholar 

  • Zhu S, Walker DR, Boerma HR, All JN, Parrott WA (2008) Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Theor Appl Genet 116:455–463

    CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol 61:235–261

    CAS  Google Scholar 

  • Ziska LH, Bunce JA (1995) Growth and photosynthetic response of three soybean cultivars to simultaneous increases in growth temperature and CO2. Physiol Plant 94:575–584

    CAS  Google Scholar 

  • Ziska LH, Bunce JA, Caulfield FA (2001) Rising atmospheric carbon dioxide and seed yield of soybean genotypes. Crop Sci 41:385–391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasulojini Karunanandaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramachandra, D., Madappa, S., Phillips, J., Loida, P., Karunanandaa, B. (2015). Breeding and Biotech Approaches Towards Improving Yield in Soybean. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_4

Download citation

Publish with us

Policies and ethics