Skip to main content

Abstract

Bread wheat is the most widely cultivated crop which is harvested every month of the year somewhere in the world. When farmed intensively, under good conditions with high inputs, wheat can yield more than 14 t/ha. However, a gradual reduction in available active ingredients for pest control, long-term goals for more sustainable agriculture and increased likelihood of more frequent extreme weather events, all point to the need for introducing improved ‘genetics’ into the seed. The analysis and publication of major wheat sequencing efforts over the last 5 years provide the raw materials for translational research and functional genomics. The scene is now set for a major change in wheat breeding and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Saady NA, Torbert KA, Smith L, Makarevitch I, Baldridge G, Zeyen RJ, Muehlbauer GJ, Olszewski NE, Somers DA (2004) Tissue specificity of the sugarcane bacilliform virus promoter in oat, barley and wheat. Mol Breed 14:331–338

    Google Scholar 

  • Almeida AM, Cardoso LA, Santos DM, Torne JM, Fevereiro PS (2007) Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol-Plant 43:167–177

    CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Stoger E, Vasil IK (1996) Accelerated production of transgenic wheat (Triticum aestivum L) plants. Plant Cell Rep 16:12–17

    CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    CAS  Google Scholar 

  • Alvarez ML, Gomez M, Carrillo JM, Vallejos RH (2001) Analysis of dough functionality of flours from transgenic wheat. Mol Breed 8:103–108

    CAS  Google Scholar 

  • Anderson OD, Blechl AE (2000) Transgenic wheat—challenges and opportunities. Transgenic cereals. American Association of Cereal Chemists, USA, 1–27

    Google Scholar 

  • Australian Government OoGR (2012) Limited and controlled release of wheat and barley genetically modified for altered grain composition, nutrient utilisation efficiency, disease resistance or stress tolerance. OGR web site

    Google Scholar 

  • Barcelo P, Hagel C, Becker D, Martin A, Lorz H (1994) Transgenic cereal (tritordeum) plants obtained at high-efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583–592

    CAS  PubMed  Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    CAS  PubMed  Google Scholar 

  • Barro F, Canalejo A, Martin A (1999) Genomic influence on somatic embryogenesis in the Triticeae. Plant Cell Rep 18:769–772

    CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang YH (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci USA 103:10509–10513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Becker D, Brettschneider R, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307

    CAS  PubMed  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    CAS  PubMed  Google Scholar 

  • Berwald D, Carter CA, Gruere GP (2006) Rejecting new technology: the case of genetically modified wheat. Am J Agric Econ 88:432–447

    Google Scholar 

  • Binka A, Orczyk W, Nadolska-Orczyk A (2012) The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection cassettes. J Appl Genet 53:1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Birch ANE, Geoghegan IE, Majerus MEN, McNicol JW, Hackett CA, Gatehouse AMR, Gatehouse JA (1999) Tri-trophic interactions involving pest aphids, predatory 2-spot ladybirds and transgenic potatoes expressing snowdrop lectin for aphid resistance. Mol Breed 5:75–83

    Google Scholar 

  • Blechl AE, Jones HD (2009) Transgenic applications in wheat improvement. In: Carver BF (ed) Wheat; sciences and trade. Wiley-Blackwell, Iowa, pp 397–435

    Google Scholar 

  • Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cer Sci 45:172–183

    CAS  Google Scholar 

  • Branlard G, Dardevet M (1985) Diversity of grain proteins and bread wheat quality.1. Correlation between gliadin bands and flour quality characteristics. J Cer Sci 3:329–343

    CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol 112:S68–S74

    CAS  PubMed  Google Scholar 

  • Campa M, Vannini C, Puja E, Francia P, Stile MR, Bracale M (2005) Production of marker-free wheat (Triticum aestivum) plants transformed by Agrobacterium. In Vitro Cell Dev Biol-Anim 41:52A

    Google Scholar 

  • Carman JG, Jefferson NE, Campbell WF (1988) Induction of embryogenic Triticum aestivum calli. 1. Quantification of genotype and culture-medium effects. Plant Cell Tissue Org Cult 12:83–95

    Google Scholar 

  • Centro Internacional de Mejoramiento de Maiz y Trigo C (2012) CIMMYT Sows second field trial of promising transgenic drought tolerant wheat. http://www.cimmyt.org/en/news-and-updates/item/cimmyt-sows-second-field-trial-of-promising-transgenic-drought-tolerant-wheat. Accessed 15 Dec 2014

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng M, Hu T, Layton J, Liu C-N, Fry JE (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    CAS  Google Scholar 

  • Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    CAS  PubMed  Google Scholar 

  • Cho MJ, Ha CD, Lemaux PG (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep 19:1084–1089

    CAS  Google Scholar 

  • Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. New Phytol 166:185–192

    CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes—structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    CAS  PubMed  Google Scholar 

  • Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cer Sci 38:301–306

    CAS  Google Scholar 

  • Datla RSS, Hammerlindl JK, Pelcher LE, Crosby WL, Selvaraj G (1991) A bifunctional fusion between beta-glucuronidase and neomycin phosphotransferase—a broad-spectrum marker enzyme for plants. Gene 101:239–246

    CAS  PubMed  Google Scholar 

  • Digeon JF, Guiderdoni E, Alary R, Michaux-Ferriere N, Joudrier P, Gautier MF (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant Mol Biol 39:1101–1112

    CAS  PubMed  Google Scholar 

  • Ding L, Li S, Gao J, Wang Y, Yang G, He G (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • FAO (2013) Crop Prospects, Food Situation. Food and agriculture organisation of the United Nations global information and early warning system on food and agriculture no. 4:1–38. http://www.fao.org/docrep/019/aq119e/aq119e00.htm, Published online Dec. 2013

  • Fellers JP, Guenzi AC, Taliaferro CM (1995) Factors affecting the establishment and maintenance of embryogenic callus and suspension cultures of wheat (Triticum aestivum L). Plant Cell Rep 15:232–237

    CAS  PubMed  Google Scholar 

  • Fennell S, Bohorova N, vanGinkel M, Crossa J, Hoisington D (1996) Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theor Appl Genet 92:163–169

    CAS  PubMed  Google Scholar 

  • Field JM, Bhandari D, Bonet A, Underwood C, Darlington H, Shewry P (2008) Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits 1Ax1 and 1Dx5 on gluten properties. J Cer Sci 48:457–463

    CAS  Google Scholar 

  • Freeman J, Sparks CA, West J, Shewry PR, Jones HD (2011) Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat. Plant Biotechnol J 9:788–796

    CAS  PubMed  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839

    CAS  PubMed  Google Scholar 

  • Gao S, Chen M, Ma Y, Cheng X, Du L, Xu H (2005) Activity of rd29A promoter in wheat immature embryonic calli. Acta Agron Sin 31:150–153

    CAS  Google Scholar 

  • Garg A, Owens T, Setter T, Miller W, Kim J-K, Kochian L, Wu R (2010) Trehalose accumulation in rice, maize, and wheat plants confers high tolerance levels to different abiotic stresses. In Vitro Cell Dev BiolAnimal 46:S204

    Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Phil Trans R Soc B 366:1438–1452

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, Paszkowski U, Zhang SP, Colbert M, Sun WL, Chen LL, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu YS, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Gomez M, Beltran JP, Canas L (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981

    CAS  PubMed  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    CAS  PubMed  Google Scholar 

  • Graybosch RA, Seabourn B, Chen YR, Blechl AE (2013) Transgenic enhancement of high-molecular-weight glutenin subunit 1Dy10 concentration: effects in wheat flour blends and sponge and dough baking. Cereal Chem 90:164–168

    CAS  Google Scholar 

  • Guo GQ, Maiwald F, Lorenzen P, Steinbiss HH (1998) Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. Cer Res Comms 26:15–22

    Google Scholar 

  • Gupta RB, Macritchie F (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. 2. Biochemical basis of the allelic effects on dough properties. J Cer Sci 19:19–29

    CAS  Google Scholar 

  • Haliloglu K, Baenziger PS (2003) Agrobacterium tumefaciens-mediated wheat transformation. Cer Res Comms 31:9–16

    CAS  Google Scholar 

  • Hamid R, Khan MH, Zubeda C, Raisa B, Raja NI (2012) An improved Agrobacterium mediated transformation system in wheat. Pak J Bot 44:297–300

    Google Scholar 

  • Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J (2011) Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. Ann Bot 107:1313–1321

    PubMed Central  PubMed  Google Scholar 

  • Harwood WA, Ross SM, Cilento P, Snape JW (2000) The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111:67–76

    CAS  Google Scholar 

  • He GY, Lazzeri PA (1998) Analysis and optimisation of DNA delivery into wheat scutellum and tritordeum inflorescence explants by tissue electroporation. Plant Cell Rep 18:64–70

    CAS  Google Scholar 

  • He KL, Wang ZY, Zhang YJ (2009) Monitoring bt resistance in the field: China as a case study. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. Publisher CAB International, Oxford, pp 344–359

    Google Scholar 

  • He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant. Gen. 2009:835608

    Google Scholar 

  • Hogervorst PAM, Wackers FL, Woodring J, Romeis J (2009) Snowdrop lectin (Galanthus nivalis agglutinin) in aphid honeydew negatively affects survival of a honeydew-consuming parasitoid. Agric For Entomol 11:161–173

    Google Scholar 

  • Huang JK, Hu RF, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690

    CAS  PubMed  Google Scholar 

  • Huttly AK, Baulcombe DC (1989) A wheat alpha-amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. Embo J 8:1907–1913

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram HM, Power JB, Lowe KC, Davey MR (1999) Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plant Cell Tissue Org 57:207–210

    CAS  Google Scholar 

  • Ingram HM, Livesey NL, Power JB, Davey MR (2001) Genetic transformation of wheat: progress during the 1990s into the millennium. Acta Physiol Plant 23:221–239

    CAS  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops. ISAAA Brief No 44 Ithaca, ISAAA, 1–18

    Google Scholar 

  • Janakiraman V, Steinau M, McCoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol-Plant 38:404–414

    CAS  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, Yang H, Liu X, He Z, Mao L, Wang J, Int Wheat Genome Sequencing C (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    CAS  PubMed  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cer Sci 41:137–147

    CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    PubMed Central  PubMed  Google Scholar 

  • Jones HD, Sparks C (2009) Promoter sequences for defining transgene expression. In: Jones HD, Shewry PR (ed) Transgenic wheat, barley and oats; production and characterization protocols. Methods in molecular biology 478 (Series editor, Walker J.) Humana Press, New York, p 49

    Google Scholar 

  • Jordan MC (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep 19:1069–1075

    CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    CAS  PubMed  Google Scholar 

  • Kovalchuk N, Smith J, Pallotta M, Singh R, Ismagul A, Eliby S, Bazanova N, Milligan AS, Hrmova M, Langridge P, Lopato S (2009) Characterization of the wheat endosperm transfer cell-specific protein TaPR60. Plant Mol Biol 71:81–98

    CAS  PubMed  Google Scholar 

  • Kovalchuk N, Smith J, Bazanova N, Pyvovarenko T, Singh R, Shirley N, Ismagul A, Johnson A, Milligan AS, Hrmova M, Langridge P, Lopato S (2012) Characterization of the wheat gene encoding a grain-specific lipid transfer protein TdPR61, and promoter activity in wheat, barley and rice. J Exp Bot 63:2025–2040

    CAS  PubMed  Google Scholar 

  • Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    CAS  PubMed  Google Scholar 

  • Leon E, Aouni R, Piston F, Rodriguez-Quijano M, Shewry PR, Martin A, Barro F (2010) Stacking HMW-GS transgenes in bread wheat: combining subunit 1Dy10 gives improved mixing properties and dough functionality. J Cer Sci 51:13–20

    CAS  Google Scholar 

  • Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M-C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    CAS  PubMed  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    CAS  PubMed  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frere C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:1–9

    Google Scholar 

  • Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue Org 53:67–74

    Google Scholar 

  • Maddock SE, Lancaster VA, Risiott R, Franklin J (1983) Plant-regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum-aestivum). J Exp Bot 34:915–926

    Google Scholar 

  • Mahalakshmi A, Khurana P (1995) Agrobacterium-mediated gene delivery in various tissues and genotypes of wheat (Triticum aestivum L). J Plant Biochem Biotechnol 4:55–59

    Google Scholar 

  • Mao X, Li Y, Zhao S, Zhang J, Lei Q, Meng D, Ma F, Hu W, Chen M, Chang J, Wang Y, Yang G, He G (2013) The interactive effects of transgenically overexpressed 1Ax1 with various HMW-GS combinations on dough quality by introgression of exogenous subunits into an elite Chinese wheat variety. PLoS ONE 8(10):e78451. doi:10.1371/journal.pone.0078451

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mao Y-B, Tao X-Y, Xue X-Y, Wang L-J, Chen X-Y (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20:665–673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marks MS, Kemp JM, Woolston CJ, Dale PJ (1989) Agroinfection of wheat—a comparison of Agrobacterium strains. Plant Sci 63:247–256

    CAS  Google Scholar 

  • Marmiroli N, Pavesi A, Dicola G, Hartings H, Raho G, Conte MR, Perrotta C (1993) Identification, characterization, and analysis of cDNA and genomic sequences encoding 2 different small heat-shock proteins in Hordeum vulgare. Genome 36:1111–1118

    CAS  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Stein N, Ariyadasa R, Schulte D, Poursarebani N, Zhou R, Steuernagel B, Mascher M, Scholz U, Shi B, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Hedley P, Liu H, Morris J, Frenkel Z, Korol A, Berges H, Taudien S, Groth M, Felder M, Platzer M, Brown JWS, Fincher GB, Sampath D, Swarbreck D, Scalabrin S, Zuccolo A, Vendramin V, Morgante M, International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • McCormac AC, Wu HX, Bao MZ, Wang YB, Xu RJ, Elliott MC, Chen DF (1998) The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99:17–25

    CAS  Google Scholar 

  • McElroy D, Zhang WG, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    PubMed Central  CAS  PubMed  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin-1 (Act1) 5’ region for use in monocot transformation. Mol Gen Genet 231:150–160

    CAS  PubMed  Google Scholar 

  • Miroshnichenko DN, Poroshin GN, Dolgov SV (2011) Genetic transformation of wheat using mature seed tissues. Appl Biochem Microbiol 47:767–775

    CAS  Google Scholar 

  • Mitic N, Nikolic R, Ninkovic S, Miljus-Djukic J, Neskovic M (2004) Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biol Plant 48:179–184

    CAS  Google Scholar 

  • Mooney PA, Goodwin PB, Dennis ES, Llewellyn DJ (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell Tissue Org 25:209–218

    CAS  Google Scholar 

  • Murin R, Bedo Z, Meszaros K, Lang L (2011) Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) using mature embryos. In: Veisz O (ed) Climate change: challenges and opportunities in agriculture. Proceedings of the AGRISAFE Final Conference, 21–23 March 2011, Budapest, Hungary

    Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with 2 distinct gene constructs. Plant J 5:285–297

    CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA-sequences required for activity of the cauliflower mosaic virus-35s promoter. Nature 313:810–812

    CAS  PubMed  Google Scholar 

  • Parrott DL, Anderson AJ, Carman JG (2002) Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol Mol Plant Pathol 60:59–69

    CAS  Google Scholar 

  • Pastori GM, Wilkinson MD, Steele SH, Sparks CA, Jones HD, Parry MAJ (2001) Age-dependent transformation frequency in elite wheat varieties. J Exp Bot 52:857–863

    CAS  PubMed  Google Scholar 

  • Patnaik D, Vishnudasan D, Khurana P (2006) Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. Curr Sci 91:307–317

    CAS  Google Scholar 

  • Payne PI, Seekings JA, Worland AJ, Jarvis MG, Holt LM (1987) Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat—analysis of f5 progeny from Chinese spring × Chinese spring (HOPE-1A). J Cer Sci 6:103–118

    Google Scholar 

  • Pellegrineschi A, Noguera LM, Skovmand B, Brito RM, Velazquez L, Salgado MM, Hernandez R, Warburton M, Hoisington D (2002) Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome 45:421–430

    CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    CAS  PubMed  Google Scholar 

  • Pérez-Piñeiro P, Gago J, Landín M, Gallego P (2012) Agrobacterium-mediated transformation of wheat: general overview and new approaches to model and indentify key factors involved. In: Çiftçi YÖ (ed) Transgenic plants—advances and limitations. Pub. InTech, Croatia, pp 478.

    Google Scholar 

  • Pickett JA (1985) Production of behaviour-controlling chemicals by crop plants. Philos Trans R Soc Lond Ser B-Biol Sci 310:235–239

    CAS  Google Scholar 

  • Pickett JA, Aradottír G, Birkett MA, Bruce TJA, Hooper AM, Midega CAO, Jones HD, Matthes M, Napier JA, Pittchar JO, Smart LE, Woodcock CM, Khan ZR (2014) Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Philos Trans R Soc Lond Ser B-Biol Sci 369:20120281

    Google Scholar 

  • Piston F, Garcia C, de la Vina G, Beltran JP, Canas LA, Barro F (2008a) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspore stage and during pollen tube development. Mol Breed 21:401–405

    CAS  Google Scholar 

  • Piston F, Leon E, Lazzeri PA, Barro F (2008b) Isolation of two storage protein promoters from Hordeum chilense and characterization of their expression patterns in transgenic wheat. Euphytica 162:371–379

    CAS  Google Scholar 

  • Popineau Y, Cornec M, Lefebvre J, Marchylo B (1994) Influence of high m(r) glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat Sicco. J Cer Sci 19:231–241

    CAS  Google Scholar 

  • Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49:395–401

    CAS  PubMed  Google Scholar 

  • Price DRG, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    CAS  PubMed  Google Scholar 

  • Przetakiewicz A, Karas A, Orczyk W, Nadolska-Orczyk A (2004) Agrobacterium-mediated transformation of polyploid cereals. The efficiency of selection and transgene expression in wheat. Cell Mol Biol Lett 9:903–917

    CAS  PubMed  Google Scholar 

  • Pukhalskii VA, Smirnov SP, Korostyleva TV, Bilinskaya EN, Eliseeva AA (1996) Genetic transformation of wheat (Triticum aestivum L) by Agrobacterium tumefaciens. Genetika 32:1596–1600

    Google Scholar 

  • Qiu J (2008) Agriculture: is china ready for GM rice? Nature 455:850–852

    CAS  PubMed  Google Scholar 

  • Rakszegi M, Bekes F, Lang L, Tamas L, Shewry PR, Bedo Z (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cer Sci 42:15–23

    CAS  Google Scholar 

  • Rakszegi M, Pastori G, Jones HD, Bekes F, Butow B, Lang L, Bedo Z, Shewry PR (2008) Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. J Cer Sci 47:310–321

    CAS  Google Scholar 

  • Rasco-Gaunt S, Barcelo P (1999) Imature inflourescence culture of cereals: a highly responsive system for regeneration and transformation. In: Hall R (ed) Methods in molecular biology—plant cell culture protocols. Humana Press Inc, Totowa, pp 71–81

    Google Scholar 

  • Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19:118–127

    CAS  Google Scholar 

  • Rasco-Gaunt S, Liu D, Li CP, Doherty A, Hagemann K, Riley A, Thompson T, Brunkan C, Mitchell M, Lowe K, Krebbers E, Lazzeri P, Jayne S, Rice D (2003) Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Rep 21:569–576

    CAS  PubMed  Google Scholar 

  • Rashid H, Khan MH, Chaudhry Z, Bano R, Raja NI (2012) An improved Agrobacterium mediated transformation system in wheat. Pak J Bot 44:297–300

    CAS  Google Scholar 

  • Redway FA, Vasil V, Lu D, Vasil IK (1990) Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L). Theor Appl Genet 79:609–617

    CAS  PubMed  Google Scholar 

  • Roether S, Meister G (2011) Small RNAs derived from longer non-coding RNAs. Biochimie 93:1905–1915

    CAS  Google Scholar 

  • Romeis J, Babendreier D, Wackers FL (2003) Consumption of snowdrop lectin (Galanthus nivalis agglutinin) causes direct effects on adult parasitic wasps. Oecologia 134:528–536

    PubMed  Google Scholar 

  • Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cer Sci 30:115–120

    CAS  Google Scholar 

  • Rooke L, Byrne D, Salgueiro S (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat. Ann Appl Biol 136:167–172

    CAS  Google Scholar 

  • Rookhuyzen D (2012, Dec 11) ‘Low-tech’ wheat losing acres to corn, soybeans. Capital Journal. http://www.capjournal.com/news/low-tech-wheat-losing-acres-to-corn-soybeans/article_8401b294-435c-11e2-831f-001a4bcf887a.html AGE NOS. Accessed 15 Dec 2014

  • Schlueter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet M-C, Cloutier C, Michaud D (2010) Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. J Exp Bot 61:4169–4183

    CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Sears RG, Deckard EL (1982) Tissue-culture variability in wheat—callus induction and plant-regeneration. Crop Sci 22:546–550

    Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:219–302

    CAS  PubMed  Google Scholar 

  • Shi Z, Yin G, Du L, Tao L, Xu H, Ye X (2011) Plant regeneration and Agrobacterium-mediated transformation using large immature embryos of wheat. Sci Agri Sin 44:225–232

    CAS  Google Scholar 

  • Shimada T (1978) Plant regeneration from callus induced from wheat embryo. Jpn J Genet 53:371–374

    Google Scholar 

  • Somleva MN, Blechl AE (2005) The barley Lem1 gene promoter drives expression specifically in outer floret organs at anthesis in transgenic wheat. Cer Res Comms 33:665–671

    CAS  Google Scholar 

  • Song C, Wang H, Xu H, Liu Y, Zhang G, Wang J (2012) The influencing factors of Agrobacterium tumefaciens infecting mature embryo of wheat (Triticum aestivum). J Tritic Crop 32:209–214

    CAS  Google Scholar 

  • Sparks CA, Jones HD (2009) Biolistics Transformation of wheat. In: Jones HD, Shewry PR (eds) Transgenic wheat, barley and oats: production and characterisation. Humana Press, Totowa, pp 71–93

    Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE, Gatehouse JA (1999a) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5:65–73

    CAS  Google Scholar 

  • Stoger E, Williams S, Keen D, Christou P (1999b) Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgenic Res 8:73–82

    CAS  Google Scholar 

  • Stokstad E (2004) Biotechnology—Monsanto pulls the plug on genetically modified wheat. Science 304:1088–1089

    CAS  PubMed  Google Scholar 

  • Stone MC (2003) Understanding the role of gibberellin in the developmental physiology of wheat using a transgenic approach, in PhD thesis; plant sciences department. Bristol University, Bristol, p 231

    Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102:162–170

    CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    CAS  PubMed  Google Scholar 

  • Tamás-Nyitrai C, Jones H, Tamás L (2012) Biolistic-and Agrobacterium-mediated transformation protocols for wheat. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Humana Press, Totowa, pp 357–384

    Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric J-L, Barthel A, Bebas P, Bitra K, Bravo A, Chevalieri F, Collinge DP, Crava CM, de Maagd RA, Duvic B, Erlandson M, Faye I, Felfoeldi G, Fujiwara H, Futahashi R, Gandhe AS, Gatehouse HS, Gatehouse LN, Giebultowicz JM, Gomez I, Grimmelikhuijzen CJP, Groot AT, Hauser F, Heckel DG, Hegedus DD, Hrycaj S, Huang L, Hull JJ, Iatrou K, Iga M, Kanost MR, Kotwica J, Li C, Li J, Liu J, Lundmark M, Matsumoto S, Meyering-Vos M, Millichap PJ, Monteiro A, Mrinal N, Niimi T, Nowara D, Ohnishi A, Oostra V, Ozaki K, Papakonstantinou M, Popadic A, Rajam MV, Saenko S, Simpson RM, Soberon M, Strand MR, Tomita S, Toprak U, Wang P, Wee CW, Whyard S, Zhang W, Nagaraju J, Ffrench-Constant RH, Herrero S, Gordon K, Swelters L, Smagghe G (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    CAS  PubMed  Google Scholar 

  • Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J 1:259–270

    CAS  PubMed  Google Scholar 

  • Tomov BW, Bernal JS, Vinson SB (2003) Impacts of transgenic sugarcane expressing GNA lectin on parasitism of Mexican rice borer by Parallorhogas pyralophagus (Marsh) (Hymenoptera: Braconidae). Environ Entomol 32:866–872

    Google Scholar 

  • Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 161:871–880

    CAS  Google Scholar 

  • van Herpen T Goryunova SV van der Schoot J Mitreva M Salentijn E Vorst O Schenk MF van Veelen PA Koning F van Soest LJM Vosman B Bosch D Hamer RJ Gilissen L Smulders MJM (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1

    PubMed Central  PubMed  Google Scholar 

  • Van Herpen T Riley M Sparks C Jones HD Gritsch C Dekking EH Hamer RJ Bosch D Salentijn EMJ Smulders MJM Shewry PR Gilissen L (2008) Detailed analysis of the expression of an alpha-gliadin promoter and the deposition of alpha-gliadin protein during wheat grain development. Ann Bot 102:331–342

    PubMed Central  PubMed  Google Scholar 

  • Varshney A, Altpeter F (2001) Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breed 8:295–309

    CAS  Google Scholar 

  • Vasil I, Vasil V (1999) Transformation of wheat via particle bombardment. In: Hall R (ed) Plant cell culture protocols. Humana Press, Totowa, pp 349–358

    Google Scholar 

  • Vasil V, Brown SM, Re D, Fromm ME, Vasil IK (1991) Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9:743–747

    CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674

    CAS  Google Scholar 

  • Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK (1993) Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558

    Google Scholar 

  • Vasil IK, Bean S, Zhao JM, McCluskey P, Lookhart G, Zhao HP, Altpeter F, Vasil V (2001) Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. J Plant Physiol 158:521–528

    CAS  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    CAS  PubMed  Google Scholar 

  • Viertel K, Schmid A, Iser M, Hess D (1998) Regeneration of German spring wheat varieties from embryogenic scutellar callus. J Plant Physiol 152:167–172

    CAS  Google Scholar 

  • Vila L, Quilis J, Meynard D, Breitler JC, Marfa V, Murillo I, Vassal JM, Messeguer J, Guiderdoni E, San Segundo B (2005) Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases. Plant Biotechnol J 3:187–202

    CAS  PubMed  Google Scholar 

  • Vocke G, Liefert O (2014) Wheat outlook. US department of agriculture, economic research service, situation and outlook WHS-14a:1–20

    Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smoth M, Lail K, Tice H, Grimwood J, McKenzie N, Huo N, Gu YQ, Lazo GR, Anderson OD, You FM, Luo M-C, Dvorak J, Wright J, Febrer M, Idziak D, Hasterok R, Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Wu H, Wu W, Hsia A-P, Schnable PS, Kalyanaraman A, Baarbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Weng Y, Haberer G, Spannagl M, Mayer K, Rattei T, Mitros T, Lee S-J, Rose JKC, Mueller LA, York TL, Wicker T, Buchmann JP, Tanskanen J, Schulman AH, Gundlach H, de Oliveira AC, Maia LdC, Belknap W, Jiang N, Lai J, Zhu L, Ma J, Sun C, Pritham E, Salse J, Murat F, Abrouk M, Bruggmann R, Messing J, Fahlgren N, Sullivan CM, Carrington JC, Chapman EJ, May GD, Zhai J, Ganssmann M, Gurazada SGR, German M, Meyers BC, Green PJ, Tyler L, Wu J, Thomson J, Chen S, Scheller HV, Harholt J, Ulvskov P, Kimbrel JA, Bartley LE, Cao P, Jung K-H, Sharma MK, Vega-Sanchez M, Ronald P, Dardick CD, De Bodt S, Verelst W, Inze D, Heese M, Schnittger A, Yang X, Kalluri UC, Tuskan GA, Hua Z, Vierstra RD, Cui Y, Ouyang S, Sun Q, Liu Z, Yilmaz A, Grotewold E, Sibout R, Hematy K, Mouille G, Hoefte H, Pelloux J, O’Connor D, Schbnable J, Rowe S, Harmon F, Cass CL, Sedbrook JC, Byrne ME, Walsh S, Higgins J, Li P, Brutnell T, Unver T, Budak H, Belcram H, Charles M, Chalhoub B, Baxter I, International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    CAS  Google Scholar 

  • Wakefield ME, Bell HA, Gatehouse AMR (2010) Longevity and fecundity of Eulophus pennicornis, an ectoparasitoid of the tomato moth Lacanobia oleracea, is affected by nutritional state and diet quality. Agric For Entomol 12:19–27

    Google Scholar 

  • Wang ZY, Zhang KW, Sun XF, Tang KX, Zhang JR (2005) Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J Biosci (Bangalore) 30:627–638

    CAS  PubMed  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1994) Stable transformation of wheat (Triticum aestivum L) by microprojectile bombardment. J Cell Biochem, Meeting Abstract. Supplement: 18A pages: 104–104

    Google Scholar 

  • Wegren SK (2011) Food security and Russia’s 2010 drought. Eurasian Geogr Econ 52:140–156

    Google Scholar 

  • Weigand C (2011) Wheat import projections towards 2050. US Wheat Associates, Washington, USA:1–14

    Google Scholar 

  • Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Welton G (2011) The impact of Russia’s 2010 grain export ban. Oxfam Research Report, 1–32

    Google Scholar 

  • Wiley P, Tosi P, Evrard A, Lovegrove A, Jones H, Shewry P (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol 64:125–136

    CAS  PubMed  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Wu HX, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17:425–436

    CAS  PubMed  Google Scholar 

  • Xia G-ML, Z-Y. He, C-X. Chen H-M, Brettell R. (1999) Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Phytophysiol Sin 25:22–28

    CAS  Google Scholar 

  • Xu Z-S, Ni Z-Y, Liu L, Nie L-N, Li L-C, Chen M, Ma Y-Z (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508

    CAS  PubMed  Google Scholar 

  • Zale JM, Steber CM (2006) In Planta transformation of wheat as a genomics tool, in Plant and Animal Genomics XIV Conference, San Diego, CA, USA

    Google Scholar 

  • Zhang M, Zhou Y, Wang H, Jones HD, Gao Q, Wang D, Ma Y, Xia L (2013) Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14:560

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huw D. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jones, H. (2015). Wheat Biotechnology: Current Status and Future Prospects. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_8

Download citation

Publish with us

Policies and ethics