Skip to main content

Flavivirus Encephalitis: Immunopathogenesis of Disease and Immunomodulation

  • Chapter
Global Virology I - Identifying and Investigating Viral Diseases

Abstract

Neurotropic flaviviruses are transmitted by arthropod vectors largely in an enzootic cycle that frequently involves humans incidentally. They are perhaps the most widespread of all viruses and continue to pose a threat, with increasing global warming, air travel and the extension of their insect vector habitat due to expanding human activity. Infection by these viruses is associated with a significant immunopathological response in a minority of individuals who, if they survive, may endure permanent neurological sequelae. While universal immunisation remains the ideal to prevent infection, progress has been slow and even available vaccines may not reach target populations. Unfortunately, our understanding of the interaction of these viruses with the mammalian host is still rudimentary, making current treatment approaches to disease at best empirical. However, recently, in addition to inhibition of the immunopathogenic activity of cells in situ, approaches to reducing the massive pathogenic leukocyte immigration into the central nervous system (CNS) have targeted monocytes with significant success in animal models. The universality of this population across a wide spectrum of diseases may enable a finely tuned approach to reducing the pathogenic component in encephalitis without interfering with the generation of immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    named after the giant wooden horse of Greek mythology, famously left outside the gates of Troy by the warring Greeks, ostensibly as an offering to the goddess, Athena, for their safe passage home after a 10 year siege of the city, in a ruse to make the Trojans think the Greeks had given up the war. Against the better judgment of some, the “Trojan Horse” was drawn into the city as a trophy, hiding in it a detachment of Greek soldiers who subverted the defences of Troy by night to let in the hidden Greek army and vanquish Troy.

References

  1. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med. 2004;10:S98–109.

    CAS  PubMed  Google Scholar 

  2. Gould EA, Higgs S. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg. 2009;103:109–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Calisher CH, Karabatsos N, Dalrymple JM, Shope RE, Porterfield JS, Westaway EG, Brandt WE. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989;70(Pt 1):37–43.

    PubMed  Google Scholar 

  4. Hall RA, Nisbet DJ, Pham KB, Pyke AT, Smith GA, Khromykh AA. DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A. 2003;100:10460–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Burt FJ, Grobbelaar AA, Leman PA, Anthony FS, Gibson GV, Swanepoel R. Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis. 2002;8:820–6.

    PubMed Central  PubMed  Google Scholar 

  6. Bakonyi T, Ferenczi E, Erdelyi K, Kutasi O, Csorgo T, Seidel B, Weissenbock H, Brugger K, Ban E, Nowotny N. Explosive spread of a neuroinvasive lineage 2 West Nile virus in Central Europe, 2008/2009. Vet Microbiol. 2013;165:61–70.

    PubMed  Google Scholar 

  7. Bakonyi T, Ivanics E, Erdelyi K, Ursu K, Ferenczi E, Weissenbock H, Nowotny N. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006;12:618–23.

    PubMed Central  PubMed  Google Scholar 

  8. Vazquez A, Sanchez-Seco MP, Ruiz S, Molero F, Hernandez L, Moreno J, Magallanes A, Tejedor CG, Tenorio A. Putative new lineage of west nile virus, Spain. Emerg Infect Dis. 2010;16:549–52.

    PubMed Central  PubMed  Google Scholar 

  9. Shieh WJ, Guarner J, Layton M, Fine A, Miller J, Nash D, Campbell GL, Roehrig JT, Gubler DJ, Zaki SR. The role of pathology in an investigation of an outbreak of West Nile encephalitis in New York, 1999. Emerg Infect Dis. 2000;6:370–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:2333–7.

    CAS  PubMed  Google Scholar 

  11. Petersen LR, Carson PJ, Biggerstaff BJ, Custer B, Borchardt SM, Busch MP. Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010. Epidemiol Infect. 2013;141:591–5.

    CAS  PubMed  Google Scholar 

  12. Suthar MS, Aguirre S, Fernandez-Sesma A. Innate immune sensing of flaviviruses. PLoS Pathog. 2013;9:e1003541.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Iwamoto M, Jernigan DB, Guasch A, Trepka MJ, Blackmore CG, Hellinger WC, Pham SM, Zaki S, Lanciotti RS, Lance-Parker SE, DiazGranados CA, Winquist AG, Perlino CA, Wiersma S, Hillyer KL, Goodman JL, Marfin AA, Chamberland ME, Petersen LR, West Nile Virus in Transplant Recipients Investigation Team. Transmission of West Nile virus from an organ donor to four transplant recipients. N Engl J Med. 2003;348:2196–203.

    PubMed  Google Scholar 

  14. Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, Stobierski MG, Signs K, Newman B, Kapoor H, Goodman JL, Chamberland ME, West Nile Virus Transmission Investigation Team. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2003;349:1236–45.

    CAS  PubMed  Google Scholar 

  15. Go YY, Balasuriya UB, Lee CK. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 2014;3:58–77.

    PubMed Central  PubMed  Google Scholar 

  16. Campbell GL, Hills SL, Fischer M, JA J, Hoke CH, Hombach JM, AA M, Solomon T, Tsai TF, Tsu VD, Ginsburg AS. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Org. 2011;89:766–74. 74A–74E.

    PubMed Central  PubMed  Google Scholar 

  17. Selvey LA, Dailey L, Lindsay M, Armstrong P, Tobin S, Koehler AP, Markey PG, Smith DW. The changing epidemiology of Murray Valley encephalitis in Australia: the 2011 outbreak and a review of the literature. PLoS Negl Trop Dis. 2014;8:e2656.

    PubMed Central  PubMed  Google Scholar 

  18. Smith DW, Speers DJ, Mackenzie JS. The viruses of Australia and the risk to tourists. Travel Med Infect Dis. 2011;9:113–25.

    PubMed  Google Scholar 

  19. Anonymous. Dengue and severe dengue. World Health Organization. 2014. http://www.who.int/mediacentre/factsheets/fs117/en/ - .U0Sn3mAcKMk.mendeley.

  20. Barnett ED. Yellow fever: epidemiology and prevention. Clin Infect Dis. 2007;44:850–6.

    PubMed  Google Scholar 

  21. Khairallah M, Yahia SB, Letaief M, Attia S, Kahloun R, Jelliti B, Zaouali S, Messaoud R. A prospective evaluation of factors associated with chorioretinitis in patients with West Nile virus infection. Ocul Immunol Inflamm. 2007;15:435–9.

    PubMed  Google Scholar 

  22. Garg S, Jampol LM. Systemic and intraocular manifestations of West Nile virus infection. Surv Ophthalmol. 2005;50:3–13.

    PubMed  Google Scholar 

  23. Chan CK, Limstrom SA, Tarasewicz DG, Lin SG. Ocular features of west nile virus infection in North America: a study of 14 eyes. Ophthalmology. 2006;113:1539–46.

    PubMed  Google Scholar 

  24. Kramer LD, Li J, Shi P-Y. West Nile virus. Lancet Neurol. 2007;6:1999–2005.

    Google Scholar 

  25. Gittens-St Hilaire M, Clarke-Greenidge N. An analysis of the subtypes of dengue fever infections in Barbados 2003–2007 by reverse transcriptase polymerase chain reaction. Virol J. 2008;5:152.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Mamani E, Figueroa D, Garcia MP, Garaycochea Mdel C, Pozo EJ. Concurrent infections by two dengue virus serotypes during an outbreak in northwestern Peru, 2008. Rev Peru Med Exp Salud Publica. 2010;27:16–21.

    PubMed  Google Scholar 

  27. Nah G, Tan M, Teoh S, Chong CH. Maculopathy associated with Dengue fever in a military pilot. Aviat Space Environ Med. 2007;78:1064–7.

    PubMed  Google Scholar 

  28. Chee E, Sims JL, Jap A, Tan BH, Oh H, Chee S-P. Comparison of prevalence of dengue maculopathy during two epidemics with differing predominant serotypes. Am J Ophthalmol. 2009;148:910–3.

    PubMed  Google Scholar 

  29. Schneider BS, Soong L, Coffey LL, Stevenson HL, Mcgee CE, Higgs S. Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by antigen-presenting cells during West Nile virus infection. PLoS One. 2010;5:e11704.

    PubMed Central  PubMed  Google Scholar 

  30. Davison AM, King NJC. Accelerated dendritic cell differentiation from migrating Ly6C(lo) bone marrow monocytes in early dermal West Nile virus infection. J Immunol. 2011;186:2382–96.

    CAS  PubMed  Google Scholar 

  31. Johnston LJ, Halliday GM, King NJC. Phenotypic changes in Langerhans’ cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol. 1996;70:4761–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Johnston LJ, Halliday GM, King NJC. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol. 2000;114:560–8.

    CAS  PubMed  Google Scholar 

  33. Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol. 2001;166:1499–506.

    CAS  PubMed  Google Scholar 

  34. German AC, Myint KS, Mai NT, Pomeroy I, Phu NH, Tzartos J, Winter P, Collett J, Farrar J, Barrett A, Kipar A, Esiri MM, Solomon T. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg. 2006;100:1135–45.

    PubMed  Google Scholar 

  35. Liou ML, Hsu CY. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res. 1998;293:389–94.

    CAS  PubMed  Google Scholar 

  36. Shen J, To SS, Schrieber L, King NJC. Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. J Virol. 1997;71:9323–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Wang Y, Lobigs M, Lee E, Mullbacher A. CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol. 2003;77:13323–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Wang P, Dai J, Bai F, Kong K-F, Wong SJ, Montgomery RR, Madri JA, Fikrig E. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol. 2008;82:8978–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366–73.

    CAS  PubMed  Google Scholar 

  40. Kong K-F, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol. 2008;82:7613–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Daffis S, Samuel MA, Suthar MS, Gale Jr M, Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008;82:10349–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJC. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205:2319–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO. Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol. 2008;89:467–73.

    CAS  PubMed  Google Scholar 

  44. Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8 T-Cells. PLoS One. 2011;6:e20472.

    PubMed Central  PubMed  Google Scholar 

  45. Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol. 2012;93:1193–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Liu Y, King NJC, Kesson A, Blanden RV, Mullbacher A. Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. J Neuroimmunol. 1989;21:157–68.

    CAS  PubMed  Google Scholar 

  47. Williams DW, Eugenin EA, Calderon TM, Berman JW. Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol. 2012;91:401–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Yeung AW, Wu W, Freewan M, Stocker R, King NJ, Thomas SR. Flavivirus infection induces indoleamine 2,3-dioxygenase in human monocyte-derived macrophages via tumor necrosis factor and NF-kappaB. J Leukoc Biol. 2012;91:657–66.

    CAS  PubMed  Google Scholar 

  49. Bai F, Kong K-F, Dai J, Qian F, Zhang L, Brown CR, Fikrig E, Montgomery RR. A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J Infect Dis. 2010;202:1804–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Getts DR, Terry RL, Getts MT, Muller M, Rana S, Deffrasnes C, Ashhurst TM, Radford J, Hofer M, Thomas S, Campbell IL, King NJ. Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA)-4-dependent recruitment of nitric oxide-producing macrophages. J Neuroinflammation. 2012;9:246.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28:254–60.

    CAS  PubMed  Google Scholar 

  52. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10:1538–43.

    CAS  PubMed  Google Scholar 

  53. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38:792–804.

    CAS  PubMed  Google Scholar 

  54. Kong KF, Wang X, Anderson JF, Fikrig E, Montgomery RR. West nile virus attenuates activation of primary human macrophages. Viral Immunol. 2008;21:78–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hunsperger E, Roehrig JT. Characterization of West Nile viral replication and maturation in peripheral neurons in culture. J Neurovirol. 2005;11:11–22.

    CAS  PubMed  Google Scholar 

  56. Hunsperger EA, Roehrig JT. Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol. 2006;12:129–39.

    PubMed  Google Scholar 

  57. Hunsperger EA, Roehrig JT. Nocodazole delays viral entry into the brain following footpad inoculation with West Nile virus in mice. J Neurovirol. 2009;15:211–8.

    CAS  PubMed  Google Scholar 

  58. Getts DR, Matsumoto I, Müller M, Getts MT, Radford J, Shrestha B, Campbell IL, King NJC. Role of IFN-gamma in an experimental murine model of West Nile virus-induced seizures. J Neurochem. 2007;103:1019–30.

    CAS  PubMed  Google Scholar 

  59. Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013;10:77.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Burke SA, Wen L, King NJ. Routes of inoculation and the immune response to a resolving genital flavivirus infection in a novel murine model. Immunol Cell Biol. 2004;82:174–83.

    PubMed  Google Scholar 

  61. Shrestha B, Diamond MS. Role of CD8+ T cells in control of West Nile virus infection. J Virol. 2004;78:8312–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Andrews DM, Matthews VB, Sammels LM, Carrello AC, McMinn PC. The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J Virol. 1999;73:8781–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Sbrana E, Tonry JH, Xiao SY, da Rosa AP, Higgs S, Tesh RB. Oral transmission of West Nile virus in a hamster model. Am J Trop Med Hyg. 2005;72:325–9.

    PubMed  Google Scholar 

  64. King NJC, Getts DR, Getts MT, Rana S, Shrestha B, Kesson AM. Immunopathology of flavivirus infections. Immunol Cell Biol. 2007;85:33–42.

    CAS  PubMed  Google Scholar 

  65. Luna RML, Lee E, Mullbacher A, Blanden RV, Langman R, Lobigs M. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol. 2002;76:3202–11.

    Google Scholar 

  66. Sampson BA, Ambrosi C, Charlot A, Reiber K, Veress JF, Armbrustmacher V. The pathology of human West Nile virus infection. Hum Pathol. 2000;31:527–31.

    CAS  PubMed  Google Scholar 

  67. Kimura T, Sasaki M, Okumura M, Kim E, Sawa H. Flavivirus encephalitis: pathological aspects of mouse and other animal models. Vet Pathol. 2010;47:806–18.

    CAS  PubMed  Google Scholar 

  68. Zompi S, Harris E. Animal models of dengue virus infection. Viruses. 2012;4:62–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ratterree MS, Gutierrez RA, Travassos da Rosa AP, Dille BJ, Beasley DWC, Bohm RP, Desai SM, Didier PJ, Bikenmeyer LG, Dawson GJ, Leary TP, Schochetman G, Phillippi-Falkenstein K, Arroyo J, Barrett ADT, Tesh RB. Experimental infection of rhesus macaques with West Nile virus: level and duration of viremia and kinetics of the antibody response after infection. J Infect Dis. 2004;189:669–76.

    CAS  PubMed  Google Scholar 

  70. Tesh RB, Guzman H, da Rosa AP, Vasconcelos PF, Dias LB, Bunnell JE, Zhang H, Xiao SY. Experimental yellow fever virus infection in the Golden Hamster (Mesocricetus auratus) I Virologic, biochemical, and immunologic studies. J Infect Dis. 2001;183:1431–6.

    CAS  PubMed  Google Scholar 

  71. Tesh RB, Siirin M, Guzman H, Travassos da Rosa AP, Wu X, Duan T, Lei H, Nunes MR, Xiao SY. Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis. 2005;192:287–95.

    PubMed  Google Scholar 

  72. Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis. 2001;7:714–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathogens. 2009;5:e1000614.

    PubMed Central  PubMed  Google Scholar 

  74. Argall KG, Armati PJ, King NJC, Douglas MW. The effects of West Nile virus on major histocompatibility complex class I and II molecule expression by Lewis rat Schwann cells in vitro. J Neuroimmunol. 1991;35:273–84.

    CAS  PubMed  Google Scholar 

  75. Bao S, King NJC, Dos Remedios CG. Flavivirus induces MHC antigen on human myoblasts: a model of autoimmune myositis? Muscle Nerve. 1992;15:1271–7.

    CAS  PubMed  Google Scholar 

  76. Douglas MW, Kesson AM, King NJC. CTL recognition of west Nile virus-infected fibroblasts is cell cycle dependent and is associated with virus-induced increases in class I MHC antigen expression. Immunology. 1994;82:561–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. King NJC, Kesson AM. Interferon-independent increases in class I major histocompatibility complex antigen expression follow flavivirus infection. J Gen Virol. 1988;69:2535–43.

    CAS  PubMed  Google Scholar 

  78. King NJC, Maxwell LE, Kesson AM. Induction of class I major histocompatibility complex antigen expression by West Nile virus on gamma interferon-refractory early murine trophoblast cells. Proc Natl Acad Sci U S A. 1989;86:911–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Munoz-Erazo L, Natoli R, Provis JM, Madigan MC, King NJC. Microarray analysis of gene expression in West Nile virus-infected human retinal pigment epithelium. Mol Vis. 2012;18:730–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Shen J, Devery JM, King NJC. Early induction of interferon-independent virus-specific ICAM-1 (CD54) expression by flavivirus in quiescent but not proliferating fibroblasts–implications for virus-host interactions. Virology. 1995;208:437–49.

    CAS  PubMed  Google Scholar 

  81. Shen J, Devery JM, King NJC. Adherence status regulates the primary cellular activation responses to the flavivirus West Nile. Immunology. 1995;84:254–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Dutta K, Mishra MK, Nazmi A, Kumawat KL, Basu A. Minocycline differentially modulates macrophage mediated peripheral immune response following Japanese encephalitis virus infection. Immunobiology. 2010;215:884–93.

    CAS  PubMed  Google Scholar 

  83. Cheeran MCJ, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neurovirol. 2005;11:512–24.

    CAS  PubMed  Google Scholar 

  84. van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol. 2007;81:10933–49.

    PubMed Central  PubMed  Google Scholar 

  85. Cantile C, Del Piero F, Di Guardo G, Arispici M. Pathologic and immunohistochemical findings in naturally occurring West Nile virus infection in horses. Vet Pathol. 2001;38:414–31.

    CAS  PubMed  Google Scholar 

  86. Despres P, Flamand M, Ceccaldi PE, Deubel V. Human isolates of dengue type 1 virus induce apoptosis in mouse neuroblastoma cells. J Virol. 1996;70:4090–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Shrestha B, Gottlieb D, Diamond MS. Infection and injury of neurons by West Nile encephalitis virus. J Virol. 2003;77:13203–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, Jiang SY, Yang KD, Shaio MF. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol. 2000;74:8680–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Yang T-C, Shiu S-L, Chuang P-H, Lin Y-J, Wan L, Lan Y-C, Lin C-W. Japanese encephalitis virus NS2B-NS3 protease induces caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells. Virus Res. 2009;143:77–85.

    CAS  PubMed  Google Scholar 

  90. Lin RJ. Replication-incompetent virions of Japanese encephalitis virus trigger neuronal cell death by oxidative stress in a culture system. J Gen Virol. 2004;85:521–33.

    CAS  PubMed  Google Scholar 

  91. Tsao C-H, Su H-L, Lin Y-L, Yu H-P, Kuo S-M, Shen C-I, Chen C-W, Liao C-L. Japanese encephalitis virus infection activates caspase-8 and -9 in a FADD-independent and mitochondrion-dependent manner. J Gen Virol. 2008;89:1930–41.

    CAS  PubMed  Google Scholar 

  92. Chu JJH. The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol. 2003;84:3305–14.

    CAS  PubMed  Google Scholar 

  93. Su HL, Liao CL, Lin YL. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol. 2002;76:4162–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Prikhod’ko GG, Prikhod’ko EA, Pletnev AG, Cohen JI. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J Virol. 2002;76:5701–10.

    PubMed Central  PubMed  Google Scholar 

  95. Yang J-S, Ramanathan MP, Muthumani K, Choo AY, Jin S-H, Yu Q-C, Hwang DS, Choo DK, Lee MD, Dang K, Tang W, Kim JJ, Weiner DB. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis. 2002;8:1379–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Despres P, Frenkiel MP, Ceccaldi PE, Duarte Dos Santos C, Deubel V. Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol. 1998;72:823–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Camenga DL, Nathanson N. An immunopathologic component in experimental togavirus encephalitis. J Neuropathol Exp Neurol. 1975;34:492–500.

    CAS  PubMed  Google Scholar 

  98. Singh A, Kulshreshtha R, Mathur A. Secretion of the chemokine interleukin-8 during Japanese encephalitis virus infection. J Med Microbiol. 2000;49:607–12.

    CAS  PubMed  Google Scholar 

  99. Petzold A, Groves M, Leis AA, Scaravilli F, Stokic DS. Neuronal and glial cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection. Muscle Nerve. 2010;41:42–9.

    CAS  PubMed  Google Scholar 

  100. Chen C-J, Ou Y-C, Lin S-Y, Raung S-L, Liao S-L, Lai C-Y, Chen S-Y, Chen J-H. Glial activation involvement in neuronal death by Japanese encephalitis virus infection. J Gen Virol. 2010;91:1028–37.

    CAS  PubMed  Google Scholar 

  101. Getts DR, Terry RL, Getts MT, Deffrasnes C, Müller M, van Vreden C, Ashhurst TM, Chami B, McCarthy D, Wu H, Ma J, Martin A, Shae LD, Witting P, Kansas GS, Kühn J, Hafezi W, Campbell IL, Reilly D, Say J, Brown L, White MY, Cordwell SJ, Chadban SJ, Thorp EB, Bao S, Miller SD, King NJC. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Science Transl Med. 2014;6:219ra7.

    Google Scholar 

  102. Ravi V, Parida S, Desai A, Chandramuki A, Gourie-Devi M, Grau GE. Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J Med Virol. 1997;51:132–6.

    CAS  PubMed  Google Scholar 

  103. Winter PM, Dung NM, Loan HT, Kneen R, Wills B, Thu LT, House D, White NJ, Farrar JJ, Hart CA, Solomon T. Proinflammatory cytokines and chemokines in humans with Japanese encephalitis. J Infect Dis. 2004;190:1618–26.

    CAS  PubMed  Google Scholar 

  104. Kumar M, Verma S, Nerurkar VR. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation. 2010;7:73.

    PubMed Central  PubMed  Google Scholar 

  105. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002;417:39–44.

    CAS  PubMed  Google Scholar 

  106. Barkho BZ, Song H, Aimone JB, Smrt RD, Nakashima K, Gage FH, Zhao X. Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev. 2009;15:407–21.

    Google Scholar 

  107. Das S, Mishra MK, Ghosh J, Basu A. Japanese Encephalitis Virus infection induces IL-18 and IL-1beta in microglia and astrocytes: correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. J Neuroimmunol. 2008;195:60–72.

    CAS  PubMed  Google Scholar 

  108. Mishra MK, Basu A. Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J Neurochem. 2008;105:1582–95.

    CAS  PubMed  Google Scholar 

  109. Swarup V, Ghosh J, Das S, Basu A. Tumor necrosis factor receptor-associated death domain mediated neuronal death contributes to the glial activation and subsequent neuroinflammation in Japanese encephalitis. Neurochem Int. 2008;52:1310–21.

    CAS  PubMed  Google Scholar 

  110. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A. 1989;86:6348–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, Buch S. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci. 2006;23:957–64.

    PubMed  Google Scholar 

  112. Griffin WST. Inflammation and neurodegenerative diseases. Am J Clin Nutr. 2006;83:470S–4.

    CAS  PubMed  Google Scholar 

  113. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nature Rev Immunol. 2005;5:629–40.

    CAS  Google Scholar 

  114. Sticozzi C, Belmonte G, Meini A, Carbotti P, Grasso G, Palmi M. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca2+–calmodulin/ERK mitogen-activated protein kinase signaling pathway. Neuroscience. 2013;252:367–83.

    CAS  PubMed  Google Scholar 

  115. Quintana A, Müller M, Frausto RF, Ramos R, Getts DR, Sanz E, Hofer MJ, Krauthausen M, King NJC, Hidalgo J, Campbell IL. Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol. 2009;183:2079–88.

    CAS  PubMed  Google Scholar 

  116. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW, ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A. 1991;88:7438–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, Koli P, Sen E, Basu A. Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia. 2007;55:483–96.

    PubMed  Google Scholar 

  119. Das S, Dutta K, Kumawat KL, Ghoshal A, Adhya D, Basu A. Abrogated inflammatory response promotes neurogenesis in a murine model of Japanese encephalitis. PLoS One. 2011;6:e17225.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Liu Y-P, Lin H-I, Tzeng S-F. Tumor necrosis factor-alpha and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res. 2005;1054:152–8.

    CAS  PubMed  Google Scholar 

  121. Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24:623–31.

    CAS  PubMed  Google Scholar 

  122. Hayasaka D, Nagata N, Fujii Y, Hasegawa H, Sata T, Suzuki R, Gould EA, Takashima I, Koike S. Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology. 2009;390:139–50.

    CAS  PubMed  Google Scholar 

  123. Cheng Y, King NJC, Kesson AM. The role of tumor necrosis factor in modulating responses of murine embryo fibroblasts by flavivirus, West Nile. Virology. 2004;329:361–70.

    CAS  PubMed  Google Scholar 

  124. Chen M, Muckersie E, Robertson M, Forrester JV, Xu H. Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res. 2008;87:543–50.

    CAS  PubMed  Google Scholar 

  125. Anderson DH, Mullin R, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134:411–31.

    CAS  PubMed  Google Scholar 

  126. Sainson RCA, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, Davis J, Conn E, Hughes CCW. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111:4997–5007.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Hoffmann S, He S, Ehren M, Ryan SJ, Wiedemann P, Hinton DR. MMP-2 and MMP-9 secretion by rpe is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina. 2006;26:454–61.

    PubMed  Google Scholar 

  128. Zhou J, Zhang M, Atherton SS. Tumor necrosis factor-alpha-induced apoptosis in murine cytomegalovirus retinitis. Invest Ophthalmol Vis Sci. 2007;48:1691–700.

    PubMed  Google Scholar 

  129. Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology. 2010;397:130–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Kelley MDTW, Prayson MDRA, Ruiz MDAI, Isada MDCM, Gordon MDSM. The neuropathology of West Nile virus meningoencephalitis: a report of two cases and review of the literature. Am J Clin Path. 2003;119:749–53.

    PubMed  Google Scholar 

  131. Amaral DCG, Rachid MA, Vilela MC, Campos RDL, Ferreira GP, Rodrigues DH, Lacerda-Queiroz N, Miranda AS, Costa VV, Campos MA, Kroon EG, Teixeira MM, Teixeira AL. Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation. 2011;8:23.

    PubMed Central  PubMed  Google Scholar 

  132. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.

    CAS  PubMed  Google Scholar 

  133. Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172:4410–7.

    PubMed  Google Scholar 

  134. King NJC, Shrestha B, Kesson AM. Immune modulation by flaviviruses. In: Monath T, Chambers T, editors. The flaviviruses: pathogenesis and immunity. San Diego, CA: Elsevier Academic Press; 2003. p. 121–55.

    Google Scholar 

  135. Karupiah G, Hunt NH, King NJC, Chaudhri G. NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response. Rev Immunogenet. 2000;2:387–415.

    CAS  PubMed  Google Scholar 

  136. Nazmi A, Dutta K, Das S, Basu A. Japanese encephalitis virus-infected macrophages induce neuronal death. J Neuroimm Pharm. 2011;6:420–33.

    Google Scholar 

  137. de Souza KPR, Silva EG, de Oliveira Rocha ES, Figueiredo LB, de Almeida-Leite CM, Arantes RME, de Assis Silva Gomes J, Ferreira GP, de Oliveira JG, Kroon EG, Campos MA. Nitric oxide synthase expression correlates with death in an experimental mouse model of dengue with CNS involvement. Virol J. 2013;10:267.

    PubMed Central  PubMed  Google Scholar 

  138. Costa VV, Fagundes CT, Valadão DF, Cisalpino D, Dias ACF, Silveira KD, Kangussu LM, Ávila TV, Bonfim MRQ, Bonaventura D, Silva TA, Sousa LP, Rachid MA, Vieira LQ, Menezes GB, de Paula AM, Atrasheuskaya A, Ignatyev G, Teixeira MM, Souza DG. A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-γ in host resistance to infection. PLoS Negl Trop Dis. 2012;6:e1663.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Neves-Souza PCF, Azeredo EL, Zagne SMO, Valls-de-Souza R, Reis SRNI, Cerqueira DIS, Nogueira RMR, Kubelka CF. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis. 2005;5:64.

    PubMed Central  PubMed  Google Scholar 

  140. Saxena SK, Singh A, Mathur A. Antiviral effect of nitric oxide during Japanese encephalitis virus infection. Int J Exp Pathol. 2000;81:165–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Saxena SK, Mathur A, Srivastava RC. Induction of nitric oxide synthase during Japanese encephalitis virus infection: evidence of protective role. Arch Biochem Biophys. 2001;391:1–7.

    CAS  PubMed  Google Scholar 

  142. Kreil TR, Eibl MM. Nitric oxide and viral infection: no antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology. 1996;219:304–6.

    CAS  PubMed  Google Scholar 

  143. Valero N, Espina LM, Anez G, Torres E, Mosquera JA. Short report: increased level of serum nitric oxide in patients with dengue. Am J Trop Med Hyg. 2002;66:762–4.

    CAS  PubMed  Google Scholar 

  144. King NJC, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. Int J Biochem Cell Biol. 2007;39:2167–72.

    CAS  PubMed  Google Scholar 

  145. McColl BW, Rothwell NJ, Allan SM. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci. 2007;27:4403–12.

    CAS  PubMed  Google Scholar 

  146. Shrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol. 2006;80:119–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Gelpi E, Preusser M, Laggner U, Garzuly F, Holzmann H, Heinz FX, Budka H. Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol. 2006;12:322–7.

    CAS  PubMed  Google Scholar 

  148. Růzek D, Salát J, Palus M, Gritsun TS, Gould EA, Dyková I, Skallová A, Jelínek J, Kopecký J, Grubhoffer L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology. 2009;384:1–6.

    PubMed  Google Scholar 

  149. Moskophidis D, Kioussis D. Contribution of virus-specific CD8+ cytotoxic T cells to virus clearance or pathologic manifestations of influenza virus infection in a T cell receptor transgenic mouse model. J Exp Med. 1998;188:223–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Kesson AM, Cheng Y, King NJC. Regulation of immune recognition molecules by flavivirus, West Nile. Viral Immunol. 2002;15:273–83.

    CAS  PubMed  Google Scholar 

  151. King NJC, Kesson AM. Interaction of flaviviruses with cells of the vertebrate host and decoy of the immune response. Immunol Cell Biol. 2003;81:207–16.

    PubMed  Google Scholar 

  152. Cannon MJ, Openshaw PJM, Askonas BA. Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med. 1988;168:1163–8.

    CAS  PubMed  Google Scholar 

  153. Kurane I, Innis BL, Nimmannitya S, Meager A, Janus J, Ennis FA. Activation of T lymphocytes in Dengue virus infections. J Clin Invest. 1991;2:1473–80.

    Google Scholar 

  154. An J, Zhou D-S, Zhang J-L, Morida H, Wang J-L, Yasui K. Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection. Immunol Lett. 2004;95:167–74.

    CAS  PubMed  Google Scholar 

  155. Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol. 2008;181:8568–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Sitati EM, Diamond MS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol. 2006;80:12060–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol. 1999;73:3623–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Lanteri MC, O’Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, Heitman JW, Custer B, Hirschkorn DF, Tobler LH, Kiely N, Prince HE, Ndhlovu LC, Nixon DF, Kamel HT, Kelvin DJ, Busch MP, Rudensky AY, Diamond MS, Norris PJ. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest. 2009;119:3266–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT. CD4+ CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol. 2004;172:4123–32.

    CAS  PubMed  Google Scholar 

  160. Walsh KB, Lanier LL, Lane TE. NKG2D receptor signaling enhances cytolytic activity by virus-specific CD8+ T cells: evidence for a protective role in virus-induced encephalitis. J Virol. 2008;82:3031–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A. NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol. 2009;183:2610–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Suthar MS, Brassil MM, Blahnik G, McMillan A, Ramos HJ, Proll SC, Belisle SE, Katze MG, Gale Jr M. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes. PLoS Pathog. 2013;9:e1003168.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Khor CC, Chau TNB, Pang J, Davila S, Long HT, Ong RTH, Dunstan SJ, Wills B, Farrar J, Van Tram T, Gan TT, Binh NTN, Tri LT, Lien LB, Tuan NM, Tham NTH, Lanh MN, Nguyet NM, Hieu NT, Van N, Vinh Chau N, Thuy TT, Tan DEK, Sakuntabhai A, Teo Y-Y, Hibberd ML, Simmons CP. Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nat Genet. 2011;43:1139–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Whitehorn J, Chau TNB, Nguyet NM, Kien DTH, Quyen NTH, Trung DT, Pang J, Wills B, Van Vinh Chau N, Farrar J, Hibberd ML, Khor CC, Simmons CP. Genetic variants of MICB and PLCE1 and associations with non-severe dengue. PLoS One. 2013;8:e59067.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I, Loeser S, Jamieson AM, Langdon WY, Ikeda F, Fededa JP, Cronin SJ, Nitsch R, Schultz-Fademrecht C, Eickhoff J, Menninger S, Unger A, Torka R, Gruber T, Hinterleitner R, Baier G, Wolf D, Ullrich A, Klebl BM, Penninger JM. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature. 2014;507:508–12.

    CAS  PubMed  Google Scholar 

  166. Michaelis M, Kleinschmidt MC, Doerr HW, Cinatl Jr J. Minocycline inhibits West Nile virus replication and apoptosis in human neuronal cells. J Antimicrob Chemother. 2007;60:981–6.

    CAS  PubMed  Google Scholar 

  167. Zink MC, Uhrlaub J, DeWitt J, Voelker T. Neuroprotective and anti–human immunodeficiency virus activity of minocycline. JAMA. 2005;293:2003–11.

    CAS  PubMed  Google Scholar 

  168. Mirolo M, Fabbri M, Sironi M, Vecchi A, Guglielmotti A, Mangano G, Biondi G, Locati M, Mantovani A. Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. Eur Cytokine Netw. 2008;19:119–22.

    PubMed  Google Scholar 

  169. Rulli NE, Guglielmotti A, Mangano G, Rolph MS, Apicella C, Zaid A, Suhrbier A, Mahalingam S. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum. 2009;60:2513–23.

    CAS  PubMed  Google Scholar 

  170. Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis. 2011;204:1026–30.

    CAS  PubMed  Google Scholar 

  171. Ge S, Shrestha B, Paul D, Keating C, Cone R, Guglielmotti A, Pachter JS. The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation. 2012;9:171.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Mora E, Guglielmotti A, Biondi G, Sassone-Corsi P. Bindarit: an anti-inflammatory small molecule that modulates the NF-kappaB pathway. Cell Cycle. 2012;11:159–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Kesson AM, King NJC. Transcriptional regulation of major histocompatibility complex class I by flavivirus West Nile is dependent on NF-kappaB activation. J Infect Dis. 2001;184:947–54.

    CAS  PubMed  Google Scholar 

  174. Ben-Nathan D, Huitinga I, Lustig S, van Rooijen N, Kobiler D. West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch Virol. 1996;141:459–69.

    CAS  PubMed  Google Scholar 

  175. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJC, Shea LD, Miller SD. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work by the authors referred to in this chapter has been funded by Australian National Health and Medical Research Council Project Grants, 253771, 464828, 571040, 1030897. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. C. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Vreden, C., Niewold, P., vu Dinh, L., Munoz-Erazo, L., Getts, D., King, N.J.C. (2015). Flavivirus Encephalitis: Immunopathogenesis of Disease and Immunomodulation. In: Shapshak, P., Sinnott, J., Somboonwit, C., Kuhn, J. (eds) Global Virology I - Identifying and Investigating Viral Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2410-3_16

Download citation

Publish with us

Policies and ethics