Skip to main content

Immunopathogenesis of Graves’ Disease

  • Chapter
Graves' Disease

Abstract

Hyperthyroidism in Graves’ disease is caused by antibodies to the TSH receptor (TSHR) that mimic the action of TSH. These thyroid stimulating antibodies (TSAb) develop in genetically susceptible individuals because of a breakdown in self-tolerance to the TSHR, a process in which the TSHR itself likely plays a role. Rather than the membrane-bound holoreceptor, the shed, highly glycosylated TSHR A-subunit is the autoantigen in Graves’ disease. Central tolerance involves expression of self-antigen peptides in the thymus and is normally responsible for deleting T cells that bind with high affinity to TSHR peptides. Regulatory T cells provide a backup to central tolerance, together with mechanisms to preclude B cell reactivity to the TSHR. However, all these mechanisms fail in Graves’ patients and lead to the generation of these unusual, high-affinity antibodies, present at low serum concentrations, that stimulate the TSHR. Assays for these antibodies are unconventional and involve either inhibition of TSH binding to its receptor or generation of cAMP from monolayers of TSHR-expressing cells. The epitopes recognized by TSHR antibodies are not linear but conformational. In rare patients, hypothyroidism is caused by TSHR antibodies that block stimulation by TSH (TBAb). Moreover, “switching” from TBAb to TSAb (or vice versa) is sometimes observed. Overall, TSHR antibodies can be of value in monitoring the status of “switch” patients as well as in other situations including the risks of fetal or neonatal hyperthyroidism, prediction of remission, and guidance for the management of Graves’ ophthalmopathy and dermopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aire:

Autoimmune regulator

APECED:

Autoimmune polyendocrinopathy candidiasis-ectodermal dystrophy

APS-1:

Autoimmune polyendocrine syndrome type 1

cAMP:

3′-5′-Cyclic adenosine monophosphate

CD4:

Marker on helper T cells

CD25:

Interleukin-2 receptor α chain

CD122:

Interleukin-2 receptor β chain

CD8:

Marker on cytotoxic T cells

CHO:

Chinese hamster ovary cells

ELISA:

Enzyme-linked immunoassay

ECD:

Extracellular domain of the TSHR

Foxp3:

Forkhead box P3 protein

LATS:

Long-acting thyroid stimulator

LRD:

Leucine-rich repeat domain of the TSHR

LH:

Luteinizing hormone

SNP:

Single nucleotide polymorphism

TBAb:

TSH blocking antibody

TBI:

TSH binding inhibition

Treg:

Regulatory T cells

TSH:

Thyrotropin

TSHR:

Thyrotropin receptor

TMD:

Transmembrane domain of the TSHR

TSAb:

Thyroid stimulating antibody

VNTR:

Variable number of tandem repeats

References

  1. Graves RJ. New observed affection of the thyroid gland in females. (Clinical lectures). Lond Med Surg J (Renshaw). 1835;7:516–7.

    Google Scholar 

  2. Adams DD, Purves HD. Abnormal responses in the assay of thyrotropins. Proc Univ Otago Sch Med. 1956;34:11–2.

    Google Scholar 

  3. Meek JC, Jones AE, Lewis UJ, Vanderlaan WP. Characterization of the long-acting thyroid stimulator of Graves’ disease. Proc Natl Acad Sci U S A. 1964;52:342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kriss JP, Pleshakov V, Chien JR. Isolation and identification of the long-acting thyroid stimulator and its relation to hyperthyroidism and circumscribed pretibial myxedema. J Clin Endocrinol Metab. 1964;24:1005–28.

    Article  CAS  PubMed  Google Scholar 

  5. Pastan I, Roth J, Macchia V. Binding of hormone to tissue: the first step in polypeptide hormone action. Proc Natl Acad Sci U S A. 1966;56:1802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin receptor: interaction with thyrotropin and autoantibodies. Endocr Rev. 1998;19:673–716.

    CAS  PubMed  Google Scholar 

  7. Witebsky E, Rose NR, Terplan K, Paine K, Egan RW. Chronic thyroiditis and autoimmunization. JAMA. 1957;164:1439–47.

    Article  CAS  Google Scholar 

  8. Zakarija M, McKenzie JM, Eidson MS. Transient neonatal hypothyroidism: characterization of maternal antibodies to the thyrotropin receptor. J Clin Endocrinol Metab. 1990;70:1239–46.

    Article  CAS  PubMed  Google Scholar 

  9. Nagayama Y, Kaufman KD, Seto P, Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Comm. 1989;165:1184–90.

    Article  CAS  PubMed  Google Scholar 

  10. Libert F, Lefort A, Gerard C, et al. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Comm. 1989;165:1250–5.

    Article  CAS  PubMed  Google Scholar 

  11. Misrahi M, Loosfelt H, Atger M, Sar S, Guiochon-Mantel A, Milgrom E. Cloning, sequencing and expression of human TSH receptor. Biochem Biophys Res Comm. 1990;166:394–403.

    Article  CAS  PubMed  Google Scholar 

  12. McLachlan SM, Nagayama Y, Rapoport B. Insight into Graves’ hyperthyroidism from animal models. Endocr Rev. 2005;26:800–32.

    Article  CAS  PubMed  Google Scholar 

  13. Shimojo N, Kohno Y, Yamaguchi K-I, et al. Induction of Graves-like disease in mice by immunization with fibroblasts transfected with the thyrotropin receptor and a class II molecule. Proc Natl Acad Sci U S A. 1996;93:11074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagayama Y. Graves’ animal models of Graves’ hyperthyroidism. Thyroid. 2007;17:981–8.

    Article  CAS  PubMed  Google Scholar 

  15. McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev. 2014;35:59–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hollowell JG, Staehling NW, Flanders WD, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.

    Article  CAS  PubMed  Google Scholar 

  17. Sanders J, Chirgadze DY, Sanders P, et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid. 2007;17:395–410.

    Article  CAS  PubMed  Google Scholar 

  18. Govaerts C, Lefort A, Costagliola S, et al. A conserved Asn in transmembrane helix 7 is an on/off switch in the activation of the thyrotropin receptor. J Biol Chem. 2001;276:22991–9.

    Article  CAS  PubMed  Google Scholar 

  19. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–45.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang X, Liu H, Chen X, et al. Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci U S A. 2012;109:12491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krause G, Kreuchwig A, Kleinau G. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One. 2012;7:e52920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang X, Fischer D, Chen X, et al. Evidence for follicle-stimulating hormone receptor as a functional trimer. J Biol Chem. 2014;289:14273–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wadsworth HL, Chazenbalk GD, Nagayama Y, Russo D, Rapoport B. An insertion in the human thyrotropin receptor critical for high affinity hormone binding. Science. 1990;249:1423–5.

    Article  CAS  PubMed  Google Scholar 

  24. Chazenbalk GD, Tanaka K, McLachlan SM, Rapoport B. On the functional importance of thyrotropin receptor intramolecular cleavage. Endocrinol. 1999;140:4516–20.

    CAS  Google Scholar 

  25. Rapoport B, McLachlan SM. The thyrotropin receptor in Graves’ disease. Thyroid. 2007;17:911–22.

    Article  CAS  PubMed  Google Scholar 

  26. Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987;49:273–80.

    Article  CAS  PubMed  Google Scholar 

  27. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001;2:1032–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ferguson BJ, Cooke A, Peterson P, Rich T. Death in the AIRE. Trends Immunol. 2008;29:306–12.

    Article  CAS  PubMed  Google Scholar 

  29. Pugliese A, Zeller M, Fernandez Jr A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15:293–7.

    Article  CAS  PubMed  Google Scholar 

  30. Colobran R, Armengol MP, Faner R, et al. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum Mol Genet. 2011;20:3415–23.

    Article  CAS  PubMed  Google Scholar 

  31. Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol. 2007;7:645–50.

    Article  CAS  PubMed  Google Scholar 

  32. Kont V, Laan M, Kisand K, Merits A, Scott HS, Peterson P. Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol. 2008;45:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liston A, Gray DH, Lesage S, et al. Gene dosage–limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med. 2004;200:1015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.

    Article  CAS  PubMed  Google Scholar 

  35. Niki S, Oshikawa K, Mouri Y, et al. Alteration of intra-pancreatic target-organ specificity by abrogation of Aire in NOD mice. J Clin Invest. 2006;116:1292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nithiyananthan R, Heward JM, Allahabadia A, Barnett AH, Franklyn JA, Gough SC. A heterozygous deletion of the autoimmune regulator (AIRE1) gene, autoimmune thyroid disease, and type 1 diabetes: no evidence for association. J Clin Endocrinol Metab. 2000;85:1320–2.

    CAS  PubMed  Google Scholar 

  37. Meyer G, Donner H, Herwig J, Bohles H, Usadel KH, Badenhoop K. Screening for an AIRE-1 mutation in patients with Addison’s disease, type 1 diabetes, Graves’ disease and Hashimoto’s thyroiditis as well as in APECED syndrome. Clin Endocrinol (Oxf). 2001;54:335–8.

    Article  CAS  Google Scholar 

  38. Perniola R, Filograna O, Greco G, Pellegrino V. High prevalence of thyroid autoimmunity in apulian patients with autoimmune polyglandular syndrome type 1. Thyroid. 2008;18:1027–9.

    Article  PubMed  Google Scholar 

  39. Mouchess ML, Anderson M. Central tolerance induction. Curr Top Microbiol Immunol. 2013;373:69–86.

    Google Scholar 

  40. Lourenco EV, La Cava A. Natural regulatory T cells in autoimmunity. Autoimmunity. 2011;44:33–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  42. Rifa’I M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med. 2004;200:1123–34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13:108–16.

    Article  CAS  PubMed  Google Scholar 

  44. Wu AJ, Hua H, Munson SH, McDevitt HO. Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A. 2002;99:12287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Endharti AT, Rifa'I M, Shi Z, et al. Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8+ T cells. J Immunol. 2005;175:7093–7.

    Article  CAS  PubMed  Google Scholar 

  46. Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci. 2011;1217:96–121.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guery L, Hugues S. Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front Immunol. 2013;4:59.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Soliman M, Kaplan E, Yanagawa T, Hidaka Y, Fisfalen ME, DeGroot LJ. T-cells recognize multiple epitopes in the human thyrotropin receptor extracellular domain. J Clin Endocrinol Metab. 1995;80:905–14.

    CAS  PubMed  Google Scholar 

  49. Soliman M, Kaplan E, Guimaraes V, Yanagawa T, DeGroot LJ. T-cell recognition of residue 158–176 in thyrotropin receptor confers risk for development of thyroid autoimmunity in siblings in a family with Graves’ disease. Thyroid. 1996;6:545–51.

    Article  CAS  PubMed  Google Scholar 

  50. Inaba H, Martin W, De Groot AS, Qin S, De Groot LJ. Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves’ disease. J Clin Endocrinol Metab. 2006;91:2286–94.

    Article  CAS  PubMed  Google Scholar 

  51. Rees Smith B, Hall R. Thyroid-stimulating immunoglobulins in Graves’ disease. Lancet. 1974;2:427–31.

    Article  Google Scholar 

  52. Southgate K, Creagh F, Teece M, Kingswood C, Rees SB. A receptor assay for the measurement of TSH receptor antibodies in unextracted serum. Clin Endocrinol (Oxf). 1984;20:539–48.

    Article  CAS  Google Scholar 

  53. Bolton J, Sanders J, Oda Y, et al. Measurement of thyroid-stimulating hormone receptor autoantibodies by ELISA. Clin Chem. 1999;45:2285–7.

    CAS  PubMed  Google Scholar 

  54. Costagliola S, Morgenthaler NG, Hoermann R, et al. Second generation assay for thyrotropin receptor antibodies has superior diagnostic sensitivity for Graves’ disease. J Clin Endocrinol Metab. 1999;84:90–7.

    CAS  PubMed  Google Scholar 

  55. Smith BR, Bolton J, Young S, et al. A new assay for thyrotropin receptor autoantibodies. Thyroid. 2004;14:830–5.

    Article  CAS  PubMed  Google Scholar 

  56. Pedersen IB, Handberg A, Knudsen N, Heickendorff L, Laurberg P. Assays for thyroid-stimulating hormone receptor antibodies employing different ligands and ligand partners may have similar sensitivity and specificity but are not interchangeable. Thyroid. 2010;20:127–33.

    Article  CAS  PubMed  Google Scholar 

  57. Toccafondi R, Aterini S, Medici MA, Rotella CM, Tanini A, Zonefrati R. Thyroid-stimulating antibody (TSAb) detected in sera of Graves’ patients using human thyroid cell cultures. Clin Exp Immunol. 1980;40:532–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hinds WE, Takai N, Rapoport B, Filetti S, Clark OH. Thyroid-stimulating immunoglobulin bioassay using cultured human thyroid cells. J Clin Endocrinol Metab. 1981;52:1204–10.

    Article  CAS  PubMed  Google Scholar 

  59. Vitti P, Valente WA, Ambesi-Impiombato FS, Fenzi GF, Pinchera A, Kohn LD. Graves’ IgG stimulation of continuously cultured rat thyroid cells: a sensitive and potentially useful clinical assay. J Endocrinol Invest. 1982;5:179–82.

    Article  CAS  PubMed  Google Scholar 

  60. Kasagi K, Konishi J, Arai K, et al. A sensitive and practical assay for thyroid-stimulating antibodies using crude immunoglobulin fractions precipitated with polyethylene glycol. J Clin Endocrinol Metab. 1986;62:855–62.

    Article  CAS  PubMed  Google Scholar 

  61. Vitti P, Elisei R, Tonacchera M, et al. Detection of thyroid-stimulating antibody using Chinese hamster ovary cells transfected with cloned human thyrotropin receptor. J Clin Endocrinol Metab. 1993;76:499–503.

    CAS  PubMed  Google Scholar 

  62. Kasagi K, Konishi J, Iida Y, et al. A new in vitro assay for human thyroid stimulator using cultured thyroid cells: Effect of sodium chloride on adenosine 3′,5′-monophosphate increase. J Clin Endocrinol Metab. 1982;54:108–14.

    Article  CAS  PubMed  Google Scholar 

  63. Ochi Y, Inui T, Kouki T, et al. Clinical usefulness of TSAb assay with high polyethylene glycol concentrations. Horm Res. 1999;51:142–9.

    Article  CAS  PubMed  Google Scholar 

  64. Watson PF, Ajjan RA, Phipps J, Metcalfe R, Weetman AP. A new chemiluminescent assay for the rapid detection of thyroid stimulating antibodies in Graves’ disease. Clin Endocrinol (Oxf). 1998;49:577–81.

    Article  CAS  Google Scholar 

  65. Lytton SD, Li Y, Olivo PD, Kohn LD, Kahaly GJ. Novel chimeric thyroid-stimulating hormone-receptor bioassay for thyroid-stimulating immunoglobulins. Clin Exp Immunol. 2010;162:438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagayama Y, Wadsworth HL, Russo D, Chazenbalk GD, Rapoport B. Binding domains of stimulatory and inhibitory thyrotropin (TSH) receptor autoantibodies determined with chimeric TSH- lutropin/chorionic gonadotropin receptors. J Clin Invest. 1991;88:336–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz-Lauer L, Chazenbalk G, McLachlan SM, Ochi Y, Nagayama Y, Rapoport B. Evidence for a simplified view of autoantibody interactions with the TSH receptor. Thyroid. 2002;12:115–20.

    Article  CAS  PubMed  Google Scholar 

  68. Li Y, Kim J, Diana T, Klasen R, Olivo PD, Kahaly GJ. A novel bioassay for anti-thyrotrophin receptor autoantibodies detects both thyroid-blocking and stimulating activity. Clin Exp Immunol. 2013;173:390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. De Forteza R, Smith CU, Amin J, McKenzie JM, Zakarija M. Visualization of the thyrotropin receptor on the cell surface by potent autoantibodies. J Clin Endocrinol Metab. 1994;78:1271–3.

    PubMed  Google Scholar 

  70. Jaume JC, Kakinuma A, Chazenbalk GD, Rapoport B, McLachlan SM. TSH receptor autoantibodies in serum are present at much lower concentrations than thyroid peroxidase autoantibodies: analysis by flow cytometry. J Clin Endocrinol Metab. 1997;82:500–7.

    CAS  PubMed  Google Scholar 

  71. Nakatake N, Sanders J, Richards T, et al. Estimation of serum TSH receptor autoantibody concentration and affinity. Thyroid. 2006;16:1077–84.

    Article  CAS  PubMed  Google Scholar 

  72. Chazenbalk GD, Pichurin P, Chen CR, et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Invest. 2002;110:209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sanders J, Evans M, Premawardhana LD, et al. Human monoclonal thyroid stimulating autoantibody. Lancet. 2003;362:126–8.

    Article  CAS  PubMed  Google Scholar 

  74. Sanders J, Evans M, Betterle C, et al. A human monoclonal autoantibody to the thyrotropin receptor with thyroid stimulating blocking activity. Thyroid. 2008;18:735–46.

    Article  CAS  PubMed  Google Scholar 

  75. Evans M, Sanders J, Tagami T, et al. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf). 2010;73:404–12.

    Article  CAS  Google Scholar 

  76. Metcalfe R, Jordan N, Watson P, et al. Demonstration of immunoglobulin G, A, and E autoantibodies to the human thyrotropin receptor using flow cytometry. J Clin Endocrinol Metab. 2002;87:1754–61.

    Article  CAS  PubMed  Google Scholar 

  77. Sanders P, Young S, Sanders J, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46:81–99.

    CAS  PubMed  Google Scholar 

  78. Davies DR, Padlan EA, Sheriff S. Antibody-antigen complexes. Annu Rev Biochem. 1990;59:439–73.

    Article  CAS  PubMed  Google Scholar 

  79. Nagayama Y, Wadsworth HL, Chazenbalk GD, Russo D, Seto P, Rapoport B. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for TSH receptor function. Proc Natl Acad Sci U S A. 1991;88:902–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gilbert JA, Gianoukakis AG, Salehi S, et al. Monoclonal pathogenic antibodies to the TSH receptor in Graves’ disease with potent thyroid stimulating activity but differential blocking activity activate multiple signaling pathways. J Immunol. 2006;176:5084–92.

    Article  CAS  PubMed  Google Scholar 

  81. Latif R, Graves P, Davies TF. Oligomerization of the human thyrotropin receptor. Fluorescent protein-tagged hRSHR reveals post-translational complexes. J Biol Chem. 2001;276:45217–24.

    Article  CAS  PubMed  Google Scholar 

  82. Urizar E, Montanelli L, Loy T, et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 2005;24:1954–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mizutori Y, Chen CR, Latrofa F, McLachlan SM, Rapoport B. Evidence that shed TSH receptor A-subunits drive affinity maturation of autoantibodies causing Graves’ disease. J Clin Endocrinol Metab. 2009;94:927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Latif R, Teixeira A, Michalek K, et al. Antibody protection reveals extended epitopes on the human TSH receptor. PLoS One. 2012;7:e44669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tamai H, Kasagi K, Takaichi Y, et al. Development of spontaneous hypothyroidism in patients with Graves’ disease treated with antithyroidal drugs: clinical, immunological, and histological findings in 26 patients. J Clin Endocrinol Metab. 1989;69:49–53.

    Article  CAS  PubMed  Google Scholar 

  86. Shigemasa C, Mitani Y, Taniguch T, et al. Three patients who spontaneously developed persistent hypothyroidism during or following treatment with antithyroid drugs for Graves’ hyperthyroidism. Arch Int Med. 1990;150:1105–9.

    Article  CAS  Google Scholar 

  87. McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid. 2013;23:14–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carella C, Mazziotti G, Sorvillo F, et al. Serum thyrotropin receptor antibodies concentrations in patients with Graves’ disease before, at the end of methimazole treatment, and after drug withdrawal: evidence that the activity of thyrotropin receptor antibody and/or thyroid response modify during the observation period. Thyroid. 2006;16:295–302.

    Article  CAS  PubMed  Google Scholar 

  89. Burch HB, Burman KD, Cooper DS. A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab. 2012;97:4549–58.

    Article  CAS  PubMed  Google Scholar 

  90. Emiliano AB, Governale L, Parks M, Cooper DS. Shifts in propylthiouracil and methimazole prescribing practices: antithyroid drug use in the United States from 1991 to 2008. J Clin Endocrinol Metab. 2010;95:2227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iyer S, Bahn R. Immunopathogenesis of Graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab. 2012;26:281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vos XG, Smit N, Endert E, Tijssen JG, Wiersinga WM. Frequency and characteristics of TBII-seronegative patients in a population with untreated Graves’ hyperthyroidism: a prospective study. Clin Endocrinol (Oxf). 2008;69:311–7.

    Article  CAS  Google Scholar 

  93. Traisk F, Tallstedt L, Abraham-Nordling M, et al. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94:3700–7.

    Article  CAS  PubMed  Google Scholar 

  94. Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Torring O. TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol. 2008;158:69–75.

    Article  CAS  PubMed  Google Scholar 

  95. Weetman AP, Yateman ME, Ealey PA, et al. Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J Clin Invest. 1990;86:723–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Latrofa F, Chazenbalk GD, Pichurin P, Chen CR, McLachlan SM, Rapoport B. Affinity-enrichment of thyrotropin receptor autoantibodies from Graves’ patients and normal individuals provides insight into their properties and possible origin from natural antibodies. J Clin Endocrinol Metab. 2004;89:4734–45.

    Article  CAS  PubMed  Google Scholar 

  97. Kraiem Z, Cho BY, Sadeh O, Shong MH, Pickerill P, Weetman AP. The IgG subclass distribution of TSH receptor blocking antibodies in primary hypothyroidism. Clin Endocrinol. 1992;37:135–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Rapoport M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rapoport, B., McLachlan, S.M. (2015). Immunopathogenesis of Graves’ Disease. In: Bahn, R. (eds) Graves' Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2534-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2534-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2533-9

  • Online ISBN: 978-1-4939-2534-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics