Skip to main content

Engineered TAL Effector Proteins: Versatile Reagents for Manipulating Plant Genomes

  • Chapter
Advances in New Technology for Targeted Modification of Plant Genomes

Abstract

Transcription activator-like (TAL) effectors are proteins produced by plant pathogens of the genus Xanthomonas. They are delivered to plant cells during infection and bind to specific plant gene promoters to activate transcription and promote bacterial infection. DNA binding by TAL effectors is mediated by an array of typically 14–24 repeats; each repeat is 34 amino acids in length and folds into a hairpin-like structure that contacts a single base in the target DNA. The TAL effector DNA-binding motif has proven highly modular, and custom TAL effector arrays can be made to recognize virtually any site in a plant genome, thereby providing a valuable reagent for genome manipulation. In particular, when TAL effector arrays are fused to a nuclease, they can create targeted double-strand breaks at a locus of interest. The repair of the breaks can be directed to achieve a variety of targeted genome modifications, with applications ranging from understanding plant gene function to creating novel traits in agronomically important crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansai S et al (2013) Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193:739–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beurdeley M et al (2013) Compact designer TALENs for efficient genome engineering. Nat Commun 4:1762

    Google Scholar 

  • Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One 7:e33279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Boch J et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  CAS  PubMed  Google Scholar 

  • Bonas U, Stall RE, Staskawicz B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    Article  CAS  PubMed  Google Scholar 

  • Bradley P (2012) Structural modeling of TAL effector-DNA interactions. Protein Sci 21:471–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Briggs AW et al (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bultmann S et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res 40:5368–5377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carlson DF et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cermak T et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen LQ et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S et al (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41:2769–2778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christian M et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christian ML et al (2012) Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One 7(9):e45383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng D et al (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed Central  PubMed  Google Scholar 

  • Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonfara I, Curth U, Pingoud A, Wende W (2012) Creating highly specific nucleases by fusion of active restriction endonucleases and catalytically inactive homing endonucleases. Nucleic Acids Res 40:847–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao H, Wu X, Chai J, Han Z (2012) Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 22:1716–1720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res 40:7584–7595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geissler R et al (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  CAS  PubMed  Google Scholar 

  • Gurlebeck D, Szurek B, Bonas U (2005) Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. Plant J 42:175–187

    Article  PubMed  Google Scholar 

  • Gurlebeck D, Thieme F, Bonas U (2006) Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J Plant Physiol 163:233–255

    Article  PubMed  Google Scholar 

  • Huang P et al (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Kay S, Boch J, Bonas U (2005) Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Mol Plant-Microbe Interact 18:838–848

    Article  CAS  PubMed  Google Scholar 

  • Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651

    Article  CAS  PubMed  Google Scholar 

  • Kay S, Hahn S, Marois E, Wieduwild R, Bonas U (2009) Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. Plant J 59:859–871

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim Y et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31:251–258

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver BP et al (2012) Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A 109:8061–8066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li T et al (2010) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012a) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2012b) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78:407–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma S et al (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 7:e45035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeder ML et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahfouz MM et al (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108:2623–2628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahfouz MM et al (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mansfield J et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  Google Scholar 

  • Meckler JF et al (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mercer AC, Gaj T, Fuller RP, Barbas CF 3rd (2012) Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 40(21):11163–11172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller JC et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 1078:21617–21622

    Article  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C et al (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pennisi E (2012) The tale of the TALEs. Science 338:1408–1411

    Article  CAS  PubMed  Google Scholar 

  • Perez-Pinera P et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10:239–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyon D et al (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romer P et al (2007) Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318:645–648

    Article  PubMed  Google Scholar 

  • Romer P, Recht S, Lahaye T (2009a) A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci U S A 106:20526–20531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romer P et al (2009b) Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiol 150:1697–1712

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31:76–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scholze H, Boch J (2010) TAL effector-DNA specificity. Virulence 1:428–432

    Article  PubMed  Google Scholar 

  • Shan Q et al (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6:1365–1368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Liang J, Abil Z, Zhao H (2012) Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 8:1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Szurek B, Rossier O, Hause G, Bonas U (2002) Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 46:13–23

    Article  CAS  PubMed  Google Scholar 

  • Tremblay JP, Chapdelaine P, Coulombe Z, Rousseau J (2012) Transcription activator-like effector proteins induce the expression of the frataxin gene. Hum Gene Ther 23:883–890

    Article  CAS  PubMed  Google Scholar 

  • Valton J et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wendt T et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang F et al (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kit Leffler for help in preparing the figures. This work was supported by a grant to DFV from the National Science Foundation (DBI 0923827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Voytas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christian, M., Voytas, D.F. (2015). Engineered TAL Effector Proteins: Versatile Reagents for Manipulating Plant Genomes. In: Zhang, F., Puchta, H., Thomson, J. (eds) Advances in New Technology for Targeted Modification of Plant Genomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2556-8_4

Download citation

Publish with us

Policies and ethics