Skip to main content

Abstract

Lavoisier, Berthollet and Dalton were pioneers in the understanding of the mixture composition needed for a flame existence, and in the early 1800s, Sir Humphry Davy created a miner’s lamp with a fine meshed net that improved the safety for mine workers, as the mesh was finer than the quenching distance and hence reduced the number of accidental explosions. When Bunsen created the burner associated with his name in 1855 [1], the premixed flame was ‘understood’. However, as the following will show, there was, in the words of Richard Feynman, plenty of room at the bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunsen, R, & Roscoe H., 1857 Photochemische Untersuchungen: Maafsbestimmung der Chemische Wirkungen des Lichts, Poggendorff’s Annalen der Physik 100, 43–88, http://gallica.bnf.fr/ark:/12148/bpt6k15185v/f55.image.

  2. Semenov, N.N. 1927 Z. Phys., 46, 109; Chemical Kinetics and Chain Reactions, Clarendon, London, 1935.

    Google Scholar 

  3. Hinshelwood, C.N. and Thompson, H.W. 1928 Proc. R. Soc. London A, 118, 171;

    Google Scholar 

  4. Hinshelwood, C.N. 1929 Kinetics of Chemical Change in Gaseous Systems, 2nd Edition, Clarendon, Oxford.

    Google Scholar 

  5. Houston, P.L. 2001 Chemical Kinetics and Reaction Dynamics, McGraw-Hill

    Google Scholar 

  6. Laidler, K.J. 1987 Chemical Kinetics, Pearson Education.

    Google Scholar 

  7. Semenov N. N. 1958 Some Problems in Chemical Kinetics and Reactivity. Vol. I. Princeton University Press.

    Google Scholar 

  8. Frank-Kameneskii, D. A. 1969 Diffusion and heat Transfer in Chemical Kinetics, Plenum Press.

    Google Scholar 

  9. Wang, X. & Law, C.K. 2013 “An analysis of the explosion limits of hydrogen-oxygen mixtures,” Journal of Chemical Physics 138, 134305, 1–12.

    Google Scholar 

  10. Lewis, B. & von Elbe, G. 1951 Combustion, Flames and Explosions of Gases, Academic Press, New York.

    Google Scholar 

  11. Lewis, B. & von Elbe, G. 1987 Combustion, Flames and Explosions of Gases, 3rd edn. Academic.

    Google Scholar 

  12. Strehlow, R.A. 1979 Fundamentals of Combustion, Kreiger Publishing Company, New York.

    Google Scholar 

  13. Law, C. K. 2006 Combustion Physics, Cambridge University Press.

    Google Scholar 

  14. Zel’dovich, Y. B., Barenblatt, G. I., Librovich, V. B. & Makhviladze, G. M. 1985 The Mathematical Theory of Combustion and Explosions. Consultants Bureau.

    Google Scholar 

  15. Kuo, K. K. 2002 Principles of Combustion, 2nd edn. John Wiley.

    Google Scholar 

  16. Williams, F. A. 1985 Combustion Theory. Addison-Wesley.

    Google Scholar 

  17. Turns, S. R. 2000 An Introduction to Combustion: Concepts and Applications. McGraw-Hill.

    Google Scholar 

  18. Glassman, I. 1996 Combustion. Academic.

    Google Scholar 

  19. Gaydon, A. G. & Wolfhard, H.G. 1970 Flames. Chapman and Hall.

    Google Scholar 

  20. Fristrom, R. M. & Westenberg, A. A. 1965 Flame Structure. McGraw-Hill.

    Google Scholar 

  21. Gardiner, W. C., Jr. 1999 Combustion Chemistry, Springer-Verlag.

    Google Scholar 

  22. Fenimore, C. P. 1964 Chemistry in Premixed Flames. Pergamon.

    Google Scholar 

  23. Buckmaster, J. D. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge.

    Google Scholar 

  24. McAllister, S. Chen, J-Y & Fernandez-Pello, A.C. 2011 Fundamentals of Combustion Processes, Springer.

    Google Scholar 

  25. Rankine, W. J. M. (1870). “On the thermodynamic theory of waves of finite longitudinal disturbances”. Philosophical Transactions of the Royal Society of London 160: 277–288, doi:10.1098/rstl.1870.0015.

  26. Hugoniot, H. (1887). “Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (première partie) [Memoir on the propagation of movements in bodies, especially perfect gases (first part)”] (in French). Journal de l’École Polytechnique 57: 3–97. See also: Hugoniot, H. (1889) “Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (deuxième partie)” [Memoir on the propagation of movements in bodies, especially perfect gases (second part)], Journal de l’École Polytechnique, vol. 58, pages 1–125.

    Google Scholar 

  27. Chapman, D. L. 1899 “On the rate of explosion in gases”, Philosophical Magazine, Series 5, 47 (284): 90–104.

    Google Scholar 

  28. Jouguet, J.C.E. 1906 “Sur la propagation des réactions chimiques dans les gaz” [On the propagation of chemical reactions in gases], Journal des Mathématiques Pures et Appliquées, Series 6, Vol. 1, pp. 347–425 (1905), continued in Vol. 2, pp. 5–85 (1906).

    Google Scholar 

  29. Landau, L.D. 1944 On the theory of slow combustion. Acta Physicochim. U.R.S.S. 19, 77–85.

    Google Scholar 

  30. Mallard, E. & Le Chatelier, H.L. 1883 Ann. Mines 4, 379.

    Google Scholar 

  31. Botha, J. P. & Spalding, D. B. 1954 The laminar flame speed of propane/air mixtures with heat extraction from the flame. Proc. R. Soc. Lond., Series A, Mathematical and Physical Sciences 225, 71–96.

    Google Scholar 

  32. de Goey, L. P. H., van Maaren, A. & Quax, R. M. 1993 Stabilization of adiabatic premixed laminar flames on a flat flame burner Combust. Sci. Technol. 92, 201–207.

    Google Scholar 

  33. Bosschaart, K.J. & de Goey, L.P.H. 2004 “Detailed analysis of the heat flux method for measuring burning velocities,” Combustion and Flame 132, 170–180.

    Article  Google Scholar 

  34. Andrews, G.E. & Bradley, D. 1972 Determination of burning velocities: A critical review. Combust. Flame 18, 133–153.

    Article  Google Scholar 

  35. Wu, C.K. & Law, C.K. 1984 On the determination of laminar flame speeds from stretched flames. Proc. Combust. Instit. 20, 1941–1949.

    Article  Google Scholar 

  36. Hassan, M.I., Aung, K.T. & Faeth, G.M. 1998 Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust. Flame 115, 539–550.

    Article  Google Scholar 

  37. Vagelopoulos, C.M. & Egolfopoulos, F.N. 1998 Direct experimental determination of laminar flame speeds. Proc. Combust. Instit. 27, 513–519.

    Article  Google Scholar 

  38. Rozenchan, G., Zhu, D.L., Law, C.K. & Tse, S.D. 2002 Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm. Proc. Combust. Instit. 29, 1461–1469.

    Article  Google Scholar 

  39. Gu, X.J., Haq, M.Z., Lawes, M. & Woolley, R. 2000 Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame 121, 41–58.

    Article  Google Scholar 

  40. Qin, Z., Lissianski, V., Yang, H., Gardiner, W.C., Davis, S.G. & Wang H. 2000 Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization. Proc. Combust. Inst. 28, 1663–1669.

    Article  Google Scholar 

  41. Torero, J.L., 2013 Scaling-up Fire, Proc. Combust. Instit. 34 99–124.

    Article  Google Scholar 

  42. Law, C.K., Makino, A. & Lu, T.F. 2006 “On the Off-Stoichiometric Peaking of Adiabatic Flame Temperature with Equivalence Ratio,” Combust. Flame 145, 808–819.

    Google Scholar 

  43. Reynolds, W. C. 1986 The element potential for chemical equilibrium analysis: implementation in the interactive program STANJAN. Tech. Rept. A-3391, Dept. of Mechanical Engineering, Stanford University.

    Google Scholar 

  44. Tse, S.D., Zhu, D.L. & Law, C.K. 2004 An optically accessible high-pressure combustion apparatus. Rev. Sci. Instrum. 75, 233–239.

    Article  Google Scholar 

  45. Jomaas, G., Zheng, X.L., Zhu, D.L., & Law, C.K. 2005 Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures. Proc. Combust. Instit. 30, 193–200.

    Article  Google Scholar 

  46. Dowdy, D.R., Smith, D.B., Taylor, S.C. & Williams, A. 1990 The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Proc. Combust. Instit. 23, 325–332.

    Article  Google Scholar 

  47. Bradley, D. & Harper, C.M. 1994 The development of instabilities in laminar explosion flames. Combust. Flame 99, 562–572.

    Article  Google Scholar 

  48. Hassan, M.I., Aung, K.T. & Faeth, G.M. 1997 Properties of laminar premixed CO/H2/air flames at various pressures, Journal of Propulsion and Power 13, 239–245.

    Article  Google Scholar 

  49. Hassan, M.I., Aung, K.T. & Faeth, G.M. 1998 Measured and predicted properties of laminar premixed methane/air flames at various pressures. Combust. Flame 115, 539–550.

    Article  Google Scholar 

  50. Hassan, M.I. Aung, K.T. Kwon, O.C. & Faeth, G.M. 1998 Properties of laminar premixed hydrocarbon/air flames at various pressures. J. Prop. Power 14, 479–488

    Article  Google Scholar 

  51. Tse, S.D., Zhu, D.L. & Law, C.K. 2000 Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proc. Combust. Instit. 28, 1793–1799.

    Article  Google Scholar 

  52. Davis, S.G. & Law, C.K. 1998 Determination of fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combust. Sci. Tech. 140, 427–449.

    Article  Google Scholar 

  53. Kwon, O.C. & Faeth, G.M. 2001 Flame/stretch interactions of premixed hydrogen-fueled flames: Measurements and predictions. Combust. Flame 124, 590–610.

    Article  Google Scholar 

  54. Law, C.K. 2006 “Propagation, structure, and limit phenomena of laminar flames at elevated pressures,” Combustion Science and Technology 178, 335–360.

    Article  Google Scholar 

  55. Sun, H., Yang, S.I., Jomaas, G. & Law, C.K. 2007 High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc. Combust. Instit. 31, 439–446.

    Article  Google Scholar 

  56. C.K. Law, G. Jomaas, J.K. Bechtold, Proceedings of the Combustion Institute 30 (2005) 159–167.

    Google Scholar 

  57. G. Jomaas, C.K. Law, J.K. Bechtold, Journal of Fluid Mechanics 583 (2007) 1–26.

    Google Scholar 

  58. Mclean, I.C., Smith, D.B. & Taylor, S.C. 1994 The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction. Proc. Combust. Instit. 25,749–757.

    Article  Google Scholar 

  59. Darrieus G. 1938 Propagation d’un front de flamme. La Technique Moderne 30, No. 18.

    Google Scholar 

  60. Markstein, G.H. 1951 Experimental and theoretical studies of flame-front stability. J. Aero. Sci. 18, 199–209.

    Article  Google Scholar 

  61. Groff, E.G. 1982 The cellular nature of confined spherical propane-air flames. Combust. Flame 48, 51–62.

    Article  Google Scholar 

  62. Markstein, G. H. 1964 Nonsteady Flame Propagation. Pergamon.

    Google Scholar 

  63. Frankel, M.L. & Sivashinsky, G.I. 1983 On effects due to thermal expansion and Lewis number in spherical flame propagation. Combust. Sci. Tech. 31, 131–138.

    Article  Google Scholar 

  64. Sivashinsky, G.I. 1977 Diffusional-thermal theory of cellular flames. Combust. Sci. Tech. 15 , 137–146.

    Article  Google Scholar 

  65. Bechtold, J.K. & Matalon, M. 1987 Hydrodynamic and diffusion effects on the stability of spherically expanding flames. Combust. Flame 67, 77–90.

    Article  Google Scholar 

  66. Joulin, G. & Clavin, P. 1979 Linear stability analysis of nonadiabatic flames: Diffusional-thermal model. Combust. Flame 35, 139–153.

    Article  Google Scholar 

  67. Clavin, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59.

    Article  Google Scholar 

  68. Istratov, A.G. & Librovich, V.B. 1969 On the stability of gasdynamic discontinuities associated with chemical reactions. The case of a spherical flame. Astronautica Acta 14, 453–467.

    Google Scholar 

  69. Sivashinsky, G.I. 1979 On self-turbulization of a laminar flame. Acta Astronautica 6, 569–591.

    Article  MATH  Google Scholar 

  70. Filyand, L., Sivashinsky, G.I. & Frankel, M.L. 1994 On self-acceleration of outward propagating wrinkled flames. Physica D 72, 110–118.

    Article  MATH  Google Scholar 

  71. Bychkov, V.V. & Liberman, M.A. 1996 Stability and the fractal structure of a spherical flame in a self-similar regime. Phys. Rev. Lett. 76, 2814–2817.

    Article  Google Scholar 

  72. Gostintsev, Y.A., Istratov, A.G. & Shulenin, Y.V. 1989 Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combustion, Explosion and Shock Waves 24, 563–569.

    Google Scholar 

  73. Gostintsev, Y.A., Istratov, A.G., Kidin, N.I & Fortov, V.E. 1999 Autoturbulization of gas flames: Theoretical treatment. High Temperature 37, 603–607.

    Google Scholar 

  74. Sivashinksy, G.I. 1983 Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179–199.

    Article  Google Scholar 

  75. F. Wu, G. Jomaas, and C.K. Law, “An Investigation on Self-Acceleration of Cellular Spherical Flames,” Proceedings of the Combustion Institute, Vol. 34, 937–945, 2013.

    Article  Google Scholar 

  76. Bradley, D. 1999 Instabilities and flame speeds in large-scale premixed gaseous explosions. Phil. Trans. R. Soc. Lond. A 357, 3567–3581.

    Article  MATH  Google Scholar 

  77. Bradley, D. Cresswell, T.M. & Puttock, J.S. 2001 Flame acceleration due to flame-induced instabilities in large-scale explosions. Combust. Flame 124, 551–559.

    Article  Google Scholar 

  78. Dorofeev, Kuznetsov, Alekseev, Efimenko, and Breitung “Evaluation of limits for effective flame acceleration in hydrogen mixtures,” Journal of Loss Prevention in the Process Industries 14, 2001.

    Google Scholar 

  79. Skjold, T., Pedersen, H.H., Bernard, L., Ichard, M., Middha, P., Narasimhamurthy, V.D., Landvik, T., Lea, T & Pesch, L. (2013). A matter of life and death: validating, qualifying and documenting models for simulating flow-related accident scenarios in the process industry. Fourteenth International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Florence, 12–15 May 2013, published in Chemical Engineering Transactions, 31: 187–192. ISBN: 978-88-95608-22-8. ISSN: 1974-9791, http://www.aidic.it/cet/13/31/032.pdf.

  80. Kee, R.J., Grcar, J.F., Smooke, M.D. & Miller, J.A. 1985 A FORTAN program for modeling steady laminar one-dimensional premixed flames. Sandia Report SAND85-8240.

    Google Scholar 

  81. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V. & Qin, Z. GRIMech homepage, Gas Research Institute, Chicago, 1999, http://www.me.berkeley.edu/gri-mech/.

  82. Li, J., Zhao, Z., Kazakov, A. & Dryer, F.L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575.

    Article  Google Scholar 

  83. Davis, S.G., Joshi, A.V., Wang, H. & Egolfopoulos, F.N. 2005 An optimized kinetic model of H2/CO combustion. Proc. Combust. Instit. 30, (2005), 1283–1292.

    Article  Google Scholar 

  84. Curran, H.J., Fischer, S.L. & Dryer F.L. 2000 The Reaction Kinetics of Dimethylether. II: Low-Temperature Oxidation in Flow Reactors. Int. J. Chem. Kinet. 32, 741–759.

    Google Scholar 

  85. Curran, H. J., Gaffuri, P., Pitz, W. J. & Westbrook, C. K. 2002 A comprehensive modeling study of iso-octane oxidation. Combustion and Flame 129, 253–280.

    Article  Google Scholar 

  86. Farrell, J. T., Cernansky, N. P, Dryer, F. L., Friend, D. G., Hergart, C. A., Law, C. K., McDavid, R. M., Mueller, C. J., Patel, A. K. & Pitsch, H. 2007 Development of an experimental database and kinetic models for surrogate diesel fuels. 2007 SAE World Congress 2007-01-0201.

    Google Scholar 

  87. Fisher, E. M., Pitz, W. J., Curran, H. J. & Westbrook, C. K. 2000 Detailed chemical kinetic mechanisms for combustion of oxygenated fuels. Proceedings of the Combustion Institute 28, 1579–1586.

    Article  Google Scholar 

  88. Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G. & Pitsch, H. 2007 Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. 2007 SAE World Congress 2007-01-0175.

    Google Scholar 

  89. Sirjean, B., Dames, E., Sheen, D. A., You, X.-Q., Sung, C., Holley, A. T., Egolfopoulos, F. N., Wang, H., Vasu, S. S., Davidson, D. F., Hanson, R. K., Pitsch, H., Bowman, C. T., Kelley, A. P., Law, C. K., Tsang, W., Cernansky, N. P., Miller, D. L., Violi, A. & Lindstedt, R. P. 2009 A high-temperature chemical kinetic model of n-alkane oxidation, JetSurF version 1.0. http://melchior.usc.edu/JetSurF/JetSurF1.0/Index.html.

  90. Liu W., Sivaramakrishnan R., Davis M.J., Som S., Longman D.E., Lu T.F., 2013 “Development of a Reduced Biodiesel Surrogate Model for Compression Ignition Engine Modeling,” Proc. Combust. Inst. 34, 401–409.

    Article  Google Scholar 

  91. D. Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. 2nd Edition R.T. Edwards, Inc., Flourtown.

    Google Scholar 

  92. Warnatz, J., Maas, U. & Dibble, R. W. 2001 Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer-Verlag.

    Google Scholar 

  93. Lu T.F., Law C.K., 2006 “On the Applicability of Directed Relation Graph to the Reduction of Reaction Mechanisms,” Combust. Flame, 146, 472–483.

    Google Scholar 

  94. Lu T. F., Law C.K., 2009 “Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computation,” Prog. Energy Combust. Sci., 35, 192–215.

    Article  Google Scholar 

  95. Lu T.F., Ju Y., Law C.K., 2001 “Complex CSP for Chemistry Reduction and Analysis,” Combust. Flame, 126, 1445–1455.

    Google Scholar 

  96. Pope, S. B., 1997 Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Modeling 1, 41–63.

    Google Scholar 

  97. Bradley, D. 1992 “How fast can we burn?” Proc. Combust. Inst. 24, 247–262.

    Article  Google Scholar 

  98. Peters, N. 2000 Turbulent Combustion. Cambridge.

    Google Scholar 

  99. Clavin, P. 2000 Dynamics of combustion fronts in premixed gases: From flames to detonations. Proc. Combust. Instit. 28, 569–585.

    Article  Google Scholar 

  100. Palm-Leis, A. & Strehlow, R.A. 1969 On the propagation of turbulent flames. Combust. Flame 13, 111–129.

    Article  Google Scholar 

  101. Bray, K. N. C. 1980 Turbulent flows with premixed reactants. Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.). pp. 115–183. Springer-Verlag.

    Google Scholar 

  102. Bray, K. N. C. 1996 The challenge of turbulent combustion. Proc. Combust. Inst. 26, 1–26.

    Article  Google Scholar 

  103. Bray, K. N. C., Libby, P. A., Masuya, G. & Moss, J. B. 1981 Turbulence production in premixed turbulent flames. Combust. Sci. Technol. 25, 127–140.

    Article  Google Scholar 

  104. Borghi, R. 1988 Turbulent combustion modeling. Prog. Energy Combust. Sci. 14, 245–292.

    Article  Google Scholar 

  105. Libby, P. A. & Williams, F. A. 1980 Turbulent Reacting Flows. Springer-Verlag.

    Google Scholar 

  106. Libby, P. A. & Williams, F. A. 1994 Turbulent Reacting Flows. Academic.

    Google Scholar 

  107. Poinsot, T. 1996 Using direct numerical simulation to understand premixed turbulent combustion. Proc. Combust. Inst. 26, 219–232.

    Article  Google Scholar 

  108. Pope, S. B. 1985 PDF method for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192.

    Article  Google Scholar 

  109. Pope, S. B. 1990 Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591–612.

    Article  Google Scholar 

  110. Pope, S. B. 2000 Turbulent Flows, Cambridge.

    Google Scholar 

  111. Bradley, D. 2000 “Flame Propagation in a Tube: The Legacy of Henri Guénoche,” Combustion Science and Technology 158, 15–33.

    Article  Google Scholar 

  112. V. Bychkov, A. Petchenko, V. Akkerman, L.-E. Eriksson, 2005 Theory and Modeling of Accelerating Flames in Tubes, Phys. Rev. E 72, 046307.

    Google Scholar 

  113. V.V. Bychkov, S.M. Golberg, M.A. Liberman, L.E. Eriksson, 1996 Propagation of Curved Flames in Tubes, Phys. Rev. E 54, 3713.

    Google Scholar 

  114. Candel, S. 2002 Combustion dynamics and control. Proc. Combust. Inst. 29, 1–28.

    Article  Google Scholar 

  115. Rayleigh, Nature 1878 #18 p 379

    Google Scholar 

  116. Rijke, P.L. 1859, “Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen” (Note on a new way to create oscillation of the air contained in a tube with both ends open), Annalen der Physik 183, 339–343.

    Google Scholar 

  117. Lee, J. H. S. 2001 Detonation waves in gaseous explosives. Handbook of Shock Waves, (eds. Ben-Dor, G., Igra, O. & Elperin, T.), Chapter 17, Volume 3. Academic.

    Google Scholar 

  118. Döering, W. 1943 On detonation processes in gases. Ann. Phys. 43, 421–436.

    Article  Google Scholar 

  119. Fickett, W. & Davis, W.C. 1979 Detonation, University of California Press.

    Google Scholar 

  120. Sharpe, G.J. 2000 The structure of planar and curved detonation waves with reversible reactions. Phys. Fluids 12, 3007–3020.

    Article  MathSciNet  MATH  Google Scholar 

  121. Taylor, G. I. 1950 The dynamics of the combustion products behind plane and spherical detonation front in explosives. Proc. R. Soc. Lond. A 200, 235–247.

    Google Scholar 

  122. Urtiew, P. A. & Oppenheim, A. K. 1966 Experimental observations of the transition to detonation in an explosive gas. Proc. Roy. Soc. A 295, 13–28.

    Google Scholar 

  123. von Neumann, J. 1942 Theory of detonation waves. John von Neumann, Collected Works 6, (ed. Taub, A. J.), Macmillan, 1963.

    Google Scholar 

  124. Zel’dovich, Y. B. 1940 On the theory of propagation of detonation in gaseous systems. Zhur. Eksp. Teor. Fiz. 10: 542–568. (English translation: NACA TM 1261,1950).

    Google Scholar 

  125. Zel’dovich, Y. B. & Kompaneets. A.S. 1960 Theory of Detonation, Academic.

    Google Scholar 

  126. http://metamodern.com/2009/12/29/theres-plenty-of-room-at-the-bottom%E2%80%9D-feynman-1959/

  127. Sharpe, G.J. 1999 Linear Stability of pathologicaldetonations. J. Fluid Mech. 401, 311–338.

    Google Scholar 

  128. Bychkov and Akkerman, Phys. Rev. E 73, 066305 (2006).

    Google Scholar 

  129. Bychkov, et al Phys. Rev. Lett. 101, 164501 (2008) 1417

    Google Scholar 

  130. Valiev, et al Phys. Rev. E 80 036317 (2009).

    Google Scholar 

  131. Valiev, et al Combust. Flame 157, 1012 (2010).

    Google Scholar 

  132. Searby, Combust. Sci. Techn. 81: 221 (1992).

    Google Scholar 

  133. Searby and Rochwerger, J. Fluid. Mech. 231: 529 (1991).

    Google Scholar 

  134. Bychkov Phys. Fluids 11: 3168 (1999). 1423

    Google Scholar 

  135. Petchenko et al., Phys. Rev. Lett. 97: 164501 (2006).

    Google Scholar 

  136. Petchenko et al., Combust. Flame 149: 418 (2007).

    Google Scholar 

  137. J. Jayachadran, A. Lefebvre, R. Zhao, F. Halter, Emilien Varea,2 B. Renou, F. N. Egolfopoulos, 2015”Study of Propagation of Spherically Expanding and Counterflow Laminar Flames Using Direct Measurements and Numerical Simulations,” Proceedings of the Combustion Institute 35, XXX–XXX.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Jomaas, G. (2016). Fundamentals of Premixed Flames. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics