Skip to main content

Part of the book series: Perspectives in Physiology ((PHYSIOL))

  • 475 Accesses

Abstract

Summer research during the 1990s continued traditional areas of interest but brought molecular techniques, and new members of the Fifth Generation and research areas, to the MDIBL. The studies during this decade included work on cytokinesis, the role of carbonic anhydrase in acid-base regulation, cell volume regulation, the mechanisms and control of shark rectal gland secretion, sugar transport, hagfish kidney structure, ion transport in frog oocytes injected with specific mRNAs, bile formation and liver detoxification, the effects of heavy metals on cell division, cardiac contraction, the role of cardiac peptides in ion transport and smooth muscle contraction, xenobiotic transport, sulfate secretion in the fish kidney, behavioral osmoregulation by the killifish, ion transport across the fish opercular epithelium, vasoactivity of fish blood vessels, endocrinology of fish reproduction, the effect of mercury on ion transport across the fish urinary bladder, immunolocalization of kidney transport proteins, crustacean osmoregulation, connective tissue structure and biochemistry, nitrogen excretion by shark embryos, the role of Na/H exchange in fish acid base regulation, taurine transport and cell volume regulation, acid-base regulation by the dogfish shark, the role of the Na+K+2Cl cotransporter in shark rectal gland salt secretion, partial cloning of subunits of the gene for Na+K-activated ATPase, the role of the cytoskeleton in cell division, lipid restructuring in fish gill cells, the role of matrix metalloproteinases in heavy metal toxicity, respiration rates of copepods, mechanisms of euryhalinity in crustaceans, biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and the structure and function of glomerular endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bull MDIBL (1991), Vol 30, p. 1; Rappaport and Rappaport (1994)

  2. 2.

    Bull MDIBL (1992), Vol 31, p. 1, in collaboration with Barbara Rappaport

  3. 3.

    Bull MDIBL (1993), Vol 32, p. 1; Rappaport and Rappaport (1993)

  4. 4.

    Bull MDIBL (1994), Vol 33, p. 1

  5. 5.

    Bull MDIBL (1995), Vol 34, p. 1

  6. 6.

    Bull MDIBL (1996), Vol 35, p. 5

  7. 7.

    Bull MDIBL (1997), Vol 36, p. 3; Rappaport (1997)

  8. 8.

    Bull MDIBL (1998), Vol 37, p. 1; Rappaport (1999)

  9. 9.

    Bull MDIBL (1999), Vol 38, p. 19

  10. 10.

    Bull MDIBL (1993), Vol 32, pp. 153–156

  11. 11.

    Bull MDIBL (1991), Vol 30, pp. 104–106

  12. 12.

    Bull MDIBL (1992), Vol 31, pp. 51–53; Maren et al. (1992b)

  13. 13.

    Bull MDIBL (1992), Vol 31, pp. 105–107; in collaboration with Erik Swenson, Rolf Kinne, and Evamaria Kinne-Saffran

  14. 14.

    Bull MDIBL (1993), Vol 32, pp. 89–91; in collaboration with Erik Swenson; Swenson et al. (1994)

  15. 15.

    Bull MDIBL (1993), Vol 32, pp. 100–102

  16. 16.

    Bull MDIBL (1994), Vol 33, pp. 61–63; in collaboration with Erik Swenson and Stephen Gehnrich, an MDIBL Young Investigator awardee. Some of this study involved protocols (Northern Blots and real-time polymerase chain reaction (RT-PCR)) to identify messenger RNA for carbonic anhydrase—one of the early forays into molecular biology at the Laboratory.

  17. 17.

    Bull MDIBL (1995), Vol 34, pp. 61–63; in collaboration with Erik Swenson

  18. 18.

    Op. Cit., p. 96; in collaboration with Gehnrich and Swenson

  19. 19.

    Bull MDIBL (1996), Vol 35, pp. 45–46; in collaboration with Erik Swenson, David Miller, and Larry Renfro

  20. 20.

    Op. Cit., p. 47; in collaboration with Erik Swenson

  21. 21.

    Bull MDIBL (1997), Vol 36, pp. 48–49; in collaboration with Larry Renfro and Erik Swenson

  22. 22.

    Op. Cit., pp. 65–68; in collaboration with Erik Swenson

  23. 23.

    Bull MDIBL (1998), Vol 37, pp. 65–66; in collaboration with Larry Renfro and Erik Swenson

  24. 24.

    Op. Cit., p. 76 and Bull MDIBL (1999), Vol 38, pp. 27–28; in collaboration with Erik Swenson

  25. 25.

    Bull MDIBL (1999), Vol 38, p. 26; in collaboration with Erik Swenson and Larry Renfro

  26. 26.

    Op. Cit., p. 68; in collaboration with Larry Renfro and Alice Villalobos; (Swenson et al. 1994). Villalobos will be introduced in Chap. 14.

  27. 27.

    As mentioned in Chap. 10, Musch had been Mike Field’s graduate student at the University of Chicago in the late 1970s and had been in Field’s group when they described the K+ sensitivity of NaCl cotransport, thereby discovering the nearly ubiquitous Na+K+2Cl cotransporter (SLC12A) (Musch et al. 1982).

  28. 28.

    DIDS (4,4′-diisothiocyano-2,2′-stillbene-disulfonic acid) had been shown to be an inhibitor of anion exchange proteins (Cl−/HCO3 −, for instance) in plasma membranes (e.g., Jessen et al. 1986).

  29. 29.

    Bull MDIBL (1991), Vol 30, p. 75; Bull MDIBL (1992), Vol 31, p. 144; Goldstein and Brill (1991)

  30. 30.

    Bull MDIBL (1992), Vol 31, p. 137; (Perlman et al. 1996); band 3 protein is the term applied to the Cl−/HCO3 − exchanger (also called AE1) in erythrocytes (e.g., Hamasaki and Okubo 1996).

  31. 31.

    Bull MDIBL (1993), Vol 32, p. 34

  32. 32.

    Bull MDIBL (1994), Vol 33, p. 49; Musch et al. (1994a, b)

  33. 33.

    Bull MDIBL (1995), Vol 34, p. 71; Musch et al. (1996); Wittels et al. (2000); Hubert et al. (2000)

  34. 34.

    Ankrins are proteins that link membrane proteins to the underlying cytoskeletal proteins, such as actin (http://www.ncbi.nlm.nih.gov/gene/286).

  35. 35.

    Bull MDIBL (1996), Vol 35, p. 65; Musch and Goldstein (1996)

  36. 36.

    Op. Cit., p. 66; Davis-Amaral et al. (1997)

  37. 37.

    Bull MDIBL (1997), Vol 36, p. 7064; Musch et al. (1998,1999)

  38. 38.

    Bull MDIBL (1999), Vol 38, p. 25; Musch and Goldstein (2001); band 4.1 is a cytoskeletal protein (http://en.wikipedia.org/wiki/EPB41).

  39. 39.

    Bull MDIBL (1993), Vol 32, p. 53; Goldstein and Davis (1994); Haynes and Goldstein (1993)

  40. 40.

    Bull MDIBL (1995), Vol 34, p. 68

  41. 41.

    Bull MDIBL (1998), Vol 37, p. 84; Wilson et al. (1999)

  42. 42.

    Bull MDIBL (1996), Vol 35, p. 64; Davis-Amaral et al. (1996)

  43. 43.

    As noted in Chap. 8, Kate Spokes had been Epstein’s research assistant since the late 1970s.

  44. 44.

    Bull MDIBL (1991), Vol 30, pp. 69–70; 1992 Vol 31, pp. 113–14 (Silva et al. 1993); Bull MDIBL (1992), Vol 31, pp. 62–63 and 117 (the group had synthesized dogfish CNP); Bull MDIBL (1993), Vol 32, pp. 74–77 and 80–83 (Gunning et al. 1997) (Silva et al. 1999); Bull MDIBL (1995), Vol 34, p. 56–57; 2000 Vol 39, pp. 72–73; 1992 Vol 31, pp. 65–67; 1993 Vol 32, pp. 72–73; 1994 Vol 33, pp. 75–78; 1993 Vol 32, pp. 78–79; 1995 Vol 34, pp. 39–41, 42–44, 47–48, and 49–50; 1996 Vol 35, pp. 35 and 37–39; 1997 Vol 36, pp. 53–54 and 55–56; 1998 Vol 37, pp. 37 and 73; 1999 Vol 38, pp. 39–40 (myosin light chain kinase is an enzyme involved in various contractile and secretory functions); Bull MDIBL (1999), Vol 38, pp. 41–43; 2000 Vol 39, pp. 5–7 and 69–71 (in collaboration with Martin Morad)

  45. 45.

    Bull MDIBL (1991), Vol 30, pp. 94–97; 1992 Vol 31, pp. 68–70; 1993 Vol 32, pp. 84–86; 1995 Vol 34, pp. 51–52 (Silva et al. 1992); Bull MDIBL (1992), Vol 31, pp. 115–116; 1993 Vol 32, p. 144; 1994 Vol 33, pp. 79–82, pp. 83–84

  46. 46.

    Bull MDIBL (1998), Vol 37, pp. 63–64

  47. 47.

    Bull MDIBL (1996), Vol 35, p. 36

  48. 48.

    Bull MDIBL (1997), Vol 36, pp. 14–16

  49. 49.

    Bull MDIBL (1990), Vol 29, pp. 96–97

  50. 50.

    Bull MDIBL (1993), Vol 32, pp. 69–71

  51. 51.

    Bull MDIBL (1997), Vol 36, pp. 125–126

  52. 52.

    Bull MDIBL (1994), Vol 33, pp. 95–97

  53. 53.

    Epstein (1999 #26459)

  54. 54.

    Bull MDIBL (1991), Vol 30, p. 50

  55. 55.

    Op. Cit., pp. 76–77; in collaboration with Fuad Ziyadeh

  56. 56.

    Op. Cit., pp. 78–79; in collaboration with Fuad Ziyadeh

  57. 57.

    Bull MDIBL (1992), Vol 31, pp. 150–151; in collaboration with Dick Hays, who had returned for that one summer in the 1990s

  58. 58.

    Bull MDIBL (1994), Vol 35, pp. 2–3; in collaboration with John Henson and John Forrest; Henson et al. (1997b) Henson is a member of the Fifth Generation of Investigators at the MDIBL and will be introduced later in this chapter.

  59. 59.

    Bull MDIBL (1991), Vol 30, pp. 120–122; 1992 Vol 31, pp. 35–36; 1993 Vol 32, pp. 20–22; Kastner et al. (1994)

  60. 60.

    Bull MDIBL (1994), Vol 33, pp. 5–8, in collaboration with Tom Koob

  61. 61.

    Op. Cit., pp. 19–21

  62. 62.

    Op. Cit., pp. 22–23

  63. 63.

    Op. Cit., pp. 24–25

  64. 64.

    Bull MDIBL (1996), Vol 35, pp. 105–107, in collaboration with Tom Koob

  65. 65.

    Oocytes from the African clawed frog can express the protein coded for by mRNA from other species that has been injected into the cells (e.g., Lin-Moshier and Marchant 2013).

  66. 66.

    Bull MDIBL (1992), Vol 31, pp. 73–74

  67. 67.

    Op. Cit., pp. 75–76

  68. 68.

    Bull MDIBL (1993), Vol 32, pp. 45–47; 1994 Vol 33 pp. 43–46; Devor et al. (1995)

  69. 69.

    Op. Cit., pp. 141–142

  70. 70.

    Bull MDIBL (1995), Vol 34, p. 17

  71. 71.

    Bull MDIBL (1997), Vol 36, pp. 25–27

  72. 72.

    Bull MDIBL (1998), Vol 37, pp. 26–29

  73. 73.

    Bull MDIBL (1992), Vol 31, pp. 71–72; 1992 Vol 31, pp. 118–119, Evans et al. (1993b) (in collaboration with David Evans’ group); 1993 Vol 32, pp. 67–68 (in collaboration with Karl Karnaky); 1994 Vol 33. pp. 90–92; 1998 Vol 37, pp. 53–54, Greger et al. (1999a) (in collaboration with Rainer Greger) and pp. 55–56

  74. 74.

    Bull MDIBL (1997), Vol 36, pp. 33–35, 36–37, Forrest (1996); 1993 Vol 32, pp. 45–47 and 1994 Vol 33, pp. 43–46, Devor et al. (1995) (in collaboration with Ray Frizzell); Bull MDIBL (1994), Vol 33, pp. 47–48, Cantiello et al. (1997) (in collaboration with Horacio Cantiello and Dennis Ausiello, from the renal unit at Massachusetts General Hospital); Bull MDIBL (1994), Vol 33, pp. 37–40 (in collaboration with Martin Morad); Bull MDIBL (1994), Vol 33, pp. 85–86 (in collaboration with Jim Stidham, from Presbyterian College in Clinton, SC); Bull MDIBL (1995), Vol 34, pp. 17, 22–23, 24–27, Lehrich and Forrest (1994, 1995), 44–46; 1998 Vol 37, pp. 23–25, 26–29, and 51; 2000 Vol 39, pp. 37–39 and 129–130

  75. 75.

    Bull MDIBL (1992), Vol 31, pp. 129–130, Forrest et al. (1997); 1994 Vol 33, pp. 87–89; 1998 Vol 37, pp. 20–22; 1999 Vol 38, pp. 105–106 (in collaboration with David Dawson)

  76. 76.

    Bull MDIBL (1992), Vol 31, p. 162

  77. 77.

    Bull MDIBL (1991), Vol 30, pp. 41–42; 1992 Vol 31, pp. 157–158; Schofield et al. (1991) This work was in collaboration with Drs. Paul Schofield and Stephen Jones from the Molecular Genetics Unit of the Medical Research Council research laboratories in Cambridge, UK, whom Forrest recruited to the MDIBL after meeting them when he was on sabbatical leave at the MRC in 1989–1990. This was the first report of cDNA cloning at the MDIBL, and the dogfish C-type natriuretic peptide was the first CNP cloned from nonneural tissue in any vertebrate and the first elasmobranch gene cloned.

  78. 78.

    Bull MDIBL (1997), Vol 36, pp. 31–32; 1998 Vol 37, pp. 30–31 (Waldegger et al. 1999), 32, 51–52 (Waldegger et al. 1998), 57–59 (Aller et al. 1999), and 60–62; 1999 Vol 38, pp. 107–109, 110–111, 112–113, 114–115, and 116–117

  79. 79.

    Bull MDIBL (1995), Vol 34, pp. 28–31 (Lehrich et al. 1998), 32–34 (in collaboration with Hartmut Hentschel, Marlies Elger, Evanmaria Kinne-Saffran, and Rolf Kinne)

  80. 80.

    Bull MDIBL (1995), Vol 34, pp. 36–38 (in collaboration with Kinne-Saffran and Kinne)

  81. 81.

    Bull MDIBL (1995), Vol 34, pp. 2–3 (Henson et al. 1997b) (in collaboration with John Henson and Arnost Kleinzeller); Bull MDIBL (1997), Vol 36, pp. 28–30

  82. 82.

    Bull MDIBL (1997), Vol 36, pp. 33–35

  83. 83.

    Bull MDIBL (1999), Vol 38, p. 60 (in collaboration with Jack Riordan, who will be introduced later in this chapter as another member of the Fifth Generation)

  84. 84.

    Bull MDIBL (1996), Vol 35, pp. 79–82

  85. 85.

    Fricker would return to the MDIBL for many summers for the next two decades, so he will be introduced later in this chapter, as a member of the Fifth Generation.

  86. 86.

    Bull MDIBL (1991), Vol 30, pp. 43–45 and 83

  87. 87.

    Op. Cit., p. 71; Ballatori and Boyer (1992a, b)

  88. 88.

    Bull MDIBL (1992), Vol 31, pp. 98–100; Blumrich et al. (1993)

  89. 89.

    Bull MDIBL (1992), Vol 31, pp. 145–146; 1995 Vol 34, pp. 85–86; Ballatori and Boyer (1996); Nathanson et al. (1995b); Bull MDIBL (1996), Vol 35 pp. 62–63; 1997 Vol 36, p. 83; 1998 Vol 37, pp. 87–89; 1999 Vol 38, pp. 102–104

  90. 90.

    Bull MDIBL (1993), Vol 32, pp. 50–52; Boyer et al. (1993); Fricker et al. (1994); Miller et al. (1996a)

  91. 91.

    Op. Cit., pp. 54–55

  92. 92.

    Op. Cit., pp. 59–60

  93. 93.

    Bull MDIBL (1994), Vol 33, pp. 50–52; 1996 Vol 35, p. 61; Ballatori et al. (1994); Jacquemin et al. (1995)

  94. 94.

    Bull MDIBL (1994), Vol 33, pp. 69–71; Ballatori et al. (1999)

  95. 95.

    Bull MDIBL (1994), Vol 33, pp. 103–104; Fricker et al. (1997)

  96. 96.

    (Henson et al. 1995a) (in collaboration with John Henson and David Miller)

  97. 97.

    Bull MDIBL (1995), Vol 34, pp. 69–70; Jackson et al. (1996) (in collaboration with Kevin Strange from Children’s Hospital at Harvard, who will be introduced below)

  98. 98.

    Op Cit., pp. 72–74; Ballatori et al. (1995) (also in collaboration with Kevin Strange); Bull MDIBL (1997), Vol 36, pp. 81–82; Ballatori and Boyer (1997)

  99. 99.

    Bull MDIBL (1998), Vol 37, pp. 85–86

  100. 100.

    Op. Cit., p. 40

  101. 101.

    Bull MDIBL (1999), Vol 38, pp. 22–23; Runnegar et al. (1999)

  102. 102.

    Op. Cit., pp. 44–45; Henson et al. (1995a) (in collaboration with John Henson)

  103. 103.

    Op. Cit., pp. 46–47; Ballatori et al. (2000)

  104. 104.

    Op. Cit., pp. 72–73; Rebbeor et al. (2000)

  105. 105.

    Bull MDIBL (1996), Vol 35, pp. 37–39

  106. 106.

    Bull MDIBL (1991), Vol 30, p. 2; Conrad et al. (1992); Conrad and Conrad (1992)

  107. 107.

    Bull MDIBL (1992), Vol 31, p. 2; Conrad et al. (1994a)

  108. 108.

    Bull MDIBL (1992), Vol 31, pp. 17–18; Conrad et al. (1993b)

  109. 109.

    Bull MDIBL (1992), Vol 31, pp. 17–18

  110. 110.

    Bull MDIBL (1997), Vol 36, pp. 11–13

  111. 111.

    Bull MDIBL (1998), Vol 37, pp. 2–3

  112. 112.

    Bull MDIBL (1999), Vol 38, pp. 61–62

  113. 113.

    The space agency had an interest in any potential toxic effects of silver ions because the Russian portion of the International Space Station had been using silver ions to purify drinking water (Conrad, pers. comm.).

  114. 114.

    Bull MDIBL (1993), Vol 32, pp. 2–3.; Conrad et al. (1994b)

  115. 115.

    Bull MDIBL (1995), Vol 34, pp. 4–5

  116. 116.

    Bull MDIBL (1996), Vol 35, pp. 5–6

  117. 117.

    Bull MDIBL (1998), Vol 37, pp. 4–5

  118. 118.

    Bull MDIBL (1991), Vol 30, p. 3.; Conrad et al. (1993a, 1994c)

  119. 119.

    Bull MDIBL (1994), Vol 33, pp. 15–16; 1995 Vol 34, pp. 103–104

  120. 120.

    Bull MDIBL (1991), Vol 30, pp. 84–86

  121. 121.

    Bull MDIBL (1992), Vol 31, pp. 124–125.; Sorbera and Morad (1990, 1991a, b)

  122. 122.

    Bull MDIBL (1992), Vol 31, pp. 131–134

  123. 123.

    Op. Cit., pp. 135–136

  124. 124.

    Bull MDIBL (1993), Vol 32, pp. 35–36

  125. 125.

    Bull MDIBL (1994), Vol 33, pp. 29–30; Maylie and Morad (1995)

  126. 126.

    Bull MDIBL (1996), Vol 35, pp. 7–10

  127. 127.

    Ryanodine receptors are intracellular Ca2+ channels that mediate the mediate Ca2+ release from the sarcoplasmic reticulum of cardiac and muscle cells. (See http://en.wikipedia.org/wiki/Ryanodine_receptor.) The sarcoplasmic reticulum is the intracellular organelle that stores Ca2+ in cardiac and muscle cells. (See http://en.wikipedia.org/wiki/Sarcoplasmic_reticulum#Sarcoplasmic_reticulum.)

  128. 128.

    Bull MDIBL (1996), Vol 35, pp. 33–34

  129. 129.

    Bull MDIBL (1997), Vol 36, pp. 38–40

  130. 130.

    Bull MDIBL (1999), Vol 38, pp. 74–76

  131. 131.

    Bull MDIBL (1994), Vol 33, pp. 34–36; pp. 37–40 (in collaboration with John Forrest); and pp. 41–42

  132. 132.

    Bull MDIBL (1995), Vol 34, pp. 12–13 and 14–16; 1996 Vol 35, pp. 11–14

  133. 133.

    Bull MDIBL (1991), Vol 30, pp. 87–90; 1993 Vol 32, pp. 32—33; 1994 Vol 33, pp. 31–33; 1997 Vol 36, pp. 41–42; 1998 Vol 37, pp. 13–14 and 15–16

  134. 134.

    Bull MDIBL (1990), Vol 29, pp. 86–87; Karnaky et al. (1991); the cells had formed a monolayer in culture, which could be mounted in an Ussing chamber for physiological experiments. Thus, the peptide-generated, short-circuit current could be measured as a direct measure of active Cl− transport.

  135. 135.

    Bull MDIBL (1990), Vol 29, pp. 125–126

  136. 136.

    Bull MDIBL (1992), Vol 31, pp. 126–128

  137. 137.

    Op. Cit., pp. 122–123

  138. 138.

    Bull MDIBL (1993), Vol 32, pp. 61–62

  139. 139.

    Op. Cit., pp. 67–68, in collaboration with John Forrest

  140. 140.

    Bull MDIBL (1998), Vol 37, pp. 91–92, in collaboration with John Henson, Jim Stidham, and David Miller

  141. 141.

    Bull MDIBL (1999), Vol 38, pp. 35–36

  142. 142.

    Op. Cit., pp. 70–71; guanylin and uroguanylin are peptide hormones, produced by the intestine and other tissues, that stimulate cellular production of cyclic GMP, as do the natriuretic peptides. See Forte (2004).

  143. 143.

    Bull MDIBL (1999), Vol 38, pp. 100–101; Miller et al. (1998a, 2002), in collaboration with Larry Renfro, Jim Stidham, and David Miller; MRP2 is a member of the multidrug-resistant organic anion transport family.

  144. 144.

    Op. Cit., p. 25

  145. 145.

    Malpighian tubules are the insect excretory system that produce a urine by secretion of ions into the tubule, not by filtration (like the vertebrate kidney). See http://en.wikipedia.org/wiki/Malpighian_tubule_system.

  146. 146.

    Op. Cit., pp. 52–53; Karnaky et al. (2003), in collaboration with David Miller

  147. 147.

    Op. Cit., pp. 75–77, in collaboration with David Miller and Jack Riordan

  148. 148.

    Bull MDIBL (1991), Vol 30, pp. 56–57 (in collaboration with John Pritchard)

  149. 149.

    Bull MDIBL (1992), Vol 31, pp. 32–33; Cuevas et al. (1992)

  150. 150.

    Bull MDIBL (1992), Vol 31, pp. 95–97; Miller et al. (1996b)

  151. 151.

    Bull MDIBL (1993), Vol 32, pp. 28–29

  152. 152.

    Op. Cit., pp. 50–52; Miller et al. (1996a), in collaboration with Jim Boyer, Gert Fricker, and John Henson

  153. 153.

    Bull MDIBL (1993), Vol 32, pp. 65–66; Miller et al. (1993, 1994)

  154. 154.

    Bull MDIBL (1994), Vol 33, pp. 56–57 (Miller and Pritchard 1994); 1995 Vol 34, pp. 81–82; 1996 Vol 35, pp. 67–68; 1997 Vol 36, pp. 73–75 (in collaboration with Larry Renfro); 1998 Vol 37, pp. 93–94 (Miller 1998; Miller et al. 1998b) (in collaboration with Larry Renfro)

  155. 155.

    Bull MDIBL (1994), Vol 33, pp. 58–60 (Schramm et al. 1995); 1997 Vol 36, pp. 71–73 (Miller et al. 1997; Fricker et al. 1998), in collaboration with Gert Fricker

  156. 156.

    Bull MDIBL (1994), Vol 33, pp. 69–71 (Ballatori et al. 1999), in collaboration with Jim Boyer and Ned Ballatori

  157. 157.

    Henson et al. (1995a), in collaboration with John Henson, Jim Boyer, and Ned Ballatori

  158. 158.

    Bull MDIBL (1996), Vol 35, pp. 45–46, in collaboration with Tom Maren, Erik Swenson, and Larry Renfro

  159. 159.

    Bull MDIBL (1996), Vol 35, pp. 59–60, in collaboration with Jose Zadunaisky

  160. 160.

    Bull MDIBL (1996), Vol 35, pp. 96–97, in collaboration with Gloria Callard

  161. 161.

    Bull MDIBL (1998), Vol 37, p. 40 (in collaboration with Jim Boyer) and pp. 85–86 (in collaboration with Jim Boyer, Ned Ballatori, and John Henson

  162. 162.

    Bull MDIBL (1998), Vol 37, pp. 91–92; Miller et al. (1998a), in collaboration with Karl Karnaky, John Henson, and Jim Stidham

  163. 163.

    Bull MDIBL (1999), Vol 38, pp. 37–39

  164. 164.

    Op. Cit., pp. 51–52; Masereeuw et al. (2000)

  165. 165.

    Bull MDIBL (1999), Vol 3, p. 54 (Gutmann et al. 1999), in collaboration with Gert Fricker

  166. 166.

    Bull MDIBL (1999), Vol 38, pp. 72–73, in collaboration with Gert Fricker and Jim Boyer

  167. 167.

    Bull MDIBL (1999), Vol 38, pp. 100–101; Miller et al. (2002), in collaboration with Karl Karnaky, Larry Renfro, and Jim Stidham

  168. 168.

    Renfro had been Bodil Schmidt-Nielsen’s postdoctoral fellow in the 1970s (see Chaps. 7 and 8).

  169. 169.

    Bull MDIBL (1996), Vol 35, pp. 28–30

  170. 170.

    Op. Cit., pp. 45–49

  171. 171.

    Bull MDIBL (1997), Vol 36, pp. 48–50; 1998 Vol 37, pp. 65–66; 1999 Vol 38, p. 26; Renfro et al. (1999) (in collaboration with Erik Swenson and Tom Maren)

  172. 172.

    Bull MDIBL (1997), Vol 36, pp. 5051 (in collaboration with Rolf Kinne and Eva Kinne-Saffran)

  173. 173.

    Bull MDIBL (1997), Vol 36, pp. 73–74; 1998 Vol 37, pp. 95–96 (in collaboration with David Miller)

  174. 174.

    Bull MDIBL (1999), Vol 38, pp. 68 and 69 (in collaboration with Tom Maren and Alice Villalobos)

  175. 175.

    Bull MDIBL (1999), Vol 38, pp. 100–101 (in collaboration with Karl Karnaky, Jim Stidham, and David Miller)

  176. 176.

    Bull MDIBL (1991), Vol 30, pp. 25–26

  177. 177.

    Bull MDIBL (1992), Vol 31, pp. 18–19; Kidder (1993)

  178. 178.

    Bull MDIBL (1996), Vol 35, p. 92

  179. 179.

    Bull MDIBL (1997), Vol 36, p. 69

  180. 180.

    Bull MDIBL (1998), Vol 37, p. 79

  181. 181.

    Bull MDIBL (1999), Vol 38, pp. 20–21; Kidder et al. (2006a)

  182. 182.

    Bull MDIBL (1993), Vol 32, pp. 30–31, in collaboration with Bob Preston

  183. 183.

    Bull MDIBL (1994), Vol 33, p. 26; Kidder (1995)

  184. 184.

    Bull MDIBL (1995), Vol 34, p. 102; Kidder and McCoy (1996)

  185. 185.

    Bull MDIBL (1991), Vol 30, pp. 58–59

  186. 186.

    Bull MDIBL (1992), Vol 31, pp. 7–9

  187. 187.

    Op. Cit., pp. 10–13

  188. 188.

    Op. Cit., pp. 77–78

  189. 189.

    Op. Cit., pp. 152–156

  190. 190.

    Bull MDIBL (1993), Vol 32, pp. 7–8

  191. 191.

    Op. Cit., pp. 87–88; Zadunaisky et al. (1995)

  192. 192.

    Bull MDIBL (1996), Vol 35, pp. 43–44

  193. 193.

    Bull MDIBL (1997), Vol 36, p. 52

  194. 194.

    Bull MDIBL (1998), Vol 37, pp. 67–69, in collaboration with Else Hoffmann, who was the Boylan Fellow that summer

  195. 195.

    Bull MDIBL (1998), Vol 37, pp. 74–75, in collaboration with Else Hoffmann

  196. 196.

    Bull MDIBL (1999), Vol 38, pp. 85–86, in collaboration with Biff Forbush

  197. 197.

    The trabecular meshwork is a tissue at the base of the cornea that mediates the draining of aqueous humor from the anterior chamber of the vertebrate eye. (See http://en.wikipedia.org/wiki/Trabecular_meshwork.)

  198. 198.

    Bull MDIBL (1999), Vol 38, p. 59

  199. 199.

    Zadunaisky (1996)

  200. 200.

    Bull MDIBL (1991), Vol 30, pp. 12–15

  201. 201.

    Immunological localization refers to the use of antibodies specific to a particular protein to visualize the presence of that protein in a cell or tissue.

  202. 202.

    Op. Cit., pp. 35–37, in collaboration with Bob Shetlar and Alison Morrison, both of whom were postdoctoral fellows in the Kinne laboratory

  203. 203.

    Bull MDIBL (1991), Vol 30, pp. 38–40; Kinne-Saffran et al. (1993)

  204. 204.

    Bull MDIBL (1992), Vol 31, pp. 92–94; 1993 Vol 32, pp. 56–58; Nies et al. (1995)

  205. 205.

    Bull MDIBL (1992), Vol 31, pp. 101–102

  206. 206.

    Op. Cit., pp. 105–107, in collaboration with Erik Swenson and Tom Maren

  207. 207.

    Bull MDIBL (1992), Vol 31, pp. 108–110

  208. 208.

    Bull MDIBL (1993), Vol 32, pp. 103–105

  209. 209.

    Bull MDIBL (1994), Vol 33, pp. 64–65

  210. 210.

    Op. Cit., pp. 66–67, in collaboration with Hartmut Hentschel

  211. 211.

    Bull MDIBL (1994), Vol 33, pp. 93–94; 1995 Vol 24, pp. 20–21

  212. 212.

    Bull MDIBL (1994), Vol 33, pp. 124–126; 1995 Vol 34, pp. 58–59; Kohl et al. (1996)

  213. 213.

    Bull MDIBL (1995), Vol 34, pp. 32–35, in collaboration with Hartmut Hentschel

  214. 214.

    Bull MDIBL (1995), Vol 34, pp. 36–38, in collaboration with John Forrest

  215. 215.

    Bull MDIBL (1995), Vol 34, pp. 75–77; Kipp et al. (1997)

  216. 216.

    Bull MDIBL (1996), Vol 35, pp. 28–30, in collaboration with Marlies Elger, Hartmut Hentshel, and Larry Renfro; 1997 Vol 36, pp. 46–47; Elger et al. (1998), in collaboration with Marlies Elger and Hartmut Hentschel

  217. 217.

    Bull MDIBL (1997), Vol 36, pp. 17–18; Kinne-Saffran and Kinne (2001)

  218. 218.

    Bull MDIBL (1997), Vol 36, pp. 19–20; T84 cells are derived from a human colon cancer cell line.

  219. 219.

    Bull MDIBL (1997), Vol 36, pp. 50–51, in collaboration with Larry Renfro

  220. 220.

    Bull MDIBL (1998), Vol 37, pp. 43–44; COS-7 cells are derived from monkey kidney tissue.

  221. 221.

    Bull MDIBL (1999), Vol 38, p. 79, in collaboration with Jo Hannafin and Hartmut Hentschel

  222. 222.

    Bull MDIBL (1991), Vol 30, p. 109; Evans (1992)

  223. 223.

    Bull MDIBL (1991), Vol 30, pp. 110–111

  224. 224.

    Calmodulin is an intracellular, Ca2+ binding protein that interacts with other intracellular proteins to produce effects, such as contraction in smooth muscle cells. http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html

  225. 225.

    Bull MDIBL (1991), Vol 30, pp. 112–114 and 115–116; Evans et al. (1993a)

  226. 226.

    Bull MDIBL (1992), Vol 31, pp. 118–119; Evans et al. (1993b), in collaboration with John Forrest

  227. 227.

    Op. Cit., pp. 120–121; Donald et al. (1992)

  228. 228.

    Bull MDIBL (1992), Vol 31, p. 161, in collaboration with John Schofield from the MRC in Cambridge, UK

  229. 229.

    Bull MDIBL (1992), Vol 31, p. 165

  230. 230.

    Bull MDIBL (1993), Vol 32, p. 106

  231. 231.

    Op. Cit., pp. 118–119; Toop et al. (1995a, b); Donald et al. (1997, 1999)

  232. 232.

    Bull MDIBL (1993), Vol 32, p. 148

  233. 233.

    Bull MDIBL (1994), Vol 33, pp. 113, 114, and 115; 1995 Vol 34, p. 110; Evans et al. (1996); Evans and Gunderson (1998a)

  234. 234.

    Bull MDIBL (1995), Vol 34, p. 109; 1996 Vol 35, p. 94; 1997 Vol 36, p. 105; 1998 Vol 37, p. 105; Evans and Gunderson (1998b)

  235. 235.

    Bull MDIBL (1996), Vol 51, p. 95

  236. 236.

    Bull MDIBL (1997), Vol 36, p. 105; Evans (2001)

  237. 237.

    Bull MDIBL (1998), Vol 37, p. 106

  238. 238.

    Op. Cit., p. 107; Bull MDIBL (1999), Vol 38, pp. 29–30; Evans and Harrie (2001)

  239. 239.

    Bull MDIBL (1999), Vol 38, p. 31; Evans et al. (2003)

  240. 240.

    Bull MDIBL (1999), Vol 38, p. 32

  241. 241.

    Op. Cit., p. 33; 2000 Vol 39, p. 15; Evans and Piermarini (2001)

  242. 242.

    Bull MDIBL (1999), Vol 38, p. 34; Evans and Gunderson (1999)

  243. 243.

    Bull MDIBL (1993), Vol 32, pp. 98–99

  244. 244.

    Bull MDIBL (1992), Vol 31, pp. 37–38; Duggan and Callard (2001)

  245. 245.

    Bull MDIBL (1992), Vol 31, pp. 39–41

  246. 246.

    Bull MDIBL (1993), Vol 32, pp. 139–140; complementary DNA (cDNA) is synthesized (using the enzyme reverse transcriptase) from messenger RNA (mRNA) that is isolated from a given tissue. Thus, by isolating the mRNA, the sequence of the DNA in the gene that produced that mRNA can be deduced.

  247. 247.

    Bull MDIBL (1994), Vol 33, pp. 105–106; Paolucci and Callard (1998)

  248. 248.

    Bull MDIBL (1994), Vol 33, p. 120

  249. 249.

    Bull MDIBL (1995), Vol 34, pp. 112–113

  250. 250.

    Bull MDIBL (1998), Vol 37, pp. 97–98

  251. 251.

    Bull MDIBL (1991), Vol 30, pp. 30–32; (Piferrer et al. 1993)

  252. 252.

    Bull MDIBL (1992), Vol 31, pp. 47–48; (Barry et al. 1993)

  253. 253.

    Bull MDIBL (1992), Vol 31, pp. 49–50; (Callard 1992b)

  254. 254.

    Bull MDIBL (1993), Vol 32, pp. 113–114

  255. 255.

    Bull MDIBL (1996), Vol 35, pp. 96–97; 1997 Vol 36, pp. 106–107

  256. 256.

    Bull MDIBL (1997), Vol 36, p. 89

  257. 257.

    Bull MDIBL (1999), Vol 38, pp. 37–38

  258. 258.

    Bull MDIBL (1998), Vol 37, pp. 111

  259. 259.

    Bull MDIBL (1995), Vol 34, p. 111

  260. 260.

    Bull MDIBL (1991), Vol 30, pp. 60–62, in collaboration with John Valentich

  261. 261.

    Bull MDIBL (1992), Vol 31, pp. 73–74

  262. 262.

    Op. Cit., pp. 75–76, in collaboration with Ray Frizzell

  263. 263.

    Bull MDIBL (1992), Vol 31, pp. 79–80

  264. 264.

    Op. Cit., pp. 88–89; Wilkinson et al. (1993)

  265. 265.

    Bull MDIBL (1992), Vol 31, pp. 90–91

  266. 266.

    Isoforms are alternative sequences of either mRNA or proteins that are produced by closely related duplicate genes, different transcriptions of a single gene, or translations of the mRNA produced by that gene.

  267. 267.

    Bull MDIBL (1993), Vol 32, pp. 128–130, Claiborne et al. (1999), in collaboration with J.B. Claiborne. NHE denotes the Na/H ion exchanger.

  268. 268.

    Bull MDIBL (1994), Vol 33, pp. 27–28

  269. 269.

    Bull MDIBL (1995), Vol 34, pp. 18–19

  270. 270.

    Bull MDIBL (1996), Vol 35, pp. 115–16

  271. 271.

    Bull MDIBL (1997), Vol 36, pp. 25–26, in collaboration with Ray Frizzell

  272. 272.

    Bull MDIBL (1998), Vol 36, pp. 18–19

  273. 273.

    Op. Cit., pp. 20–22; 1999 Vol 38, pp. 105–106; Weber et al. (2006) (in collaboration with John Forrest)

  274. 274.

    Hentschel was a faculty member at the Max-Planck-Institut für Systemphysiologie in Dortmund, Germany, where Rolf Kinne was the Director.

  275. 275.

    Bull MDIBL (1993), Vol 32, pp. 23–25, 120–124

  276. 276.

    Op. Cit., pp. 125–127; 1994 Vol 33, pp. 66–67

  277. 277.

    Bull MDIBL (1995), Vol 34, pp. 28–31

  278. 278.

    Op. Cit., pp. 32–35

  279. 279.

    Op. Cit., pp. 97–99

  280. 280.

    Bull MDIBL (1996), Vol 35, pp. 28–30; Kohl et al. (1996); Elger (1998), in collaboration with Larry Renfro; 1997 Vol 36, pp. 46–47

  281. 281.

    Bull MDIBL (1996), Vol 35, pp. 31–32, in collaboration with Edward Brown, Steve Hebert, and Bill Harris, the discoverers of this Ca2+ sensitive receptor and the principals in the biotech startup firm at the MDIBL, AquaBio Products Sciences

  282. 282.

    Bull MDIBL (1996), Vol 35, pp. 40–42

  283. 283.

    Bull MDIBL (1999), Vol 38, p. 79

  284. 284.

    Bull MDIBL (1998), Vol 37, pp. 30–31

  285. 285.

    Op. Cit., pp. 47–48

  286. 286.

    Op. Cit., pp. 49–50

  287. 287.

    Op. Cit. p. 51

  288. 288.

    Op. Cit., p. 52

  289. 289.

    Op. Cit., pp. 53–54

  290. 290.

    During this decade, identification and sequencing of genes in the invertebrates lagged far behind similar studies in the vertebrates. Towle was one of the first to apply the emerging molecular techniques to studies in invertebrate physiology. For his colleagues’ perspectives on Towle’s impact in this field, see http://www.mdibl.org/mdibl_press_releases/David_Towle_PhD_1941-2011/298/.

  291. 291.

    Bull MDIBL (1992), Vol 31, p. 81; 1993 Vol 32, pp. 135–136; 1994 Vol 33, pp. 122–123; 1995 Vol 34, pp. 64–65, 66–67; 1996 Vol 35, pp. 1921; 1999 Vol 38, p. 24; Weihrauch et al. (2001); Towle et al. (1991, 1997)

  292. 292.

    Bull MDIBL (1993), Vol 32, pp. 37–38

  293. 293.

    Bull MDIBL (1994), Vol 33, p. 98

  294. 294.

    Bull MDIBL (1999), Vol 38, p. 55

  295. 295.

    Bull MDIBL (1991), Vol 30, pp. 123–124; Cox and Koob (1993)

  296. 296.

    Bull MDIBL (1992), Vol 31, pp. 16–17; Trotter et al. (1994)

  297. 297.

    Op. Cit., pp. 29–31; Koob and Cox (1993)

  298. 298.

    Bull MDIBL (1993), Vol 32, pp. 11–13

  299. 299.

    Op. Cit., pp. 17–19

  300. 300.

    Bull MDIBL (1994), Vol 33, pp. 2–4; 1995 Vol 34, pp. 6–9; Trotter and Koob (1995); Trotter et al. (1995)

  301. 301.

    Bull MDIBL (1994), Vol 33, pp. 5–508

  302. 302.

    Bull MDIBL (1996), Vol 35, pp. 101–104; Trotter et al. (1996, 1997); Thurmond et al. (1997); Bull MDIBL (1998), Vol 37, pp. 120–122; Koob et al. (1999); Trotter et al. (1999, 2000)

  303. 303.

    Bull MDIBL (1996), Vol 35, pp. 105–107

  304. 304.

    Op. Cit., pp. 108–111

  305. 305.

    Bull MDIBL (1997), Vol 36, pp. 111–113; Koob and Hamlett (1998)

  306. 306.

    Op. Cit., pp. 114–116

  307. 307.

    Op. Cit., pp. 117–119; Leonard et al. (1999)

  308. 308.

    Bull MDIBL (1998), Vol 37, pp. 97–98

  309. 309.

    Op. Cit., pp. 114–116; Bull MDIBL (1999), Vol 38, pp. 94–96; Long et al. (2002)

  310. 310.

    Bull MDIBL (1998), Vol 37, pp. 117–119; 2000 Vol 39, pp. 113–115

  311. 311.

    Bull MDIBL (1991), Vol 30, pp. 4–7

  312. 312.

    Bull MDIBL (1992), Vol 31, pp. 27–28

  313. 313.

    Op. Cit., pp. 44–46

  314. 314.

    Bull MDIBL (1993), Vol 32, pp. 9–10

  315. 315.

    Op. Cit., pp. 107–109; Bull MDIBL (1994), Vol 33, pp. 101–102

  316. 316.

    Bull MDIBL (1995), Vol 34, pp. 92–93

  317. 317.

    Bull MDIBL (1996), Vol 35, pp. 50–51

  318. 318.

    Bull MDIBL (1997), Vol 36, pp. 60–62

  319. 319.

    Bull MDIBL (1998), Vol 37, pp. 99–100

  320. 320.

    Op. Cit., p. 101

  321. 321.

    Bull MDIBL (1999), Vol 38, pp. 77–79

  322. 322.

    Bull MDIBL (1991), Vol 30, pp. 107–108

  323. 323.

    Bull MDIBL (1992), Vol 31, pp. 54–56; 1993 Vol 32, pp. 95–97; 1994 Vol 33, pp. 99–100; 1995 Vol 34, p. 63; Claiborne et al. (1994)

  324. 324.

    Bull MDIBL (1996), Vol 35, pp. 48–49

  325. 325.

    Bull MDIBL (1997), Vol 36, pp. 63–64; Claiborne et al. (1997)

  326. 326.

    Bull MDIBL (1993), Vol 32, pp. 128–130; Claiborne et al. (1999), in collaboration with David Dawson’s group

  327. 327.

    Bull MDIBL (1997), Vol 36, p. 22

  328. 328.

    Bull MDIBL (1998), Vol 37, pp. 33–35

  329. 329.

    Op. Cit., pp. 36–37

  330. 330.

    Op. Cit., pp. 38–39

  331. 331.

    Bull MDIBL (1999), Vol 38, pp. 16–18; Edwards et al. (2001), in collaboration with Susan Edwards, who returned to the MDIBL in the next decade as a member of the Sixth Generation, and Alison Morrison-Shetlar. This was the first molecular corroboration for the Na/H exchange in the hagfish gill that Evans proposed 15 years earlier (Evans 1984).

  332. 332.

    Bull MDIBL (1999), Vol 38, pp. 56–57; Choe et al. (1999), in collaboration with Edwards and Morrison-Shetlar

  333. 333.

    To be accurate, the group also collected tissue from flounders at the MBL at Woods Hole.

  334. 334.

    See Alfadda et al. (2014) for a recent review of the Ca2+-sensing receptor.

  335. 335.

    Bull MDIBL (1996), Vol 35, pp. 31–32; Hentschel et al. (2003)

  336. 336.

    Bull MDIBL (1991), Vol 30, pp. 51–53

  337. 337.

    Op. Cit., pp. 72–74

  338. 338.

    Bull MDIBL (1992), Vol 31, pp. 138–140

  339. 339.

    Op. Cit., pp. 141–143

  340. 340.

    Bull MDIBL (1993), Vol 32, pp. 30–31

  341. 341.

    Op. Cit., pp. 63–64

  342. 342.

    Bull MDIBL (1994), Vol 34, pp. 53–55

  343. 343.

    Bull MDIBL (1996), Vol 35, pp. 52–54

  344. 344.

    Op. Cit., pp. 55–58

  345. 345.

    Bull MDIBL (1997), Vol 36, pp. 84–85

  346. 346.

    Bull MDIBL (1998), Vol 37, p. 83

  347. 347.

    Bull MDIBL (1993), Vol 32, pp. 146–147

  348. 348.

    Bull MDIBL (1997), Vol 36, p. 86

  349. 349.

    Bull MDIBL (1998), Vol 37, pp. 80–82

  350. 350.

    Bull MDIBL (1999), Vol 38, pp. 87–89

  351. 351.

    Bull MDIBL (1993), Vol 32, pp. 89–91; Swenson et al. (1994)

  352. 352.

    Bull MDIBL (1995), Vol 34, pp. 94–95; 1996 Vol 35, p. 47

  353. 353.

    Bull MDIBL (1997), Vol 36, pp. 65–68

  354. 354.

    Bull MDIBL (1998), Vol 37, p. 76

  355. 355.

    Bull MDIBL (1999), Vol 38, pp. 27–28

  356. 356.

    Op. Cit., p. 26, in collaboration with Larry Renfro

  357. 357.

    Bull MDIBL (1994), Vol 33, pp. 61–63

  358. 358.

    Bull MDIBL (1995), Vol 34, p. 96

  359. 359.

    Bull MDIBL (1996), Vol 35, pp. 45–46, in collaboration with David Miller and Larry Renfro

  360. 360.

    Bull MDIBL (1997), Vol 36, pp. 48–49; 1998 Vol 37, pp. 65–66; Renfro et al. (1999), in collaboration with Larry Renfro

  361. 361.

    Benzmetanide, like bumetanide and furosemide, is a potent inhibitor of the Na+K+2Cl cotransporter and binds to the transporter molecule.

  362. 362.

    Western blots use protein-specific antibodies to visualize specific proteins after they have moved in an electrical gradient through a polyacrylamide gel. See http://en.wikipedfia.org/wiki/Western_blot.

  363. 363.

    Bull MDIBL (1992), Vol 31, pp. 82–83

  364. 364.

    Phosphorylation is the addition of phosphate groups (PO4 3−) to a molecule, usually a protein.

  365. 365.

    Bull MDIBL (1992), Vol 31, pp. 84–85; Lytle and Forbush (1992a)

  366. 366.

    Bull MDIBL (1993), Vol 32, pp. 39–41; Kinases mediate the phosphorylation of molecules and phosphatases remove phosphates from molecules, usually proteins. See http://en.wikipedia.org/wiki/Kinase and http://en.wikipedia.org/wiki/Phosphatase.

  367. 367.

    Bull MDIBL (1993), Vol 32, pp. 42–44; Lytle and Forbush (1996)

  368. 368.

    Bull MDIBL (1994), Vol 33, pp. 72–74

  369. 369.

    Thus, a year after Hebert’s group described the first cloning of a gene for a member (NCC; Gamba et al. 1993) of what is now known as the SLC12 family of cation-coupled chloride transporters ((Hebert et al. 2004), another investigator from the MDIBL had cloned the second member (NKCC). It is important to note that earlier physiological studies at the MDIBL by Renfro, Dawson, Stokes, Field, Frizzell, Musch, Epstein, and Silva had discovered these cotransporters in the bladder of the winter flounder and the rectal gland of the dogfish shark, respectively.

  370. 370.

    Biotinylation adds a molecule of the water-soluble B vitamin (biotin) to a protein, nucleic acid, or other molecule for the capture or localization of that molecule. See http://en.wikipedia.org/wiki/Biotinylation.

  371. 371.

    Bull MDIBL (1995), Vol 34, pp. 53–55

  372. 372.

    Bull MDIBL (1996), Vol 35, pp. 26–27

  373. 373.

    Bull MDIBL (1997), Vol 36, pp. 44–45

  374. 374.

    Bull MDIBL (1998), Vol 37, p. 42

  375. 375.

    Op. Cit., pp. 45–46

  376. 376.

    Bull MDIBL (1999), Vol 37, pp. 83–84

  377. 377.

    Op. Cit., pp. 98–99

  378. 378.

    Op. Cit., pp. 100–102

  379. 379.

    As mentioned in previous chapters, there was a general agreement by this time that NaCl extrusion by the marine teleost gill was mediated by this cotransporter on the basolateral membrane of the mitochondrion-rich cell in the gill epithelium (e.g., Silva et al. 1977; Evans et al. 1999).

  380. 380.

    Bull MDIBL (1996), Vol 35, pp. 42–24–25

  381. 381.

    Bull MDIBL (1999), Vol 38, pp. 85–86

  382. 382.

    Op. Cit., pp. 80–82

  383. 383.

    As described in Chap. 7, Lowell Hokin had come to the MDIBL in 1971, after Frank Epstein had told him that the dogfish rectal gland was very rich in Na+K-activated ATPase. Within a year, the Hokin group reported partial purification of the enzyme from the rectal gland (Hokin 1973; Hokin et al. 1973).

  384. 384.

    Bull MDIBL (1992), Vol 31, pp. 103–104, in collaboration with Paul Schofield and, in keeping with MDIBL tradition, Jennifer Benz, his daughter

  385. 385.

    Bull MDIBL (1992), Vol 31, pp. 82–83

  386. 386.

    Bull MDIBL (1997), Vol 36, p. 21, in collaboration with Nancy Berliner M.D., Benz’s Fellow at Yale and daughter of Robert Berliner, who was an earlier investigator at the MDIBL and Deputy Director of the NIH and Dean of the Yale School of Medicine in the 1960s and 1970s (see Chap. 5). Nancy Berliner will be introduced below, as another member of the Fifth Generation.

  387. 387.

    Transferrins are plasma proteins in the vertebrates that control the level of free iron in the body. See http://en.wikipedia.org/wiki/Transferrin.

  388. 388.

    Henson had received his Ph.D. in Cell and Developmental Biology from Harvard the previous year and had just joined the Department of Biology at Dickinson College in Carlisle, PA, where he remains.

  389. 389.

    As mentioned in previous chapters, the cytoskeleton of cells is composed of structural proteins that are involved in such fundamental processes as cell motility, intracellular trafficking, distribution of intracellular organelles, and the migration of chromosomes during mitotic division.

  390. 390.

    Bull MDIBL (1991), Vol 30, pp. 8–11; Wright et al. (1991); Henson et al. (1992)

  391. 391.

    Actin and myosin are two proteins of the cytoskeleton that are involved in cellular movement and contraction (e.g., muscle contraction). See also http://www.ncbi.nlm.nih.gov/books/NBK9961/.

  392. 392.

    Bull MDIBL (1992), Vol 31, pp. 3–6

  393. 393.

    Bull MDIBL (1993), Vol 32, pp. 4–6

  394. 394.

    Bull MDIBL (1994), Vol 33, pp. 9–11; for more on spectrin, see http://en.wikipedia.org/wiki/Spectrin.

  395. 395.

    Bull MDIBL (1996), Vol 35, pp. 1–3; Henson et al. (1995b); Henson et al. (1997a); kinesin is a so-called motor protein that moves along microtubule filaments in the cytoskeleton (http://labs.cellbio.duke.edu/Kinesin/Index.html and https://en.wikipedia.org/wiki/Kinesin).

  396. 396.

    Bull MDIBL (1997), Vol 36, pp. 4–6; integrins are transmembrane, cell-matrix adhesion molecules that mediate linkage of the cell to the extracellular matrix (http://www.ncbi.nlm.nih.gov/books/NBK26867/).

  397. 397.

    Bull MDIBL (1993), Vol 32, pp. 50–52; Henson et al. (1995a); Miller et al. (1996a)

  398. 398.

    Bull MDIBL (1998), Vol 37, pp. 85–86

  399. 399.

    Op. Cit., pp. 6–8

  400. 400.

    Bull MDIBL (1999), Vol 38, pp. 44–45

  401. 401.

    Op. Cit., pp. 46–47; Ballatori et al. (2000)

  402. 402.

    Bull MDIBL (1995), Vol 34, pp. 2–3; Henson et al. (1997b)

  403. 403.

    Bull MDIBL (1998), Vol 37, pp. 91–92; Miller et al. (1998a)

  404. 404.

    Fricker had just received his Ph.D. in Organic and Biochemistry from the University of Freiburg in Breisgau, Germany, in 1986 and subsequently received the Habilitation in Experimental Medicine from Freiburg in 1993. After postdoctoral research at the University Hospital in Zurich, Switzerland, and serving as a research scientist at Sandoz Pharmaceuticals from 1988 to 1995, Fricker joined the faculty of the University of Heidelberg, where he is currently Director of the Institute of Pharmacy and Molecular Biotechnology in the Faculty of Biosciences.

  405. 405.

    Bull MDIBL (1986), Vol 26, pp. 173–175; Fricker et al. (1987); Hugentobler et al. (1987)

  406. 406.

    Bull MDIBL (1991), Vol 30, pp. 46–49; Fricker et al. (1994)

  407. 407.

    Bull MDIBL (1993), Vol 32, pp. 50–52; Miller et al. (1996a)

  408. 408.

    Op. Cit., pp. 59–60

  409. 409.

    Bull MDIBL (1994), Vol 33, pp. 58–60; Schramm et al. (1995)

  410. 410.

    Op. Cit., pp. 103–104; Fricker et al. (1997)

  411. 411.

    Bull MDIBL (1997), Vol 36, pp. 71–72

  412. 412.

    Op. Cit., pp. 75–76

  413. 413.

    Bull MDIBL (1999), Vol 38, p. 54; Fricker et al. (1998, 1999); Gutmann et al. (1999); Miller et al. (1997)

  414. 414.

    Bull MDIBL (1999), Vol 38, pp. 72–73

  415. 415.

    Crockett had received her Ph.D. from the University of Maine, Orono, in 1992, done postdoctoral research at Arizona State University for 3 years, and had recently joined the Department of Biology at Ohio University, where she remains.

  416. 416.

    Bull MDIBL (1996), Vol 35, pp. 83–84; Crockett et al. (1999)

  417. 417.

    Bull MDIBL (1997), Vol 36, pp. 98–100

  418. 418.

    Bull MDIBL (1997), Vol 36, p. 21; 1999 Vol 38, pp. 3–4

  419. 419.

    Berliner is the daughter of Robert Berliner, former MDIBL Investigator and early Director of the Laboratory of Kidney and Electrolyte Metabolism at the NIH (See Chap. 3). After receiving her M.D. from Yale Medical School and doing a Residency and Fellowship at Harvard’s Brigham and Women’s Hospital, she joined the faculty at Yale in 1986. She moved back to Brigham and Women’s in 2007 as Chief of Hematology, where she remains.

  420. 420.

    Matrix metalloproteinases are enzymes that are important in degradation of extracellular matrix proteins, including cell surface receptors. They are thought to play a major role in cell proliferation, migration, differentiation, angiogenesis, apoptosis, and host defense. See http://en.wikipedia.org/wiki/Matrix_metalloproteinase.

  421. 421.

    Bull MDIBL (1996), Vol 35, pp. 90–91

  422. 422.

    Bull MDIBL (1997), Vol 36, pp. 87–88

  423. 423.

    Hassett had received his Ph.D. from the University of Washington in 1986 and done postdoctoral research at the National Marine Fisheries Service Honolulu Laboratory, University of Hawaii, State University of NY at Stony Brook, and Arizona State University before joining the faculty at the Ohio University in 1995, where he is currently Associate Professor of Biological Sciences.

  424. 424.

    Bull MDIBL (1997), Vol 36, pp. 120–122

  425. 425.

    Henry had received his Ph.D. from the University of Texas at Austin in 1981, done postdoctoral research at the University of Pennsylvania School of Medicine from 1981 to 1983, and joined the faculty at Auburn University, Alabama, in 1983, where he is currently Professor of Zoology and Associate Dean for Research.

  426. 426.

    Bull MDIBL (1999), Vol 38, p. 55; Henry et al. (2002)

  427. 427.

    Riordan had received his Ph.D. from the University of Toronto in 1970, done postdoctoral research at the Max-Planck Institute for Molecular Genetics and Biophysics in Berlin, and then joined the faculty of the Hospital for Sick Children in Toronto (1973) and Departments of Biochemistry and Clinical Biochemistry in the Faculty of Medicine (1974) at the University of Toronto, where he remained until 1993. Between 1986 and 1993, he was also the Director of the Cystic Fibrosis Research Center at the Hospital for Sick Children. From 1994 to 2005, he was at the Johnson Medical Research Center at the Mayo Clinic, Scottsdale, AZ, and he has been Professor of Biochemistry and Biophysics at the University of North Carolina Faculty of Medicine since 2005. Riordan had actually been in one of the research groups that first cloned the gene for the CFTR protein (Tsui et al. 1988; Buchwald et al. 1989; Riordan et al. 1989; Collins et al. 1990) and had written extensively about the role of CFTR in cystic fibrosis (Bear et al. 1992; Riordan 1993; Hanrahan et al. 1995).

  428. 428.

    Bull MDIBL (1999), Vol 38, p. 60

  429. 429.

    Haller had received his M.D. from the Freie Universität of Berlin in 1982 and done postdoctoral research and a residency in Yale University’s School of Medicine. In 1992, he received his Habilitation from the FUB and served on the faculty of the University of Berlin, the Humboldt University in Berlin, and Max-Delbrück-Centrum für Molekulare Medizin in Berlin in the 1990s. He was recruited as Director of the Department of Nephrology and Hypertension at the Hannover Medical School in 1999 and is currently Dean of Medical Education at Hannover.

  430. 430.

    Bull MDIBL (1999), Vol 38, pp. 90–93

  431. 431.

    Edwards received her Ph.D. in biology from Deakin University (Australia), did postdoctoral research at Georgia Southern University, and has served on the faculty of James Cook University (Australia), Georgia Southern University, and Appalachian State University, where she is currently Chair of Biology.

  432. 432.

    Bull MDIBL (1999), Vol 38, pp. 16–18; Edwards et al. (2001)

  433. 433.

    Op. Cit., pp. 56–57; Choe et al. (1999)

  434. 434.

    Bull MDIBL (1991), Vol 30, pp. 16–20

  435. 435.

    Op. Cit., pp. 23–24

  436. 436.

    Op. Cit., pp. 27–28

  437. 437.

    Op. Cit., p. 29; Chamberlin and Ballantyne (1992)

  438. 438.

    Op. Cit., pp. 33–34

  439. 439.

    Op. Cit., pp. 80–82

  440. 440.

    Op. Cit., pp. 91–93

  441. 441.

    Op. Cit., p. 119; Blazka et al. (1992)

  442. 442.

    Bull. MDIBL (1992), Vol 31, pp. 14–15

  443. 443.

    Op. Cit., pp. 111–112

  444. 444.

    Op. Cit., pp. 20–26; Straus et al. (1993)

  445. 445.

    Op. Cit., pp. 42–43; Piferrer et al. (1993)

  446. 446.

    Op. Cit., pp. 57–59

  447. 447.

    Op. Cit., pp. 86–87

  448. 448.

    Op. Cit., pp. 147–149

  449. 449.

    Op. Cit., pp. 163–164; Brown and Andrake (1992)

  450. 450.

    Op. Cit., pp. 166–168

  451. 451.

    Bull MDIBL (1993), Vol 32, pp. 14–16

  452. 452.

    Op. Cit., pp. 48–49

  453. 453.

    Op. Cit., p. 94

  454. 454.

    Op. Cit., pp. 110–112

  455. 455.

    Op. Cit., pp. 115–117

  456. 456.

    Op. Cit., pp. 131–132

  457. 457.

    Op. Cit., pp. 133–134

  458. 458.

    Op. Cit., pp. 137–138

  459. 459.

    Op. Cit., p. 145

  460. 460.

    Op. Cit., pp. 149–150

  461. 461.

    Op. Cit., pp. 151–152

  462. 462.

    Bull MDIBL (1994), Vol 33, pp. 12–14

  463. 463.

    Op. Cit., pp. 107–109

  464. 464.

    Op. Cit., p. 110

  465. 465.

    Op. Cit., pp. 111–112

  466. 466.

    Op. Cit., pp. 116–119

  467. 467.

    Op. Cit., p.. 121

  468. 468.

    Op. Cit., pp. 127–129

  469. 469.

    Agre’s group had recently described aquaporins as a class of proteins that were, in fact, water channels (Preston et al. 1992; Agre et al. 1993). Agre received the Nobel Prize in Chemistry for this discovery in 2003. See http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2003/agre-lecture.html.

  470. 470.

    Bull MDIBL (1995), Vol 34, p. 10

  471. 471.

    Op. Cit., p. 11

  472. 472.

    Op. Cit., pp. 60–62

  473. 473.

    Op. Cit., pp. 69–70; Jackson et al. (1996)

  474. 474.

    Op. Cit., pp. 72–74; Ballatori et al. (1995); Strange would return 15 years later as the first, year-round Director of the MDIBL

  475. 475.

    Bull MDIBL (1995), Vol 34, pp. 78–79

  476. 476.

    Op. Cit. pp. 83–84

  477. 477.

    Op. Cit., p. 87; Nathanson and Mariwalla (1995); Nathanson also worked with the Boyer group the next summer and became instrumental in the MDIBL’s successful grant proposal to the NIH for a confocal microscope in 1998.

  478. 478.

    Bull MDIBL (1995), Vol 34, pp. 89–91

  479. 479.

    Op. Cit., p. 96

  480. 480.

    In fishes Brockmann bodies contain tissue that produces insulin and are, therefore, similar to the islets of Langerhans in the pancreas of mammals.

  481. 481.

    Op. Cit., pp. 100–101

  482. 482.

    Op. Cit., pp. 105–108

  483. 483.

    Bull MDIBL (1996), Vol 35, pp. 19–21

  484. 484.

    Op. Cit., pp. 22–23

  485. 485.

    Op. Cit., pp. 69–70; Nathanson et al. (1995a, b)

  486. 486.

    Op. Cit., pp. 71–74, 75–78; (Cantiello et al. 1997); Cantiello had begun a collaboration with John Forrest’s group on ATP channels the previous two summers: Bull MDIBL (1994), Vol 33, pp. 47–48; 1995 Vol 34, pp. 22–23.

  487. 487.

    Bull MDIBL (1996), Vol 35, pp. 79–82

  488. 488.

    Ceruloplasmin is a copper-carrying protein enzyme in the blood of vertebrates. (See: http://en.wikipedia.org/wiki/Ceruloplasmin.)

  489. 489.

    Op. Cit., pp. 85–87; Wang et al. (1999)

  490. 490.

    Op. Cit., pp. 88–89

  491. 491.

    Op. Cit., p. 93; Betka and Callard (1999)

  492. 492.

    Op. Cit., pp. 98–100; ciguatera poisoning is associated with the consumption of certain tropical reef fishes, usually top predators such as barracudas, snappers, parrot fishes, and groupers. See http://en.wikipedia.org/wiki/Ciguatera.

  493. 493.

    Bull MDIBL (1997), Vol 36, pp. 7–10

  494. 494.

    Op. Cit., pp. 23–24; heat shock proteins are intracellular proteins that mediate the folding and unfolding of other proteins. While always present, as the name indicates, their expression is increased when a cell is heated or stressed. See http://en.wikipedia.org/wiki/Heat_shock_protein.

    C-Fos is another protein that is induced when cells are stressed. See http://en.wikipedia.org/wiki/C-Fos.

  495. 495.

    Bull MDIBL (1997), Vol 36, p. 43

  496. 496.

    Op. Cit., pp. 57–59

  497. 497.

    Op. Cit., pp. 90–91, 92–94

  498. 498.

    Op. Cit., pp. 95–97

  499. 499.

    Op. Cit., p. 101

  500. 500.

    Op. Cit., pp. 102–103; Beuchat and Chong (1997)

  501. 501.

    Op. Cit., pp. 108–110

  502. 502.

    Op. Cit., pp. 111–113

  503. 503.

    Op. Cit., pp. 123–124; Llewellyn et al. (1997); saxiphilin is a protein, isolated from the North American bullfrog, that binds to the neurotoxin, saxitoxin, which is produced by dinoflagellates Lenarcic et al. (2000).

  504. 504.

    Bull MDIBL (1998), Vol 37, p. 17

  505. 505.

    Op. Cit., pp. 23–25

  506. 506.

    Op. Cit., p. 41

  507. 507.

    Op. Cit., pp. 77–78

  508. 508.

    Op. Cit., pp. 103–104

  509. 509.

    Op. Cit., pp. 108–110

  510. 510.

    Op. Cit., pp. 112–113

  511. 511.

    Op. Cit., pp. 123–125

  512. 512.

    Bull MDIBL (1999), Vol 38, pp. 1–2; Nathanson et al. (1999)

  513. 513.

    Op. Cit., pp. 3–4; transferrins are plasma proteins that bind iron and thereby control the level of free iron in the body. See http://en.wikipedia.org/wiki/Transferrin.

  514. 514.

    Op. Cit., p. 48

  515. 515.

    Op. Cit., pp. 49–50

  516. 516.

    Op. Cit., pp. 58–59

  517. 517.

    Op. Cit., pp. 63–65

  518. 518.

    Op. Cit., pp. 66–67

  519. 519.

    Op. Cit., pp. 97–99; Summers and Ferry-Graham (2001)

  520. 520.

    Op. Cit., pp. 114–115

Bibliography

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol 265(3 Pt 2):F461–F465

    CAS  PubMed  Google Scholar 

  • Alfadda TI, Saleh AMA, Houillier P, Geibel JP (2014) Calcium-sensing receptor 20 years later. AJP Cell Physiol 307(3):C221–C231

    Article  CAS  Google Scholar 

  • Aller SG, Lombardo ID, Bhanot S, Forrest JN Jr (1999) Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland. Am J Physiol 276(2 Pt 1):C442–C449

    CAS  PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1992a) Taurine transport in skate hepatocytes. I. Uptake and efflux. Am J Physiol 262(3 Pt 1):G445–G450

    CAS  PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1992b) Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence. Am J Physiol 262(3 Pt 1):G451–G460

    CAS  PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1996) Disruption of cell volume regulation by mercuric chloride is mediated by an increase in sodium permeability and inhibition of an osmolyte channel in skate hepatocytes. Toxicol Appl Pharmacol 140(2):404–410

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1997) ATP regulation of a swelling-activated osmolyte channel in skate hepatocytes. J Exp Zool 279(5):471–475

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Simmons TW, Boyer JL (1994) A volume-activated taurine channel in skate hepatocytes: membrane polarity and role of intracellular ATP. Am J Physiol 267(2 Pt 1):G285–G291

    CAS  PubMed  Google Scholar 

  • Ballatori N, Truong AT, Jackson PS, Strange K, Boyer JL (1995) ATP depletion and inactivation of an ATP-sensitive taurine channel by classic ion channel blockers. Mol Pharmacol 48(3):472–476

    CAS  PubMed  Google Scholar 

  • Ballatori N, Hager DN, Nundy S, Miller DS, Boyer JL (1999) Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited. Am J Physiol 277(4 Pt 1):G896–G904

    CAS  PubMed  Google Scholar 

  • Ballatori N, Rebbeor JF, Connolly GC, Seward DJ, Lenth BE, Henson JH, Sundaram P, Boyer JL (2000) Bile salt excretion in skate liver is mediated by a functional analog of Bsep/Spgp, the bile salt export pump. Am J Physiol Gastrointest Liver Physiol 278(1):G57–G63

    CAS  PubMed  Google Scholar 

  • Barry TP, Thomas P, Callard GV (1993) Stage-related production of 21-hydroxylated progestins by the dogfish (Squalus acanthias) testis. J Exp Zool 265(5):522–532

    Article  CAS  PubMed  Google Scholar 

  • Bear CE, Li CH, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68(4):809–818

    Article  CAS  PubMed  Google Scholar 

  • Betka M, Callard GV (1998) Negative feedback control of the spermatogenic progression by testicular estrogen synthesis: insights from the shark testis model. Acta Physiol 106:252–258

    CAS  Google Scholar 

  • Betka M, Callard GV (1999) Stage-dependent accumulation of cadmium and induction of metallothionein-like binding activity in the testis of the dogfish shark, Squalus acanthias. Biol Reprod 60(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Beuchat CA, Chong CR (1997) Hyperglycemia in hummingbirds: implications for hummingbird ecology and human health. Faseb J 11(3):529–529

    Google Scholar 

  • Biemesderfer D, Payne JA, Lytle CY, Forbush B 3rd (1996) Immunocytochemical studies of the Na-K-Cl cotransporter of shark kidney. Am J Physiol 270(6 Pt 2):F927–F936

    CAS  PubMed  Google Scholar 

  • Blazka ME, Yoshida M, Shaikh ZA (1992) Comparison of cadmium, mercury and calcium accumulations by isolated hepatocytes of the small skate (Raja erinacea) and rat. Comp Biochem Physiol C 101(3):631–639

    Article  CAS  PubMed  Google Scholar 

  • Bleich M, Warth R, Thiele I, Greger R (1998) pH-regulatory mechanisms in in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Arch 436(2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Bleich M, Hug MJ, Heitzmann D, Warth R, Greger R (1999) Evidence for Na+/Ca2+ exchange in the rectal gland of Squalus acanthias. Pflugers Arch 439(1–2):49–51

    CAS  PubMed  Google Scholar 

  • Bleich M, Heitzmann D, Hug MJ, Hoffmann EK, Greger R, Warth R (2000) Regulation of the Na+ 2Cl- K+ co-transporter–mechanisms in the rectal gland of Squalus acanthias with implications for the thick ascending limb of Henle. Nephrol Dial Transplant 15(Suppl 6):16–18

    Article  CAS  PubMed  Google Scholar 

  • Blumrich M, Petzinger E, Boyer JL (1993) Characterization of bumetanide transport in isolated skate hepatocytes. Am J Physiol 265(5 Pt 1):G926–G933

    CAS  PubMed  Google Scholar 

  • Boyer JL (1996a) Bile secretion–models, mechanisms, and malfunctions. A perspective on the development of modern cellular and molecular concepts of bile secretion and cholestasis. J Gastroenterol 31:475–481

    Article  CAS  PubMed  Google Scholar 

  • Boyer JL (1996b) Bile duct epithelium: frontiers in transport physiology. Am J Physiol 270(33):G1–G5

    CAS  PubMed  Google Scholar 

  • Boyer JL, Hagenbuch B, Ananthanarayanan M, Suchy F, Stieger B, Meier PJ (1993) Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci USA 90(2):435–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown OM, Andrake JS (1992) Cadmium inhibits stimulus–response coupling in skate (Raja erinacea) electric organ. Comp Biochem Physiol C 102(3):439–446

    Article  CAS  PubMed  Google Scholar 

  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366(6455):575–580. doi:10.1038/366575a0

    Article  CAS  PubMed  Google Scholar 

  • Buchwald M, Tsui LC, Riordan JR (1989) The search for the cystic fibrosis gene. Am J Physiol 257(2 Pt 1):L47–L52

    CAS  PubMed  Google Scholar 

  • Callard GV (1991) Reproduction in male elasmobranchs. In: Kinne RKH, Kinne-Saffran E, Beyenbach KW (eds) Oogenesis, spermatogenesis, and reproduction, comparative physiology, vol 10. Karger, Basel, pp 104–115

    Google Scholar 

  • Callard GV (1992) The autocrine and paracrine role of steroids during spermatogenesis: studies in Squalus acanthias and Necturus maculosus. J Exp Zool 260(3):132–142

    Article  Google Scholar 

  • Callard GV (1996) Endocrinology of leydig cells in nonmammalian vertebrates. In: Payne AH, Hardy MP, Russell LD (eds) The leydig cell. Cache River Press, Clearwater, pp 307–332

    Google Scholar 

  • Callard GV, Callard IP (1999) Spermatogenesis in subavian vertebrates. In: Knobil E, Neill J (eds) Encyclopedia of reproduction. Academic, New York, pp 563–570

    Google Scholar 

  • Callard IP, Koob TJ (1993) Endocrine regulation of the elasmobranch reproductive tract. J Exp Zool 266(5):368–377

    Article  CAS  Google Scholar 

  • Callard GV, Schlinger BA, Pasmanik M (1990a) Non-mammalian vertebrate models in studies of brain-steroid interactions. J Exp Zool Suppl 4:6–16

    Article  CAS  PubMed  Google Scholar 

  • Callard GV, Schlinger BA, Pasmanik M, Corina K (1990b) Aromatization and estrogen action in brain. Prog Clin Biol Res 342:105–111

    CAS  PubMed  Google Scholar 

  • Callard IP, Riley D, Perez L (1990c) Vertebrate vitellogenesis: molecular model for multihormonal control of gene regulation. Prog Clin Biol Res 342:343–348

    CAS  PubMed  Google Scholar 

  • Callard IP, Etheridge K, Giannoukos G, Lamb T, Perez L (1991) The role of steroids in reproduction in female elasmobranchs and reptiles. J Steroid Biochem Mol Biol 40(4–6):571–575

    Article  CAS  PubMed  Google Scholar 

  • Callard IP, Fileti LA, Koob TJ (1993) Ovarian steroid synthesis and the hormonal control of the elasmobranch reproductive tract. Environ Biol Fishes 38:175–185

    Article  Google Scholar 

  • Callard GV, Betka M, Jorgensen J (1994) Stage-related functions of Sertoli cells: lessons from lower vertebrates. In: Bartke A (ed) Function of somatic cells in testis. Springer, New York, pp 27–54

    Chapter  Google Scholar 

  • Callard IP, Putz O, Paolucci M, Koob TJ (1995) Elasmobranch reproductive life histories: endocrine correlates and evolution. In: Goetz FW, Thomas P (eds) Reproductive physiology of fish. University of Texas, Austin, pp 63–75

    Google Scholar 

  • Callard GV, McClusky L, Betka M (1998) Apoptosis as a normal mechanism of growth control and target of toxicant actions during spermatogenesis: insights using the shark testis model. In: LeGal Y, Halvorson H (eds) New developments in marine biotechnology. Plenum, New York, pp 125–128

    Chapter  Google Scholar 

  • Cantiello HF, Jackson GR Jr, Prat AG, Gazley JL, Forrest JN Jr, Ausiello DA (1997) cAMP activates an ATP-conductive pathway in cultured shark rectal gland cells. Am J Physiol 272(2 Pt 1):C466–C475

    CAS  PubMed  Google Scholar 

  • Chamberlin ME, Ballantyne JS (1992) Glutamine metabolism in elasmobranch and agnathan muscle. J Exp Zool 264(3):267–272

    Article  CAS  Google Scholar 

  • Choe KP, Edwards SL, Morrison-Shetlar AI, Toop T, Claiborne JB (1999) Immunolocalization of Na+/K+−ATPase in mitochondrion-rice cells of the Atlantic hagfish (Myxine glutinosa) gill. Comp Biochem Physiol 124:161–168

    Article  CAS  Google Scholar 

  • Claiborne JB (1998) Acid–base regulation. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC Press, Boca Raton, FL, pp 177–198

    Google Scholar 

  • Claiborne JB, Walton JS, Compton-McCullough D (1994) Acid–base regulation, branchial transfers and renal output in a marine teleost fish (the longhorn sculpin, Myoxocephalus octadecimspinosus) during exposure to low salinities. J Exp Biol 193:79–95

    CAS  PubMed  Google Scholar 

  • Claiborne JB, Perry E, Bellows S, Campbell J (1997) Mechanisms of acid–base excretion across the gills of a marine fish. J Exp Zool 279(5):509–520

    Article  CAS  Google Scholar 

  • Claiborne JB, Blackston CR, Choe KP, Dawson DC, Harris SP, MacKenzie LA, Morrison-Shetlar AI (1999) A mechanism for branchial acid excretion in marine fish: identification of multiple Na+/H+ antiporter isoforms (NHE) in gills of two seawater teleosts. J Exp Biol 202:315–324

    CAS  PubMed  Google Scholar 

  • Claiborne JB, Compton-McCullough D, Walton JS (2000) Branchial acid–base transfers in the euryhaline oyster toadfish during exposure to dilute sea water. J Fish Biol 56(6):1539–1544

    Article  Google Scholar 

  • Collins FS, Riordan JR, Tsui LC (1990) The cystic fibrosis gene: isolation and significance. Hosp Pract (Off Ed) 25(10):47–57

    CAS  Google Scholar 

  • Conrad GW, Conrad AH (1992) Microtubules as key cytoskeletal elements in cellular transport and shape changes: their expected responses to space environments. Trans Kans Acad Sci 95(1–2):45–49

    Article  CAS  PubMed  Google Scholar 

  • Conrad AH, Paulsen AQ, Conrad GW (1992) The role of microtubules in contractile ring function. J Exp Zool 262(2):154–165

    Article  CAS  PubMed  Google Scholar 

  • Conrad GW, Luer CA, Paulsen AQ, Funderburgh JL (1993a) Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria. Trans Kans Acad Sci 96(1–2):62–68

    Article  Google Scholar 

  • Conrad GW, Stephens AP, Conrad AH (1993b) Preliminary observations on the effects of vector-averaged gravity on the embryonic and larval development of the gastropod mollusk, Ilyanassa obsoleta Stimpson. Trans Kans Acad Sci 96(1–2):20–27

    Article  Google Scholar 

  • Conrad AH, Stephens AP, Conrad GW (1994a) Effect of hexylene glycol-altered microtubule distributions on cytokinesis and polar lobe formation in fertilized eggs of Ilyanassa obsoleta. J Exp Zool 269(3):188–204

    Article  CAS  PubMed  Google Scholar 

  • Conrad AH, Stephens AP, Paulsen AQ, Schwarting SS, Conrad GW (1994b) Effects of silver ions (Ag2+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta. Cell Motil Cytoskeleton 27(2):117–132

    Google Scholar 

  • Conrad GW, Paulsen AQ, Luer CA (1994c) Embryonic development of the cornea in the eye of the clearnose skate, Raja eglanteria: I. Stromal development in the absence of an endothelium. J Exp Zool 269(3):263–276

    Article  CAS  PubMed  Google Scholar 

  • Cox DL, Koob TJ (1993) Predation on elasmobranch eggs. Environ Biol Fishes 38(1–3):117–125

    Google Scholar 

  • Crockett EL (1999) Lipid restructuring does not contribute to elevated activities of Na+/K+-ATPase in basolateral membranes from the gill of seawater-acclimated eel (Anguilla rostrata). J Exp Biol 202(Pt 17):2385–2392

    Google Scholar 

  • Crockett EL, Londraville RL, Wilkes EE, Popesco MC (1999) Enzymatic capacities for beta-oxidation of fatty fuels are low in the gill of teleost fishes despite presence of fatty acid-binding protein. J Exp Zool 284(3):276–285

    Article  CAS  PubMed  Google Scholar 

  • Cuevas ME, Miller W, Callard G (1992) Sulfoconjugation of steroids and the vascular pathway of communication in dogfish testis. J Exp Zool 264(2):119–129

    Article  CAS  PubMed  Google Scholar 

  • Davis-Amaral EM, Musch MW, Goldstein L (1996) Chloride and taurine effluxes occur by different pathways in skate erythrocytes. Am J Physiol 271(6 Pt 2):R1544–R1549

    CAS  PubMed  Google Scholar 

  • Davis-Amaral EM, Musch MW, Goldstein L (1997) Volume-activated osmolyte channel in skate erythrocytes: inhibition by pyridoxal derivatives. J Exp Zool 279(5):456–461

    Article  CAS  PubMed  Google Scholar 

  • Devor DC, Forrest JN Jr, Suggs WK, Frizzell RA (1995) cAMP-activated Cl− channels in primary cultures of spiny dogfish (Squalus acanthias) rectal gland. Am J Physiol 268(1 Pt 1):C70–C79

    Google Scholar 

  • Donald JA, Vomachka AJ, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the brains and hearts of the spiny dogfish Squalus acanthias and the Atlantic hagfish Myxine glutinosa. Cell Tissue Res 270(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Donald JA, Toop T, Evans DH (1997) Distribution and characterization of natriuretic peptide receptors in the gills of the spiny dogfish, Squalus acanthias. Gen Comp Endocrinol 106(3):338–347

    Article  CAS  PubMed  Google Scholar 

  • Donald JA, Toop T, Evans DH (1999) Natriuretic peptide binding sites in the brain of the Atlantic hagfish, Myxine glutinosa. J Exp Zool 284(4):407–413

    Article  CAS  PubMed  Google Scholar 

  • Dubois W, Callard G (1990) The shark testis model: stage-dependent functions and the regulation of spermatogenesis. J Exp Zool Suppl 4:142–144

    Article  CAS  PubMed  Google Scholar 

  • Duggan AE, Callard IP (2001) Phylogenetic distribution of apolipoproteins A-I and E in vertebrates as determined by Western blot analysis. J Exp Zool 290(3):255–264

    Article  CAS  PubMed  Google Scholar 

  • Edwards SL, Claiborne JB, Morrison-Shetlar AI, Toop T (2001) Expression of Na+/H+ exchanger mRNA in the gills of the Atlantic hagfish (Myxine glutinosa) in response to metabolic acidosis. Comp Biochem Physiol 130:81–91

    Article  CAS  Google Scholar 

  • Elger M, Werner A, Herter P, Kohl B, Kinne RK, Hentschel H (1998) Na-P(i) cotransport sites in proximal tubule and collecting tubule of winter flounder (Pleuronectes americanus). Am J Physiol 274(2 Pt 2):F374–F383

    CAS  PubMed  Google Scholar 

  • Epstein FH (1999) The sea within us. J Exp Zool 284(1):50–54

    Article  CAS  PubMed  Google Scholar 

  • Evans D (1984) Gill Na/H and Cl/HCO3 exchange systems evolved before the vertebrates entered fresh water. J Exp Biol 113:464–470

    Google Scholar 

  • Evans DH (1992) Evidence for the presence of A1 and A2 adenosine receptors in the ventral aorta of the dogfish shark, Squalus acanthias. J Comp Physiol B 162(2):179–183

    Google Scholar 

  • Evans DH (1993a) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 315–341

    Google Scholar 

  • Evans DH (ed) (1993b) The physiology of fishes, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Evans DH (1995) The roles of natriuretic peptide hormones (NPs) in fish osmoregulation and hemodynamics. In: Heisler N (ed) Advances in environmental and comparative physiology–mechanisms of systemic regulation in lower vertebrates: II: acid–base regulation. Ion transfer and metabolism. Springer, Heidelberg, pp 119–152

    Chapter  Google Scholar 

  • Evans DH (ed) (1998) The physiology of fishes, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Evans DH (2001) Vasoactive receptors in abdominal blood vessels of the dogfish shark, Squalus acanthias. Physiol Biochem Zool 74(1):120–126

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Gunderson MP (1998a) Functional characterization of a muscarinic receptor in the smooth muscle of the shark (Squalus acanthias) ventral aorta. Exp Biol Online 3:3

    Article  Google Scholar 

  • Evans DH, Gunderson MP (1998b) A prostaglandin, not NO, mediates endothelium-dependent dilation in ventral aorta of shark (Squalus acanthias). Am J Physiol 274(4 Pt 2):R1050–R1057

    CAS  PubMed  Google Scholar 

  • Evans DH, Gunderson MP (1999) Characterization of an endothelin ETB receptor in the gill of the dogfish shark Squalus acanthias. J Exp Biol 202(24):3605–3610

    Google Scholar 

  • Evans DH, Harrie AC (2001) Vasoactivity of the ventral aorta of the American eel (Anguilla rostrata), Atlantic hagfish (Myxine glutinosa), and sea lamprey (Petromyzon marinus). J Exp Zool 289(5):273–284

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM (2001) Contractile properties of the elasmobranch rectal gland. J Exp Biol 204(Pt 1):59–67

    CAS  PubMed  Google Scholar 

  • Evans DH, Takei Y (1992) A putative role for natriuretic peptides in fish osmoregulation. NIPS 7:15–19

    CAS  Google Scholar 

  • Evans DH, Chipouras E, Toop T, Donald JA (1993a) The effect of Ca2+, Cd2+ and Ni2+ on detergent-permeabilized vascular smooth muscle from the shark, Squalus acanthias. Toxicology 83(1–3):1–8

    Google Scholar 

  • Evans DH, Toop T, Donald J, Forrest JN Jr (1993b) C-type natriuretic peptides are potent dilators of shark vascular smooth muscle. J Exp Zool 265(1):84–87

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Gunderson M, Cegelis C (1996) ETB-type receptors mediate endothelin-stimulated contraction in the aortic vascular smooth muscle of the spiny dogfish shark, Squalus acanthias. J Comp Physiol B 165(8):659–664

    Google Scholar 

  • Evans DH, Claiborne JB, Kormanik GA (1997) Osmoregulation, acid–base regulation and nitrogen excretion. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fish ecology, behavior and physiology. Academic, San Diego

    Google Scholar 

  • Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652

    Article  CAS  Google Scholar 

  • Evans DH, Harrie AC, Kozlowski MS (2003) Characterization of the effects of vasoactive substances on the bulbus arteriosus of the eel, Anguilla rostrata. J Exp Zool 297A(1):45–51

    Article  CAS  Google Scholar 

  • Forbush B 3rd, Haas M, Lytle C (1992) Na-K-Cl cotransport in the shark rectal gland. I. Regulation in the intact perfused gland. Am J Physiol 262(4 Pt 1):C1000–C1008

    CAS  PubMed  Google Scholar 

  • Forbush B 3rd, Lytle C, Xu JC, Payne JA, Biemesderfer D (1994) The Na, K, Cl cotransporter of shark rectal gland. Ren Physiol Biochem 17(3–4):201–204

    CAS  PubMed  Google Scholar 

  • Forrest JN Jr (1996) Cellular and molecular biology of chloride secretion in the shark rectal gland: regulation by adenosine receptors. Kidney Int 49(6):1557–1562

    Article  CAS  PubMed  Google Scholar 

  • Forrest JN Jr, Aller SG, Wood SJ, Ratner MA, Forrest JK, Kelley GG (1997) Cadmium disrupts the signal transduction pathway of both inhibitory and stimulatory receptors regulating chloride secretion in the shark rectal gland. J Exp Zool 279(5):530–536

    Article  CAS  PubMed  Google Scholar 

  • Forte LR Jr (2004) Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther 104(2):137–162

    Article  CAS  PubMed  Google Scholar 

  • Fricker G, Hugentobler G, Meier PJ, Kurz G, Boyer JL (1987) Identification of a single sinusoidal bile salt uptake system in skate liver. Am J Physiol 253(6 Pt 1):G816–G822

    CAS  PubMed  Google Scholar 

  • Fricker G, Dubost V, Finsterwald K, Boyer JL (1994) Characteristics of bile salt uptake into skate hepatocytes. Biochem J 299(Pt 3):665–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fricker G, Wossner R, Drewe J, Fricker R, Boyer JL (1997) Enterohepatic circulation of scymnol sulfate in an elasmobranch, the little skate (Raja erinacea). Am J Physiol 273(5 Pt 1):G1023–G1030

    CAS  PubMed  Google Scholar 

  • Fricker G, Miller DS, Drewe J (1998) Role of p-glycoprotein in the renal transport of rapamycin. Int J Clin Pharmacol Ther 36(12):67–69

    CAS  PubMed  Google Scholar 

  • Fricker G, Gutmann H, Droulle A, Drewe J, Miller DS (1999) Epithelial transport of anthelmintic ivermectin in a novel model of isolated proximal kidney tubules. Pharm Res 16:1570–1575

    Article  CAS  PubMed  Google Scholar 

  • Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC (1993) Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci USA 90(7):2749–2753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein L, Brill SR (1991) Volume-activated taurine efflux from skate erythrocytes: possible band 3 involvement. Am J Physiol 260(5 Pt 2):R1014–R1020

    CAS  PubMed  Google Scholar 

  • Goldstein L, Davis EM (1994) Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am J Physiol 267(2 Pt 2):R426–R431

    CAS  PubMed  Google Scholar 

  • Goldstein L, Davis-Amaral EM, Musch MW (1996) Organic osmolyte channels: transport characteristics and regulation. Kidney Int 49(6):1690–1694

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Thiele I, Warth R, Bleich M (1998) Does stimulation of NaCl secretion in in vitro perfused rectal gland tubules of Squalus acanthias increase membrane capacitance? Pflugers Arch 436(4):538–544

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Bleich M, Warth R, Thiele I, Forrest JN (1999a) The cellular mechanisms of Cl- secretion induced by C-type natriuretic peptide (CNP). Experiments on isolated in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Arch 438(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Greger R, Heitzmann D, Hug MJ, Hoffmann EK, Bleich M (1999b) The Na+2Cl−K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage. Pflugers Arch 438(2):165–176

    Google Scholar 

  • Grunewald RW, Kinne RK (1999) Osmoregulation in the mammalian kidney: the role of organic osmolytes. J Exp Zool 283(7):708–724

    Article  CAS  PubMed  Google Scholar 

  • Gunning M, Solomon RJ, Epstein FH, Silva P (1997) Role of guanylyl cyclase receptors for CNP in salt secretion by shark rectal gland. Am J Physiol 273(4 Pt 2):R1400–R1406

    CAS  PubMed  Google Scholar 

  • Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS (1999) Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 56(2):383–389

    CAS  PubMed  Google Scholar 

  • Haas M, Forbush B 3rd (1998) The Na-K-Cl cotransporters. J Bioenerg Biomembr 30(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki N, Okubo K (1996) Band 3 protein: physiology, function and structure. Cell Mol Biol (Noisy-le-grand) 42(7):1025–1039

    CAS  Google Scholar 

  • Hamlett WC, Knight DP, Koob TJ, Jezior M, Luong T, Rozycki T, Brunette N, Hysell MK (1998) Survey of oviducal gland structure and function in elasmobranchs. J Exp Zool 282(4–5):399–420

    Article  Google Scholar 

  • Hanrahan JW, Tabcharani JA, Becq F, Mathews CJ, Augustinas O, Jensen TJ, Chang XB, Riordan JR (1995) Function and dysfunction of the CFTR chloride channel. Soc Gen Physiol Ser 50:125–137

    CAS  PubMed  Google Scholar 

  • Haynes JK, Goldstein L (1993) Volume-regulatory amino acid transport in erythrocytes of the little skate, Raja erinacea. Am J Physiol 265(1 Pt 2):R173–R179

    CAS  PubMed  Google Scholar 

  • Hebert S, Gullans S (1995) The electroneutral sodium-(potassium)-chloride co-transporter family: a journey from fish to the renal co-transporters. Curr Opin Nephrol Hypertens 4(5):389–391

    Article  CAS  PubMed  Google Scholar 

  • Hebert S, Mount D, Gamba G (2004) Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch 447(5):580–593

    Article  CAS  PubMed  Google Scholar 

  • Henry RP, Garrelts EE, McCarty MM, Towle DW (2002) Differential induction of branchial carbonic anhydrase and Na+/K+ ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. J Exp Zool 292(7):595–603

    Google Scholar 

  • Henson JH (1999) Relationships between the actin cytoskeleton and cell volume regulation. Microsc Res Tech 47(2):155–162

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Nesbitt D, Wright BD, Scholey JM (1992) Immunolocalization of kinesin in sea urchin coelomocytes. Association of kinesin with intracellular organelles. J Cell Sci 103(Pt 2):309–320

    CAS  PubMed  Google Scholar 

  • Henson JH, Capuano S, Nesbitt D, Hager DN, Nundy S, Miller DS, Ballatori N, Boyer JL (1995a) Cytoskeletal organization in clusters of isolated polarized skate hepatocytes: structural and functional evidence for microtubule-dependent transcytosis. J Exp Zool 271(4):273–284

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Cole DG, Terasaki M, Rashid D, Scholey JM (1995b) Immunolocalization of the heterotrimeric kinesin-related protein KRP(85/95) in the mitotic apparatus of sea urchin embryos. Dev Biol 171(1):182–194

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Cole DG, Roesener CD, Capuano S, Mendola RJ, Scholey JM (1997a) The heterotrimeric motor protein kinesin-II localizes to the midpiece and flagellum of sea urchin and sand dollar sperm. Cell Motil Cytoskeleton 38(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Henson JH, Roesener CD, Gaetano CJ, Mendola RJ, Forrest JN Jr, Holy J, Kleinzeller A (1997b) Confocal microscopic observation of cytoskeletal reorganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+. J Exp Zool 279(5):415–424

    Article  CAS  PubMed  Google Scholar 

  • Hentschel H, Nearing J, Harris HW, Betka M, Baum M, Hebert SC, Elger M (2003) Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias. Am J Physiol Renal Physiol 285(3):F430–F439

    Google Scholar 

  • Hokin LE (1973) Purification and properties of the sodium-potassium transport adenosine triphosphatase from the rectal gland of the spiny dogfish Squalus acanthias. J Supramol Struct 1(4):336–347

    Article  CAS  PubMed  Google Scholar 

  • Hokin LE, Dahl JL, Deupree JD, Dioxon JF, Hackney JF, Perdue JF (1973) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem 248(7):2593–2605

    CAS  PubMed  Google Scholar 

  • Hubert EM, Musch MW, Goldstein L (2000) Inhibition of volume-stimulated taurine efflux and tyrosine kinase activity in the skate red blood cell. Pflugers Arch 440(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Hugentobler G, Fricker G, Boyer JL, Meier PJ (1987) Anion transport in basolateral (sinusoidal) liver plasma-membrane vesicles of the little skate (Raja erinacea). Biochem J 247(3):589–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue K, Takei Y (2006) Molecular evolution of the natriuretic peptide system as revealed by comparative genomics. Comp Biochem Phys D 1(1):69–76

    Google Scholar 

  • Jackson PS, Churchwell K, Ballatori N, Boyer JL, Strange K (1996) Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl− and ATP. Am J Physiol 270(1 Pt 1):C57–C66

    CAS  PubMed  Google Scholar 

  • Jacquemin E, Hagenbuch B, Wolkoff AW, Meier PJ, Boyer JL (1995) Expression of sodium-independent organic anion uptake systems of skate liver in Xenopus laevis oocytes. Am J Physiol 268(1 Pt 1):G18–G23

    CAS  PubMed  Google Scholar 

  • Jessen F, Sjøholm C, Hoffmann E (1986) Identification of the anion exchange protein of ehrlich cells: a kinetic analysis of the inhibitory effects of 4,4′-diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with3H-DIDS. J Membrain Biol 92(3):195–205

    Article  CAS  Google Scholar 

  • Karnaky KJ Jr (1992) Changes in tight junction in response to salinity of the environment. In: Ceriijido M (ed) Tight junctions. CRC Press, Boca Raton, pp 175–185

    Google Scholar 

  • Karnaky KJ Jr (1997) Osmotic and ionic regulation. In: Evans DH (ed) The physiology of fishes, 2nd edn. CRC Press, Boca Raton, pp 157–176

    Google Scholar 

  • Karnaky KJ Jr (2001) Teleost chloride cell tight junctions: environmental salinity and dynamic changes. In: Cereijido M, Anderson J (eds) Tight junctions. CRC Press, Boca Raton, pp 445–458

    Google Scholar 

  • Karnaky KJ Jr, Valentich JD, Currie MG, Oehlenschlager WF, Kennedy MP (1991) Atriopeptin stimulates chloride secretion in cultured shark rectal gland cells. Am J Physiol 260(5 Pt 1):C1125–C1130

    CAS  PubMed  Google Scholar 

  • Karnaky KJ Jr, Hazen-Martin D, Miller DS (2003) The xenobiotic transporter, MRP2, in epithelia from insects, sharks, and the human breast: implications for health and disease. J Exp Zool A Comp Exp Biol 300(1):91–97

    Article  PubMed  CAS  Google Scholar 

  • Kastner S, Fels LM, Piippo S, Stolte H (1994) Isolated glomeruli of the Atlantic hagfish Myxine glutinosa as an alternative in vitro model to study glomerular protein metabolism in pharmaco-toxicology of anticancer drugs. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • Kerst G, Beschorner U, Unsold B, von Hahn T, Schreiber R, Greger R, Gerlach U, Lang HJ, Kunzelmann K, Bleich M (2001) Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias. Pflugers Arch 443(1):146–154

    Google Scholar 

  • Kidder GW (1993) Carbon monoxide and skate gastric cells: respiration and action spectrum. J Comp Physiol B 163:395–400

    Article  CAS  Google Scholar 

  • Kidder GW (1995) Using a calcium electrode to measure mercury in aqueous solutions. Bull Environ Contam Toxicol 54(1):96–103

    Article  CAS  PubMed  Google Scholar 

  • Kidder GW, McCoy AA (1996) Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels. Bull Environ Contam Toxicol 56(2):311–318

    Article  CAS  PubMed  Google Scholar 

  • Kidder GW, Petersen CW, Preston RL (2006a) Energetics of osmoregulation: I. Oxygen consumption by Fundulus heteroclitus. J Exp Zool A Comp Exp Biol 305(4):309–317

    Article  PubMed  Google Scholar 

  • Kidder GW, Petersen CW, Preston RL (2006b) Energetics of osmoregulation: II. Water flux and osmoregulatory work in the euryhaline fish, Fundulus heteroclitus. J Exp Zool A Comp Exp Biol 305(4):318–327

    Article  PubMed  Google Scholar 

  • Kinne RK (1990) Transport in isolated cells from defined nephron segments. Methods Enzymol 191:380–409

    Article  CAS  PubMed  Google Scholar 

  • Kinne RK (1991) Selectivity and direction: plasma membranes in renal transport. Am J Physiol 260(2 Pt 2):F153–F162

    CAS  PubMed  Google Scholar 

  • Kinne RK (1993) The role of organic osmolytes in osmoregulation: from bacteria to mammals. J Exp Zool 265(4):346–355

    Article  CAS  PubMed  Google Scholar 

  • Kinne RK (1998) Mechanisms of osmolyte release. Contrib Nephrol 123:34–49

    Article  CAS  PubMed  Google Scholar 

  • Kinne RR (2000) Renal physiology in the next millennium–an attempt to predict the future. Nephrol Dial Transplant 15(Suppl 6):2–4

    Article  PubMed  Google Scholar 

  • Kinne RK, Boese SH, Kinne-Saffran E, Ruhfus B, Tinel H, Wehner F (1996) Osmoregulation in the renal papilla: membranes, messengers and molecules. Kidney Int 49(6):1686–1689

    Article  CAS  PubMed  Google Scholar 

  • Kinne-Saffran E, Kinne RK (1990) Isolation of lumenal and contralumenal plasma membrane vesicles from kidney. Methods Enzymol 191:450–469

    Article  CAS  PubMed  Google Scholar 

  • Kinne-Saffran E, Kinne RK (2001) Inhibition by mercuric chloride of Na-K-2Cl cotransport activity in rectal gland plasma membrane vesicles isolated from Squalus acanthias. Biochim Biophys Acta 1510(1–2):442–451

    Article  CAS  PubMed  Google Scholar 

  • Kinne-Saffran E, Hulseweh M, Pfaff C, Kinne RK (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Kipp H, Kinne-Saffran E, Bevan C, Kinne RK (1997) Characteristics of renal Na+-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias). Am J Physiol 273(1 Pt 2):R134–R142

    Google Scholar 

  • Kleinzeller A (ed) (1995) Exploring the cell membrane: conceptual developments, vol 39, Comprehensive biochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Kleinzeller A, Ziyadeh FN (1990) Cell volume regulation in epithelia with emphasis on the role of osmolytes and the cytoskeleton. In: Kinne RKH, Kinne-Saffran E, Beyenbach KW (eds) Molecular comparative physiology/cell volume regulation, vol 4. Karger, Basel, pp 59–86

    Google Scholar 

  • Kohl B, Herter P, Hulseweh B, Elger M, Hentschel H, Kinne RK, Werner A (1996) Na-Pi cotransport in flounder: same transport system in kidney and intestine. Am J Physiol 270(6 Pt 2):F937–F944

    CAS  PubMed  Google Scholar 

  • Koob TJ, Callard IP (1999) Reproductive endocrinology of female elasmobranchs: lessons from the little skate (Raja erinacea) and spiny dogfish (Squalus acanthias). J Exp Zool 284:557–574

    Article  CAS  PubMed  Google Scholar 

  • Koob TJ, Cox DL (1993) Stabilization and sclerotization of Raja erinacea egg capsule proteins. Environ Biol Fishes 38(1–3):151–157

    Google Scholar 

  • Koob TJ, Hamlett WC (1998) Microscopic structure of the gravid uterus in the little skate, Raja erinacea. J Exp Zool 282(4–5):421–437

    Article  Google Scholar 

  • Koob TJ, Long JH (2000) The vertebrate body axis: evolution and mechanical function. Am Zool 40:1–18

    Google Scholar 

  • Koob TJ, Knight D, Paolucci M, Noren B, Callard IP (1998) The mermaid’s purse, on what the skate can tell us about keeping eggs safe in one basket. In: Le Gal Y, Halvorson HO (eds) New developments in marine biotechnology. Springer, Berlin, pp 69–71

    Chapter  Google Scholar 

  • Koob TJ, Koob-Emunds MM, Trotter JA (1999) Cell-derived stiffening and plasticizing factors in sea cucumber (Cucumaris frondosa) dermis. J Exp Biol 202(17):2291–2301

    PubMed  Google Scholar 

  • Kormanik GA (1992) Ion and osmoregulation in prenatal elasmobranchs - evolutionary implications. Am Zool 32(2):294–302

    Article  Google Scholar 

  • Kormanik GA (1993) Ionic and osmotic environment of developing elasmobranch embryos. Environ Biol Fishes 38(1–3):233–240

    Google Scholar 

  • Lehrich RW, Forrest JN Jr (1994) Protein kinase C zeta is associated with the mitotic apparatus in primary cell cultures of the shark rectal gland. J Biol Chem 269(51):32446–32450

    CAS  PubMed  Google Scholar 

  • Lehrich RW, Forrest JN Jr (1995) Tyrosine phosphorylation is a novel pathway for regulation of chloride secretion in shark rectal gland. Am J Physiol 269(4 Pt 2):F594–F600

    CAS  PubMed  Google Scholar 

  • Lehrich RW, Aller SG, Webster P, Marino CR, Forrest JN Jr (1998) Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium. J Clin Invest 101(4):737–745. doi:10.1172/JCI803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lenarcic B, Krishnan G, Borukhovich R, Ruck B, Turk V, Moczydlowski E (2000) Saxiphilin, a saxitoxin-binding protein with two thyroglobulin type 1 domains, is an inhibitor of papain-like cysteine proteinases. J Biol Chem 275(20):15572–15577

    Article  CAS  PubMed  Google Scholar 

  • Leonard JBK, Summers AP, Koob TJ (1999) Metabolic rate of embryonic little skate, Raja erinacea (Chondrichthyes: Batoidea): the cost of active pumping. J Exp Zool 283(1):13–18

    Article  Google Scholar 

  • Lin-Moshier Y, Marchant JS (2013) The Xenopus oocyte: a single-cell model for studying Ca2+ signaling. Cold Spring Harb Protoc 2013(3):185–190

    Google Scholar 

  • Llewellyn LE, Bell PM, Moczydlowski EG (1997) Phylogenetic survey of soluble saxitoxin-binding activity in pursuit of the function and molecular evolution of saxiphilin, a relative of transferrin. Proc Biol Sci 264(1383):891–902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Long JH, Koob-Emunds M, Sinwell B, Koob TJ (2002) The notochord of hagfish Myxine glutinosa: visco-elastic properties and mechanical functions during steady swimming. J Exp Biol 205(24):3819–3831

    PubMed  Google Scholar 

  • Lucu C, Towle DW (1993) Transport processes across surfaces of aquatic organisms - Introduction. J Exp Zool 265(4):343–345

    Article  Google Scholar 

  • Lytle C, Forbush B 3rd (1992a) Na-K-Cl cotransport in the shark rectal gland. II. Regulation in isolated tubules. Am J Physiol 262(4 Pt 1):C1009–C1017

    CAS  PubMed  Google Scholar 

  • Lytle C, Forbush B 3rd (1992b) The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem 267(35):25438–25443

    CAS  PubMed  Google Scholar 

  • Lytle C, Forbush B 3rd (1996) Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol 270(2 Pt 1):C437–C448

    CAS  PubMed  Google Scholar 

  • Lytle C, Xu JC, Biemesderfer D, Haas M, Forbush B 3rd (1992) The Na-K-Cl cotransport protein of shark rectal gland. I. Development of monoclonal antibodies, immunoaffinity purification, and partial biochemical characterization. J Biol Chem 267(35):25428–25437

    CAS  PubMed  Google Scholar 

  • Lytle C, Xu JC, Biemesderfer D, Forbush B 3rd (1995) Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am J Physiol 269(6 Pt 1):C1496–C1505

    CAS  PubMed  Google Scholar 

  • Maren TH (1993) An historical account of the Mount Desert Island biological laboratory: 1898–1993. Bull MDIBL 33:iii–xx

    Google Scholar 

  • Maren TH, Fine A, Swenson ER (1992a) Renal acid–base physiology in marine teleosts. Am J Physiol 263:F49–F55

    CAS  PubMed  Google Scholar 

  • Maren TH, Fine A, Swenson ER, Rothman D (1992b) Renal acid–base physiology in marine teleost, the long-horned sculpin (Myoxocephalus-octodecimspinosus). Am J Physiol 263(1):F49–F55

    CAS  PubMed  Google Scholar 

  • Masereeuw R, Terlouw SA, van Aubel RA, Russel FG, Miller DS (2000) Endothelin B receptor-mediated regulation of ATP-driven drug secretion in renal proximal tubule. Mol Pharmacol 57(1):59–67

    CAS  PubMed  Google Scholar 

  • Maylie J, Morad M (1995) Evaluation of T- and L-type Ca2+ currents in shark ventricular myocytes. Am J Physiol 269(5 Pt 2):H1695–H1703

    CAS  PubMed  Google Scholar 

  • Miller DS (1998) Protein kinase C regulation of organic anion transport in renal proximal tubule. Am J Physiol 274(1 Pt 2):F156–F164

    CAS  PubMed  Google Scholar 

  • Miller DS, Pritchard JB (1994) Nocodazole inhibition of organic anion secretion in teleost renal proximal tubules. Am J Physiol 267(3 Pt 2):R695–R704

    CAS  PubMed  Google Scholar 

  • Miller DS, Stewart DE, Pritchard JB (1993) Intracellular compartmentation of organic anions within renal cells. Am J Physiol 264(5 Pt 2):R882–R890

    CAS  PubMed  Google Scholar 

  • Miller DS, Barnes DM, Pritchard JB (1994) Confocal microscopic analysis of fluorescein compartmentation within crab urinary bladder cells. Am J Physiol 267(1 Pt 2):R16–R25

    CAS  PubMed  Google Scholar 

  • Miller DS, Fricker G, Schramm U, Henson JH, Hager DN, Nundy S, Ballatori N, Boyer JL (1996a) Active microtubule-dependent secretion of a fluorescent bile salt derivative in skate hepatocyte clusters. Am J Physiol 270(6 Pt 1):G887–G896

    CAS  PubMed  Google Scholar 

  • Miller DS, Letcher S, Barnes DM (1996b) Fluorescence imaging study of organic anion transport from renal proximal tubule cell to lumen. Am J Physiol 271(3 Pt 2):F508–F520

    CAS  PubMed  Google Scholar 

  • Miller DS, Fricker G, Drewe J (1997) p-glycoprotein-mediated transport of a fluorescent rapamycin derivative in renal proximal tubule. J Pharmacol Exp Ther 282(1):440–444

    CAS  PubMed  Google Scholar 

  • Miller DS, Masereeuw R, Henson J, Karnaky KJ Jr (1998a) Excretory transport of xenobiotics by dogfish shark rectal gland tubules. Am J Physiol 275(3 Pt 2):R697–R705

    CAS  PubMed  Google Scholar 

  • Miller DS, Sussman CR, Renfro JL (1998b) Protein kinase C regulation of p-glycoprotein-mediated xenobiotic secretion in renal proximal tubule. Am J Physiol 275(5 Pt 2):F785–F795

    CAS  PubMed  Google Scholar 

  • Miller DS, Masereeuw R, Karnaky KJ Jr (2002) Regulation of MRP2-mediated transport in shark rectal salt gland tubules. Am J Physiol Regul Integr Comp Physiol 282(3):R774–R781

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Goldstein L (1996) High affinity binding of ankyrin induced by volume expansion in skate erythrocytes. J Biol Chem 271(35):21221–21225

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Goldstein L (2001) Modulation of erythrocyte band 4.1 binding by volume expansion. J Exp Zool 289(3):177–183

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Orellana SA, Kimberg LS, Field M, Halm DR, Krasny EJ Jr, Frizzell RA (1982) Na+-K+-Cl− co-transport in the intestine of a marine teleost. Nature 300(5890):351–353

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Davis EM, Goldstein L (1994a) Oligomeric forms of skate erythrocyte band 3. Effect of volume expansion. J Biol Chem 269(31):19683–19686

    CAS  PubMed  Google Scholar 

  • Musch MW, Leffingwell TR, Goldstein L (1994b) Band 3 modulation and hypotonic-stimulated taurine efflux in skate erythrocytes. Am J Physiol 266(1 Pt 2):R65–R74

    CAS  PubMed  Google Scholar 

  • Musch MW, Davis-Amaral EM, Goldstein L (1996) Erythropoietin stimulates tyrosine phosphorylation and taurine transport in skate erythrocytes. J Exp Zool 274(2):81–92

    Article  CAS  PubMed  Google Scholar 

  • Musch MW, Davis-Amaral EM, Leibowitz KL, Goldstein L (1998) Hypotonic-stimulated taurine efflux in skate erythrocytes: regulation by tyrosine phosphatase activity. Am J Physiol 274(6 Pt 2):R1677–R1686

    CAS  PubMed  Google Scholar 

  • Musch MW, Hubert EM, Goldstein L (1999) Volume expansion stimulates p72(syk) and p56(lyn) in skate erythrocytes. J Biol Chem 274(12):7923–7928

    Article  CAS  PubMed  Google Scholar 

  • Nathanson M, Mariwalla K (1995) Characterization and function of ATP receptors on hepatocytes from the little skate. Gastroenterology 108(4):A1132–A1132

    Article  Google Scholar 

  • Nathanson MH, Mariwalla K, Ballatori N, Boyer JL (1995a) Effect of Hg2+ on cytosolic Ca2+ (Ca2+) in hepatocytes isolated from the little skate Raja erinacea. Gastroenterology 108(4):A1132–A1132

    Google Scholar 

  • Nathanson MH, Mariwalla K, Ballatori N, Boyer JL (1995b) Effects of Hg2+ on cytosolic Ca2+ in isolated skate hepatocytes. Cell Calcium 18(5):429–439

    Article  CAS  PubMed  Google Scholar 

  • Nathanson MH, O’Neill AF, Burgstahler AD (1999) Primitive organization of cytosolic Ca2+ signals in hepatocytes from the little skate Raja erinacea. J Exp Biol 202(22):3049–3056

    CAS  PubMed  Google Scholar 

  • Nies AT, Kinne RK, Kinne-Saffran E, Grieshaber MK (1995) Urate transport in Homarus americanus hepatopancreas: studies on membrane vesicles and R cells. Am J Physiol 269(2 Pt 2):R339–R349

    CAS  PubMed  Google Scholar 

  • Paolucci M, Callard IP (1998) Characterization of progesterone-binding moieties in the little skate Raja erinacea. Gen Comp Endocrinol 109(1):106–118

    Article  CAS  PubMed  Google Scholar 

  • Perlman DF, Musch MW, Goldstein L (1996) Band 3 in cell volume regulation in fish erythrocytes. Cell Mol Biol (Noisy-le-grand) 42(7):975–984

    CAS  Google Scholar 

  • Piferrer F, Redding M, Jorgensen J, Dubois W, Callard G (1993) Stimulatory and inhibitory regulation of DNA synthesis during spermatogenesis: studies in Squalus acanthias. Fish Physiol Biochem 11:293–298

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256(5055):385–387

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1991) Comparative insights into the mechanisms of renal organic anion and cation secretion. Am J Physiol 261(6 Pt 2):R1329–R1340

    CAS  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1993) Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev 73(4):765–796

    CAS  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1996) Renal secretion of organic anions and cations. Kidney Int 49(6):1649–1654

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JB, Miller DS (1997) Renal secretion of organic cations: a multistep process. Adv Drug Deliv Rev 25:231–242

    Article  CAS  Google Scholar 

  • Rappaport R (1996) Cytokinesis in animal cells. Developmental biology series. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rappaport R (1997) Cleavage furrow establishment by the moving mitotic apparatus. Dev Growth Differ 39(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R (1999) Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces. Dev Growth Differ 41(4):441–447

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R, Rappaport BN (1993) Duration of division-related events in cleaving sand dollar eggs. Dev Biol 158(1):265–273

    Article  CAS  PubMed  Google Scholar 

  • Rappaport R, Rappaport BN (1994) Cleavage in conical sand dollar eggs. Dev Biol 164(1):258–266

    Article  CAS  PubMed  Google Scholar 

  • Rebbeor JF, Connolly GC, Henson JH, Boyer JL, Ballatori N (2000) ATP-dependent GSH and glutathione S-conjugate transport in skate liver: role of an Mrp functional homologue. Am J Physiol Gastrointest Liver Physiol 279(2):G417–G425

    CAS  PubMed  Google Scholar 

  • Renfro JL, Maren TH, Zeien C, Swenson ER (1999) Renal sulfate secretion is carbonic anhydrase dependent in a marine teleost, Pseudopleuronectes americanus. Am J Physiol Renal Physiol 276(2):F288–F294

    CAS  Google Scholar 

  • Riordan JR (1993) The cystic fibrosis transmembrane conductance regulator. Annu Rev Physiol 55:609–630

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Riordan JR, Forbush B 3rd, Hanrahan JW (1994) The molecular basis of chloride transport in shark rectal gland. J Exp Biol 196:405–418

    CAS  PubMed  Google Scholar 

  • Runnegar M, Seward DJ, Ballatori N, Crawford JM, Boyer JL (1999) Hepatic toxicity and persistence of ser/thr protein phosphatase inhibition by microcystin in the little skate Raja erinacea. Toxicol Appl Pharmacol 161(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Schofield JP, Jones DS, Forrest JN Jr (1991) Identification of C-type natriuretic peptide in heart of spiny dogfish shark (Squalus acanthias). Am J Physiol 261(4 Pt 2):F734–F739

    CAS  PubMed  Google Scholar 

  • Schramm U, Fricker G, Wenger R, Miller DS (1995) P-glycoprotein-mediated secretion of a fluorescent cyclosporin analogue by teleost renal proximal tubules. Am J Physiol 268(1 Pt 2):F46–F52

    CAS  PubMed  Google Scholar 

  • Silva P, Solomon R, Spokes K, Epstein F (1977) Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J Exp Zool 199(3):419–426

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Stoff JS, Solomon RJ, Lear S, Kniaz D, Greger R, Epstein FH (1987) Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP. Am J Physiol 252(1 Pt 2):F99–F103

    CAS  PubMed  Google Scholar 

  • Silva P, Epstein FH, Solomon RJ (1992) The effect of mercury on chloride secretion in the shark (Squalus acanthias) rectal gland. Comp Biochem Physiol C 103(3):569–575

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Epstein FH, Karnaky KJ Jr, Reichlin S, Forrest JN Jr (1993) Neuropeptide Y inhibits chloride secretion in the shark rectal gland. Am J Physiol 265(2 Pt 2):R439–R446

    CAS  PubMed  Google Scholar 

  • Silva P, Solomon RJ, Epstein FH (1996) The rectal gland of Squalus acanthias: a model for the transport of chloride. Kidney Int 49(6):1552–1556

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Solomon RJ, Epstein FH (1997) Transport mechanisms that mediate the secretion of chloride by the rectal gland of Squalus acanthias. J Exp Zool 279(5):504–508

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Solomon RJ, Epstein FH (1999) Mode of activation of salt secretion by C-type natriuretic peptide in the shark rectal gland. Am J Physiol 277(6 Pt 2):R1725–R1732

    CAS  PubMed  Google Scholar 

  • Smith DJ, Grossbard M, Gordon ER, Boyer JL (1987) Taurocholate uptake by isolated skate hepatocytes: effect of albumin. Am J Physiol 252(4 Pt 1):G479–G484

    CAS  PubMed  Google Scholar 

  • Solomon R, Protter A, McEnroe G, Porter JG, Silva P (1992) C-type natriuretic peptides stimulate chloride secretion in the rectal gland of Squalus acanthias. Am J Physiol 262(4):R707–R711

    CAS  PubMed  Google Scholar 

  • Sorbera LA, Morad M (1990) Atrionatriuretic peptide transforms cardiac sodium channels into calcium-conducting channels. Science 247(4945):969–973

    Article  CAS  PubMed  Google Scholar 

  • Sorbera LA, Morad M (1991a) Modulation of cardiac sodium channels by cAMP receptors on the myocyte surface. Science 253(5025):1286–1289

    Article  CAS  PubMed  Google Scholar 

  • Sorbera LA, Morad M (1991b) Response. Science 252(5004):450–452

    Article  CAS  PubMed  Google Scholar 

  • Stoff JS, Silva P, Lechan R, Solomon R, Epstein FH (1988) Neural control of shark rectal gland. Am J Physiol 255(2 Pt 2):R212–R216

    CAS  PubMed  Google Scholar 

  • Straus JW, Monian CL, Cox DL (1993) Nidamental gland catechol oxidase in the little skate (Raja erinacea) - latency caused by an endogenous low-molecular-weight factor. Comp Biochem Physiol B 105(1):117–122

    Google Scholar 

  • Summers AP, Ferry-Graham LA (2001) Ventilatory modes and mechanics of the hedgehog skate (Leucoraja erinacea): testing the continuous flow model. J Exp Biol 204(Pt 9):1577–1587

    CAS  PubMed  Google Scholar 

  • Swenson ER, Fine AD, Maren TH, Reale E, Lacy ER, Smolka AJ (1994) Physiological and immunocytochemical evidence for a putative H-K-ATPase in elasmobranch renal acid secretion. Am J Physiol Renal Fluid Elect Physiol 267(4):F639–F645

    CAS  Google Scholar 

  • Takei Y (1992) Vasoactive hormones and body fluid homeostasis: a phylogenetic consideration. Comp Physiol 11(239):239–249

    Google Scholar 

  • Thiele I, Warth R, Bleich M, Waldegger S, Lang F, Greger R (1998) Osmotically induced conductance and capacitance changes in in vitro perfused rectal gland tubules of Squalus acanthias. Kidney Blood Press Res 21(5):317–324

    Article  CAS  PubMed  Google Scholar 

  • Thurmond FA, Koob TJ, Bowness JM, Trotter JA (1997) Partial biochemical and immunologic characterization of fibrillin microfibrils from sea cucumber dermis. Connect Tissue Res 36(3):211–222

    Article  CAS  PubMed  Google Scholar 

  • Toop T, Donald JA, Evans DH (1995a) Localisation and characteristics of natriuretic peptide receptors in the gills of the Atlantic hagfish Myxine glutinosa (Agnatha). J Exp Biol 198(Pt 1):117–126

    CAS  PubMed  Google Scholar 

  • Toop T, Donald JA, Evans DH (1995b) Natriuretic peptide receptors in the kidney and the ventral and dorsal aortae of the Atlantic hagfish Myxine glutinosa (Agnatha). J Exp Biol 198(Pt 9):1875–1882

    CAS  PubMed  Google Scholar 

  • Towle DW (1993) Ion-transport systems in membrane-vesicles isolated from Crustacean tissues. J Exp Zool 265(4):387–396

    Article  CAS  Google Scholar 

  • Towle DW (1997) Molecular approaches to understanding salinity adaptation of estuarine animals. Am Zool 37(6):575–584

    Article  CAS  Google Scholar 

  • Towle DW, Weihrauch D (2001) Osmoregulation by gills of euryhaline crabs: molecular analysis of transporters. Am Zool 41(4):770–780

    CAS  Google Scholar 

  • Towle DW, Baksinski A, Richard NE, Kordylewski M (1991) Characterization of an endogenous Na+/H+ antiporter in Xenopus laevis oocytes. J Exp Biol 159:359–369

    Google Scholar 

  • Towle DW, Rushton ME, Heidysch D, Magnani JJ, Rose MJ, Amstutz A, Jordan MK, Shearer DW, Wu WS (1997) Sodium/proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution. J Exp Biol 200(Pt 6):1003–1014

    CAS  PubMed  Google Scholar 

  • Trotter JA, Koob TJ (1995) Evidence that calcium-dependent cellular processes are involved in the stiffening response of holothurian dermis and that dermal cells contain an organic stiffening factor. J Exp Biol 198(9):1951–1961

    CAS  PubMed  Google Scholar 

  • Trotter JA, Thurmond FA, Koob TJ (1994) Molecular-structure and functional-morphology of echinoderm collagen fibrils. Cell Tissue Res 275(3):451–458

    Article  CAS  PubMed  Google Scholar 

  • Trotter JA, Lyons-Levy G, Thurmond FA, Koob TJ (1995) Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties. Comp Biochem Physiol 112(3–4):463–478

    Article  Google Scholar 

  • Trotter JA, Lyons-Levy G, Luna D, Koob TJ, Keene DR, Atkinson MAL (1996) Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils. Matrix Biol 15(2):99–110

    Article  CAS  PubMed  Google Scholar 

  • Trotter JA, Salgado JP, Koob TJ (1997) Mineral content and salt-dependent viscosity in the dermis of the sea cucumber Cucumaria frondosa. Comp Biochem Physiol 116(4):329–335

    Article  Google Scholar 

  • Trotter JA, Lyons-Levy G, Chino K, Koob TJ, Keene DR, Atkinson MAL (1999) Collagen fibril aggregation-inhibitor from sea cucumber dermis. Matrix Biol 18(6):569–578

    Article  CAS  PubMed  Google Scholar 

  • Trotter JA, Tipper J, Lyons-Levy G, Chino K, Heuer AH, Liu Z, Mrksich M, Hodneland C, Dillmore WS, Koob TJ, Koob-Emunds MM, Kadler K, Holmes D (2000) Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms. Biochem Soc Trans 28:357–362

    Article  CAS  PubMed  Google Scholar 

  • Tsui LC, Rommens JM, Burns J, Zengerling S, Riordan JR, Carlock LR, Grzeschik KH, Buchwald M (1988) Progress towards cloning the cystic fibrosis gene. Philos Trans R Soc Lond B Biol Sci 319(1194):263–273

    Article  CAS  PubMed  Google Scholar 

  • Valentich JD, Karnaky KJJ, Moran WM (1995) Natriuretic peptide control of chloride secretion by culture shark rectal gland epithelial cells. In: Wood CM, Shuttleworth TJ (eds) Fish physiology, vol 14, Ionregulation: cellular and molecular approaches. Academic, San Diego, pp 173–205

    Google Scholar 

  • Waldegger S, Barth P, Forrest JN Jr, Greger R, Lang F (1998) Cloning of sgk serine-threonine protein kinase from shark rectal gland - a gene induced by hypertonicity and secretagogues. Pflugers Arch 436(4):575–580

    Article  CAS  PubMed  Google Scholar 

  • Waldegger S, Fakler B, Bleich M, Barth P, Hopf A, Schulte U, Busch AE, Aller SG, Forrest JN Jr, Greger R, Lang F (1999) Molecular and functional characterization of s-KCNQ1 potassium channel from rectal gland of Squalus acanthias. Pflugers Arch 437(2):298–304

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang XT, Wu LY, Mateescu MA (1999) Toxic effects of cadmium and copper on the isolated heart of dogfish shark, Squalus acanthias. J Toxicol Environ Health A 57(7):507–519

    Article  CAS  PubMed  Google Scholar 

  • Warth R, Bleich M, Thiele I, Lang F, Greger R (1998a) Regulation of the Na+2Cl−K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Arch 436(4):521–528

    Google Scholar 

  • Warth R, Thiele I, Bleich M, Greger R (1998b) The role of cytosolic Ca2+ in the secretion of NaCl in isolated in vitro perfused rectal gland tubules of Squalus acanthias. Pflugers Arch 436(1):133–140

    Google Scholar 

  • Weber GJ, Mehr AP, Sirota JC, Aller SG, Decker SE, Dawson DC, Forrest JN Jr (2006) Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102. Am J Physiol Cell Physiol 290(3):C793–C801

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Ziegler A, Siebers D, Towle DW (2001) Molecular characterization of V-type H+-ATPase (B-subunit) in gills of euryhaline crabs and its physiological role in osmoregulatory ion uptake. J Exp Biol 204(Pt 1):25–37

    CAS  PubMed  Google Scholar 

  • Wilkinson DJ, Post MA, Venglarik C, Chang D, Dawson DC (1993) Mercury blockade of thiazide-sensitive NaCl cotransport in flounder urinary bladder. Toxicol Appl Pharmacol 123(1):170–176

    Article  CAS  PubMed  Google Scholar 

  • Wilson ED, McGuinn MR, Goldstein L (1999) Trimethylamine oxide transport across plasma membranes of elasmobranch erythrocytes. J Exp Zool 284(6):605–609

    Article  CAS  PubMed  Google Scholar 

  • Wittels KA, Hubert EM, Musch MW, Goldstein L (2000) Osmolyte channel regulation by ionic strength in skate RBC. Am J Physiol Regul Integr Comp Physiol 279(1):R69–R76

    CAS  PubMed  Google Scholar 

  • Wright BD, Henson JH, Wedaman KP, Willy PJ, Morand JN, Scholey JM (1991) Subcellular localization and sequence of sea urchin kinesin heavy chain: evidence for its association with membranes in the mitotic apparatus and interphase cytoplasm. J Cell Biol 113(4):817–833

    Article  CAS  PubMed  Google Scholar 

  • Xu JC, Lytle C, Zhu TT, Payne JA, Benz E Jr, Forbush B 3rd (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci USA 91(6):2201–2205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zadunaisky JA (1996) Chloride cells and osmoregulation. Kidney Int 49(6):1563–1567

    Article  CAS  PubMed  Google Scholar 

  • Zadunaisky JA, Cardona S, Au L, Roberts DM, Fisher E, Lowenstein B, Cragoe EJ Jr, Spring KR (1995) Chloride transport activation by plasma osmolarity during rapid adaptation to high salinity of Fundulus heteroclitus. J Membr Biol 143(3):207–217

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Physiological Society

About this chapter

Cite this chapter

Evans, D.H. (2015). Research in the 1990s: Molecular Biology Comes to the MDIBL. In: Marine Physiology Down East: The Story of the Mt. Desert Island Biological Laboratory. Perspectives in Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2960-3_12

Download citation

Publish with us

Policies and ethics