Skip to main content

Comparative Studies of Somatosensory Systems and Active Sensing

  • Chapter
  • First Online:
Sensorimotor Integration in the Whisker System

Abstract

Comparative studies of diverse species provide a wealth of information about active touch and corresponding brain specializations in the somatosensory system. Here the results of numerous studies of brain and behavior in shrews and moles are reviewed and discussed. Water shrews have elaborate whiskers and can detect prey based on both texture and movement. In contrast to rodents, shrew whiskers are not reflected by barrels in the cortex, but are reflected in the brainstem by prominent barrelettes. Although shrews have a simpler cortical anatomy than rodents, star-nosed mole’s cortices are more complex, with three histologically visible and interconnected cortical maps that reflect the nasal rays on the contralateral star. One ray of the star is used as the tactile fovea, and is greatly over-represented in the neocortex. This finding highlights similarities between specialized somatosensory, visual, and auditory systems—each of which may have a sensory fovea for high resolution sensory processing. Both water shrews and star-nosed moles exhibit the remarkable ability to sniff underwater by exhaling and reinhaling air bubbles as they forage. This allows visualization of sniffing during natural behaviors and provides a unique window into the behavioral integration of touch and smell . Finally, eastern moles have the least specialized set of mechanoreceptors but exhibit remarkable olfactory abilities using stereo nasal cues—in conjunction with touch—to efficiently locate prey. These results highlight the many insights that may be derived from specialized model animals.

Supported by NSF grant 1456472 to KCC

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF (1946) Potassium leakage from an active nerve fibre. Nature 158:376

    Article  CAS  PubMed  Google Scholar 

  2. Hodgkin AL, Huxley AF (1952) Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17:43–52

    Article  CAS  PubMed  Google Scholar 

  3. Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the Barn Owl (Tyto-Alba). J Comp Physiol 133(1):13–21

    Article  Google Scholar 

  4. Knudsen EI, Konishi M (1980) Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl. J Neurophysiol 44(4):687–695

    CAS  PubMed  Google Scholar 

  5. Carr CE, Boudreau RE (1991) Central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314(2):306–318

    Article  CAS  PubMed  Google Scholar 

  6. Moller P (2002) Multimodal sensory integration in weakly electric fish: a behavioral account. J Physiol Paris 96(5–6):547–556

    Article  PubMed  Google Scholar 

  7. Heiligenberg W (1990) Electrosensory systems in fish. Synapse 6(2):196–206

    Article  CAS  PubMed  Google Scholar 

  8. Nottebohm F (2005) The neural basis of birdsong. PLoS Biol 3(5):e164

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nottebohm F, Liu WC (2010) The origins of vocal learning: new sounds, new circuits, new cells. Brain Lang 115(1):3–17

    Article  PubMed  Google Scholar 

  10. Doupe AJ (1993) A neural circuit specialized for vocal learning. Curr Opin Neurobiol 3(1):104–111

    Article  CAS  PubMed  Google Scholar 

  11. Kaas JH, What, If Anything (1983) Is Si - organization of 1st somatosensory area of cortex. Physiol Rev 63(1):206–231

    CAS  PubMed  Google Scholar 

  12. Woolsey TA, Vanderlo H (1970) Structural organization of layer-Iv in somatosensory region (Si) of mouse cerebral cortex. Description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205

    Article  CAS  PubMed  Google Scholar 

  13. Feldman ML, Peters A (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77(1):55–76

    Article  CAS  PubMed  Google Scholar 

  14. Van Der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2(1):1–6

    Article  PubMed  Google Scholar 

  15. Ma PM, The barrelettes–architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. I (1991) Normal structural organization. J Comp Neurol 309(2):161–199

    Article  CAS  PubMed  Google Scholar 

  16. Krubitzer L, Manger P, Pettigrew J, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351(2):261–306

    Article  CAS  PubMed  Google Scholar 

  17. Catania KC, Northcutt RG, Kaas JH, Beck PD (1993) Nose stars and brain stripes. Nature 364(6437):493

    Article  CAS  PubMed  Google Scholar 

  18. Catania KC, Kaas JH (1995) Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol 351(4):549–567

    Article  CAS  PubMed  Google Scholar 

  19. Jain N, Catania KC, Kaas JH (1998) A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb Cortex 8(3):227–236

    Article  CAS  PubMed  Google Scholar 

  20. Qi HX, Kaas JH (2004) Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys. J Comp Neurol 477(2):172–187

    Article  PubMed  Google Scholar 

  21. Catania KC, Lyon DC, Mock OB, Kaas JH (1999) Cortical organization in shrews: evidence from five species. J Comp Neurol 410(1):55–72

    Article  CAS  PubMed  Google Scholar 

  22. Rowe TB, Macrini TE, Luo ZX (2011) Fossil evidence on origin of the mammalian brain. Science 332(6032):955–957

    Article  CAS  PubMed  Google Scholar 

  23. Gould E, Negus NC, Novick A (1964) Evidence for echolocation in shrews. J Exp Zool 156:19–37

    Article  CAS  PubMed  Google Scholar 

  24. Siemers BM, Schauermann G, Turni H, von Merten S (2009) Why do shrews twitter? Communication or simple echo-based orientation. Biol Lett 5(5):593–596

    Article  PubMed  PubMed Central  Google Scholar 

  25. Catania KC, Hare JF, Campbell KL (2008) Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci U S A 105(2):571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leitch DB, Gauthier D, Sarko DK, Catania KC (2011) Chemoarchitecture of layer 4 isocortex in the american water shrew (sorex palustris). Brain Behav Evol 78(4):261–271

    Article  PubMed  Google Scholar 

  27. Anjum F, Turni H, Mulder PGH, van der Burg J, Brecht M (2006) Tactile guidance of prey capture in Etruscan shrews. Proc Natl Acad Sci U S A 103(44):16544–16549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Catania KC (2006) Olfaction: underwater ‘sniffing’ by semi-aquatic mammals. Nature 444(7122):1024–1025

    Article  CAS  PubMed  Google Scholar 

  29. Catania KC, Catania EH, Sawyer EK, Leitch DB (2013) Barrelettes without barrels in the American water shrew. PLoS One 8(6):e65975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Catania KC (2000) Epidermal sensory organs of moles, shrew moles, and desmans: a study of the family talpidae with comments on the function and evolution of Eimer’s organ. Brain Behav Evol 56(3):146–174

    Article  CAS  PubMed  Google Scholar 

  31. Eimer T (1871) Die schnauze des maulwurfes als tastwerkzeug. Arch Mikr Anat 7:181–191

    Article  Google Scholar 

  32. Catania KC (1995) A comparison of the Eimer's organs of three North American moles: the hairy-tailed mole (Parascalops breweri), the star-nosed mole (Condylura cristata), and the eastern mole (Scalopus aquaticus). J Comp Neurol 354(1):150–160

    Article  CAS  PubMed  Google Scholar 

  33. Halata Z (1972) Innervation of hairless skin of the nose of mole. I Intraepidermal nerve endings. Z Zellforsch Mikrosk Anat 125(1):108–120

    Article  CAS  PubMed  Google Scholar 

  34. Shibanai S (1988) Ultrastructure of the Eimer's organs of the Japanese shrew mole, Urotrichus talpoides (Insectivora, Mammalia) and their changes following infraorbital axotomy. Anat Anz 165(2–3):105–129

    CAS  PubMed  Google Scholar 

  35. Catania KC (1996) Ultrastructure of the Eimer's organ of the star-nosed mole. J Comp Neurol 365(3):343–354

    Article  CAS  PubMed  Google Scholar 

  36. Marasco PD, Catania KC (2007) Response properties of primary afferents supplying Eimer’s organ. J Exp Biol 210(Pt 5):765–780

    Article  PubMed  Google Scholar 

  37. Catania KC, Leitch DB, Gauthier D (2011) A star in the brainstem reveals the first step of cortical magnification. PLoS One 6(7):e22406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Catania KC, Kaas JH (1995) Organization of the Somatosensory Cortex of the Star-Nosed Mole. J Comp Neurol 351(4):549–567

    Article  CAS  PubMed  Google Scholar 

  39. Chubbuck JG (1966) Small motion biological stimulator. John Hopkins APL Tech Dig 5:18–23

    Google Scholar 

  40. Catania KC, Kaas JH (2001) Areal and callosal connections in the somatosensory cortex of the star-nosed mole. Somatosens Mot Res 18(4):303–311

    Article  CAS  PubMed  Google Scholar 

  41. Catania KC (1995) Magnified cortex in star-nosed moles. Nature 375(6531):453–454

    Article  CAS  PubMed  Google Scholar 

  42. Catania KC, Kaas JH (1997) Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387(2):215–233

    Article  CAS  PubMed  Google Scholar 

  43. Lee KJ, Woolsey TA (1975) A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse. Brain Res 99(2):349–353

    Article  CAS  PubMed  Google Scholar 

  44. Catania KC, Remple FE (2004) Tactile foveation in the star-nosed mole. Brain Behav Evol 63(1):1–12

    Article  PubMed  Google Scholar 

  45. Catania KC (2009) Symposium overview: Underwater sniffing guides olfactory localization in semiaquatic mammals. Ann N Y Acad Sci 1170:407–412

    Article  PubMed  Google Scholar 

  46. Welker WI (1964) Analysis of sniffing of the albino rat. Behaviour 22(3/4):223–244

    Article  Google Scholar 

  47. Deschenes M, Moore J, Kleinfeld D (2012) Sniffing and whisking in rodents. Curr Opin Neurobiol 22(2):243–250

    Article  CAS  PubMed  Google Scholar 

  48. Moore JD, Deschenes M, Furuta T, Huber D, Smear MC, Demers M et al (2013) Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497(7448):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ranade S, Hangya B, Kepecs A (2013) Multiple modes of phase locking between sniffing and whisking during active exploration. J Neurosci 33(19):8250–8256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Catania KC, Remple FE (2005) Asymptotic prey profitability drives star-nosed moles to the foraging speed limit. Nature 433(7025):519–522

    Article  CAS  PubMed  Google Scholar 

  51. Catania KC (2013) Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun 4:1441

    Article  PubMed  Google Scholar 

  52. Rajan R, Clement JP, Bhalla US (2006) Rats smell in stereo. Science 311(5761):666–670

    Article  CAS  PubMed  Google Scholar 

  53. Horton JC, Adams DL (2005) The cortical column: a structure without a function. Philos Trans R Soc Lond B Biol Sci 360(1456):837–862

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20(4):408–434

    CAS  PubMed  Google Scholar 

  55. Catania KC (2001) Early development of a somatosensory fovea: a head start in the cortical space race? Nat Neurosci 4(4):353–354

    Article  CAS  PubMed  Google Scholar 

  56. Azzopardi P, Cowey A (1993) Preferential representation of the fovea in the primary visual-cortex. Nature 361(6414):719–721

    Article  CAS  PubMed  Google Scholar 

  57. Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z Vergl Physiol 57(4):376–408

    Article  Google Scholar 

  58. Stephan H, Baron G, Fons R (1984) Brains of soricidae. 2. Volume comparison of brain components. Z Zool Syst Evol 22(4):328–342

    Article  Google Scholar 

  59. Estes JA (1989) Adaptations for aquatic living by carnivores. Cornell University Press, Ithaca

    Book  Google Scholar 

  60. Repenning CA (1976) Adaptive evolution of sea lions and walruses. Syst Zool 25(4):375–390

    Article  Google Scholar 

  61. Sarko DK, Leitch DB, Girard I, Sikes RS, Catania KC (2011) Organization of somatosensory cortex in the Northern grasshopper mouse (Onychomys leucogaster), a predatory rodent. J Comp Neurol 519(1):64–74

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C Catania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Catania, K., Catania, E. (2015). Comparative Studies of Somatosensory Systems and Active Sensing. In: Krieger, P., Groh, A. (eds) Sensorimotor Integration in the Whisker System. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2975-7_2

Download citation

Publish with us

Policies and ethics