Skip to main content

Mechanical Properties of Bone

  • Chapter
Skeletal Tissue Mechanics

Abstract

We have now learned much about the variable structure of the material inside bones. Previously, we learned that the muscle forces acting on the skeleton are quite large relative to the forces exerted on it by the outside world. It is now time to bring these two aspects of skeletal tissue mechanics together: to learn how strong bones are relative to the loads they must bear, and how the mechanical properties of bones depend on their structure.

Strength of bones is dependent upon the material, the microscopic structure and the shape of the whole bone.

A.A. Rauber, 1876, as quoted in Roesler (1987)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this experiment, apparent density was measured after the void spaces had been emptied of soft tissues, so they contained only air. That is why the symbol d is used here instead of the ρ that was used for apparent density in Sect. 2.4. How would you change Eq. (2.6) to obtain an expression for d?

  2. 2.

    A penetration test involves pushing a needle about 2.5 mm in diameter into the flat, machined surface of a region of cancellous bone. A graph of the resistive force vs. depth of penetration looks somewhat like a compression load-deformation plot. The correlation between the peak force seen in the penetration test and compressive strength is about R = 0.9 (Hvid and Hansen 1985).

References

  • Abendschein W, Hyatt GW. Ultrasonics and selected physical properties of bone. Clin Orthop Relat Res. 1970;69:294–301.

    CAS  PubMed  Google Scholar 

  • Albright JA, Brand RA. The scientific basis of orthopaedics. New York, NY: Appleton; 1987.

    Google Scholar 

  • Alexander RM. Optima for animals. Princeton, NJ: Princeton University Press; 1996.

    Google Scholar 

  • Ascenzi A, Bonucci E. The ultimate tensile strength of single osteons. Acta Anat. 1964;58:160–83.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The tensile properties of single osteons. Anat Rec. 1967;158:375–86.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The compressive properties of single osteons. Anat Rec. 1968;161:377–91.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The shearing properties of single osteons. Anat Rec. 1972;172:499–510.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi MG, Lomovtsev A. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. J Struct Biol. 2006;153:14–30.

    Article  CAS  PubMed  Google Scholar 

  • Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21(3):177–81.

    Article  CAS  PubMed  Google Scholar 

  • Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res. 1987;1(1):64–7.

    CAS  PubMed  Google Scholar 

  • Ashman RB, Mayer DC, Cowin SC, Van Buskirk WC. Elastic properties of human and canine femora. Trans Orthop Res Soc. 1983;8:127.

    Google Scholar 

  • Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61.

    Article  CAS  PubMed  Google Scholar 

  • Ashman RB, Van Buskirk WC, Cowin SC, Sandborn PM, Wells MK, Rice JC. The mechanical properties of immature osteopetrotic bone. Calcif Tissue Int. 1985a;37:73–6.

    Article  CAS  PubMed  Google Scholar 

  • Ashman RB, Rosinia G, Cowin SC, Fontenot MG. The bone tissue of the canine mandible is elastically isotropic. J Biomech. 1985b;18:717–21.

    Article  CAS  PubMed  Google Scholar 

  • Bargren JH, Bassett CAL, Gjelsvik A. Mechanical properties of hydrated cortical bone. J Biomech. 1974;7:239–45.

    Article  CAS  PubMed  Google Scholar 

  • Batson EL, Reilly GC, Currey JD, Balderson DS. Postexercise and positional variation in mechanical properties of the radius in young horses. Equine Vet J. 2000;32:95–100.

    Article  CAS  PubMed  Google Scholar 

  • Beaupre GS, Carter DR. Finite element analysis in biomechanics. In: Biewener AA, editor. Biomechanics—structures and systems. Oxford: Oxford University Press; 1992. p. 149–74.

    Google Scholar 

  • Behrens JC, Walker PS, Shoji H. Variations in strength and structure of cancellous bone at the knee. J Biomech. 1974;7:201–7.

    Article  CAS  PubMed  Google Scholar 

  • Bensusan JS, Davy DT, Heiple KG, Verdin PJ. Tensile, compressive, and torsional testing of cancellous bone. Trans Orthop Res Soc. 1983;8:132.

    Google Scholar 

  • Bevill G, Farhamand F, Keaveny TM. Heterogeneity of yield strain in low-density versus high-density human trabecular bone. J Biomech. 2009;42:2165–70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonfield W, Clark EA. Elastic deformation of compact bone. J Mater Sci. 1973;8:1590–4.

    Article  CAS  Google Scholar 

  • Bonfield W, Li CH. Anistropy of non-elastic flow in bone. J Appl Physiol. 1967;38:2450.

    Article  Google Scholar 

  • Bonfield W, Tully AE. Ultrasonic analysis of the Young’s modulus of cortical bone. J Biomed Eng. 1982;4:23–7.

    Article  CAS  PubMed  Google Scholar 

  • Boyde A, Riggs CM. The quantitative study of the orientation of collagen in compact bone slices. Bone. 1990;11:35–9.

    Article  CAS  PubMed  Google Scholar 

  • Brown TD, Ferguson AB. Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand. 1980;51:429–37.

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Biddulph RB, Wilcox PD. A strength-porosity relation involving different pore geometry and orientation. Am Ceram Soc J. 1964;47:320.

    Article  CAS  Google Scholar 

  • Burr DB, Schaffler MB, Fredrickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21:939–45.

    Article  CAS  PubMed  Google Scholar 

  • Burstein AH, Frankel VH. The viscoelastic properties of some biological materials. Ann N Y Acad Sci. 1968;146:158–65.

    Article  CAS  PubMed  Google Scholar 

  • Burstein AH, Currey JD, Frankel VH, Reilly DT. The ultimate properties of bone tissue: the effects of yielding. J Biomech. 1972;5:35–44.

    Article  CAS  PubMed  Google Scholar 

  • Burstein AH, Zika JM, Heiple KG, Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg. 1975;57A:956–61.

    CAS  Google Scholar 

  • Carter DR, Hayes WC. Fatigue life of compact bone. I. Effects of stress amplitude, temperature and density. J Biomech. 1976;9:27–34.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Hayes WC. Compact bone fatigue damage. I. Residual strength and stiffness. J Biomech. 1977a;10:325–37.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg. 1977b;59A:954–62.

    Google Scholar 

  • Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res. 1978;135:192–217.

    PubMed  Google Scholar 

  • Carter DR, Hayes WC, Schurman DJ. Fatigue life of compact bone. II. Effects of microstructure and density. J Biomech. 1976;9:211–8.

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Schwab GH, Spengler DM. Tensile fracture of cancellous bone. Acta Orthop Scand. 1980;51:733–41.

    Article  CAS  PubMed  Google Scholar 

  • Chang WCW, Christensen TM, Pinilla TP, Keaveny TM. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric. J Orthop Res. 1994;17:582–5.

    Article  Google Scholar 

  • Charlebois M, Pretterklieber M, Zysset PK. The role of fabric in the large strain compressive behavior of human trabecular bone. Trans ASME J Biomech Eng. 2010;132(12), 121006.

    Article  Google Scholar 

  • Chen HL, Gundjian AA. Determination of the bone-crystallites distribution function by x-ray diffraction. Med Biol Eng. 1974;12:531–5.

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subschodral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 1990;23:1103–14.

    Article  CAS  PubMed  Google Scholar 

  • Cowin SC. The relationship between the elasticity tensor and the fabric tensor. Mech Mater. 1985;4:137–47.

    Article  Google Scholar 

  • Cowin SC. Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng. 1986;108:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Cowin SC. Bone mechanics. Boca Raton, FL: CRC Press; 1989.

    Google Scholar 

  • Cowin SC, editor. Bone mechanics handbook. 2nd ed. Boca Raton, FL: CRC Press; 2001.

    Google Scholar 

  • Cowin SC, Mehrabadi MM. Identification of the elastic symmetry of bone and other materials. J Biomech. 1989;22:503–15.

    Article  CAS  PubMed  Google Scholar 

  • Crowninshield RD, Pope MH. The response of compact bone in tension at various strain rates. Ann Biomed Eng. 1974;2:217–25.

    Article  Google Scholar 

  • Currey JD. Differences in the tensile strength of bone of different histological types. J Anat. 1959;98:87–95.

    Google Scholar 

  • Currey JD. Three analogies to explain the mechanical properties of bone. Biorheology. 1964;2:1–10.

    Google Scholar 

  • Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969a;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. The relationship between the stiffness and the mineral content of bone. J Biomech. 1969b;2:477–80.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. Effects of porosity and mineral content on the Young’s modulus of bone. Proc Eur Soc Biomech. 1986;5:104.

    Google Scholar 

  • Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech. 1988;21:131–9.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. Bones: structure and mechanics. Princeton, NJ: Princeton University Press; 2002.

    Google Scholar 

  • Currey JD. Incompatible mechanical properties in compact bone. J Theoret Biol. 2004;231:569–80.

    Article  Google Scholar 

  • Currey JD, Butler G. The mechanical properties of bone tissue in children. J Bone Joint Surg. 1975;57A:810–4.

    Google Scholar 

  • Currey JD, Pitchford JW, Baxter PD. Variability of the mechanical properties of bone, and its evolutionary consequences. J R Soc Interf. 2007;4:127–35.

    Article  Google Scholar 

  • Dyson ED, Whitehouse WJ. Composition of trabecular bone in children and its relation to radiation dosimetry. Nature (London). 1968;217:576–8.

    Article  CAS  Google Scholar 

  • Enlow DH, Brown SO. A comparative histological study of fossil and recent bone tissues. Part I. Introduction, methods, fish and amphibian bone tissues. Tex J Sci. 1956;8:405–43.

    Google Scholar 

  • Enlow DH, Brown SO. A comparative histological study of fossil and recent bone tissues. Part II. Reptilian and bird bone tissues. Tex J Sci. 1957;9:186–214.

    Google Scholar 

  • Enlow DH, Brown SO. A comparative histological study of fossil and recent bone tissues. Part III. Mammalian bone tissues. General discussion. Tex J Sci. 1958;10:187–230.

    Google Scholar 

  • Evans FG, Vincentelli R. Relation of collagen fiber orientation to some mechanical properties of human cortical bone. J Biomech. 1969;2:63–71.

    Article  CAS  PubMed  Google Scholar 

  • Evans FG, Vincentelli R. Relations of the compressive properties of human cortical bone to histological structure and calcification. J Biomech. 1974;7:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech. 1996;29:1309–17.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Orthopaedic biomechanics. Springfield: Thomas; 1973.

    Google Scholar 

  • Frost HM. Intermediary organization of the skeleton. Boca Raton, FL: CRC Press; 1986.

    Google Scholar 

  • Frost HM, Roth H, Villanueva AR. Physical characteristics of bone. Part III. A semimicro measurement of unit shear stress. Henry Ford Hosp Med J. 1961;9:157–62.

    CAS  PubMed  Google Scholar 

  • Fung YC. A first course in continuum mechanics. Englewood Cliffs, NJ: Prentice Hall; 1969.

    Google Scholar 

  • Fung YC. A first course in continuum mechanics. Englewood Cliffs, NJ: Prentice-Hall; 1977.

    Google Scholar 

  • Fyhrie DP, Carter DR. A unifying principle relating stress to trabecular bone morphology. J Orthop Res. 1986;4:304–17.

    Article  CAS  PubMed  Google Scholar 

  • Gannon RE, Harris GM, Vasilos T. Effect of porosity on mechanical thermal, and dielectric properties of fused silica. Am Ceram Soc Bull. 1965;44:460.

    CAS  Google Scholar 

  • Gebhardt FSMW. Uber funktionell wichtige anordnungsweisen der feineren und groberen bauelemente des wirbeltierknochens. II. Spezieller Teil. 1. Der bau der Haversschen lamellensysteme und seine funktionelle bedeutung. Roux Arch. 1905;20:187–334.

    Google Scholar 

  • Gebhardt FSMW. Uber funktionell wichtige anordnungsweisen der groberen und feineren bauelemente des wirbeltierknochens. I. Allgemeiner Teil. Wilhelm Roux Arch fur Entwicklungsmeckanik der Organismen. 1901;12:167–223.

    Google Scholar 

  • Gibson LJ. The mechanical behavior of cancellous bone. J Biomech. 1985;18:317–28.

    Article  CAS  PubMed  Google Scholar 

  • Giraud-Guille MM. Twisted plywood architecture of collagen fibrils on human compact bone osteons. Calcif Tissue Int. 1988;42:167–80.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20:1055–61.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech. 1983;16:865–969.

    Article  Google Scholar 

  • Gong JK, Arnold JS, Cohn SH. Composition of trabecular and cortical bone. Anat Rec. 1964;149:325–32.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin KJ, Sharkey NA. Material properties of interstitial lamellae reflect local strain environments. J Orthop Res. 2002;20:600–6.

    Article  PubMed  Google Scholar 

  • Gray RJ, Korbacher GK. Compressive fatigue behaviour of bovine compact bone. J Biomech. 1974;7:287–92.

    Article  CAS  PubMed  Google Scholar 

  • Harrigan TP, Mann RW. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci. 1984;19:761–7.

    Article  CAS  Google Scholar 

  • Harrigan TP, Jasty M, Mann RW, Harris WH. Limitations of the continuum assumption in cancellous bone. J Biomech. 1988;21:269–75.

    Article  CAS  PubMed  Google Scholar 

  • Hart RT. The finite element method. In: Cowin SC, editor. Bone mechanics. Boca Raton, FL: CRC Press; 1989. p. 53–74.

    Google Scholar 

  • Hashin Z, Shtrikman S. A variation approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids. 1963;11:127.

    Article  Google Scholar 

  • Hernandez CJ, Beaupre GS, Keller TS, Carter DR. The influence of bone volume fraction and ash fraction on bone strength and modulus. Bone. 2001;29:74–8.

    Article  CAS  PubMed  Google Scholar 

  • Hèrt J, Kucera P, Vavra M, Volenik V. Comparison of the mechanical properties of both the primary and Haversian bone tissue. Acta Anat. 1965;61:412–23.

    Article  PubMed  Google Scholar 

  • Hill R. The elastic behavior of a crystalline aggregate. Proc Phys Soc Lond. 1952;A65:349.

    Article  Google Scholar 

  • Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids. 1963;11:357.

    Article  Google Scholar 

  • Hirsch TJ. Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate. Proc Am Concr Soc. 1962;59:427.

    Google Scholar 

  • Hulsen C. Specifisches Gewicht, Elasticitat und Festigkeit des Knochengewebes. Bull Lab Biol St Petersburg. 1898;1:7–37.

    Google Scholar 

  • Hvid I. Mechanical strength of trabecular bone at the knee. Dan Med Bull. 1988;35:345–65.

    CAS  PubMed  Google Scholar 

  • Hvid I, Hansen SL. Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res. 1985;3:464–72.

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL. Patterns of stress and strain in the macaque mandible. In: Carlson DS, editor. Craniofacial biology. Ann Arbor, MI: Center for Human Growth and Development; 1981.

    Google Scholar 

  • Johnson M, Katz JL. Some new developments in the rheology of bone. Biorheol Suppl. 1984;1:169–74.

    CAS  Google Scholar 

  • Kaplan SJ, Hayes WC, Stone JL, Beaupre GS. Tensile strength of bovine trabecular bone. J Biomech. 1985;18:723–7.

    Article  CAS  PubMed  Google Scholar 

  • Katz JL. Hard tissue as a composite material. I. Bounds on the elastic behavior. J Biomech. 1971;4:455–73.

    Article  CAS  PubMed  Google Scholar 

  • Katz JL. Composite material models for cortical bone. In: Cowin SC, editor. Mechanical properties of bone. New York, NY: ASME; 1981.

    Google Scholar 

  • Katz JL, Yoon HS, Lipson S, Maharidge R, Meunier A, Christel P. The effects of remodeling on the elastic properties of bone. Calcif Tissue Int. 1984;36:S31–6.

    Article  PubMed  Google Scholar 

  • Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech. 1994;27:1127–37.

    Article  CAS  PubMed  Google Scholar 

  • Knets IV. Mechanics of biological tissues. A review. Polym Mech (translation of Mekhanika Polimerov). 1978;13:434–40.

    Article  Google Scholar 

  • Kölliker A. Handbuch der Bewebelehre de Menschen. Leipzig, 1889.

    Google Scholar 

  • Kuhn JL, Goldstein SA, Choi KW, London M, Feldkamp LA, Mathews LS. Comparison of the trabecular and cortical tissue moduli from human iliac crests. J Orthop Res. 1989a;7:876–84.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn JL, Goldstein SA, Ciarelli MJ, Mathews LS. The limitations of canine trabecular bone as a model for human: a biomechanical study. J Biomech. 1989b;22:95–107.

    Article  CAS  PubMed  Google Scholar 

  • Laird GW, Kingsbury HB. Complex viscoelastic moduli of bovine bone. J Biomech. 1973;6(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  • Lakes RS, Katz JL. Interrelationships among the viscoelastic functions for anisotropic solids: application to calcified tissues and related systems. J Biomech. 1974;7:259–70.

    Article  CAS  PubMed  Google Scholar 

  • Lakes RS, Katz JL. Viscoelastic properties of wet cortical bone. III. A nonlinear constitutive equation. J Biomech. 1979a;12:689–98.

    Article  CAS  PubMed  Google Scholar 

  • Lakes RS, Katz JL. Viscoelestic properties of wet cortical bone. II. Relaxation mechanisms. J Biomech. 1979b;12:679–87.

    Article  CAS  PubMed  Google Scholar 

  • Lakes R, Saha S. Long-term torsional creep in compact bone. J Biomech Eng. 1980;102:178–80.

    Article  CAS  PubMed  Google Scholar 

  • Lakes RS, Katz JL, Sternstein SS. Viscoelastic properties of wet cortical bone. I. Torsional and biaxial studies. J Biomech. 1979;12:657–78.

    Article  CAS  PubMed  Google Scholar 

  • Lakes RS, Yoon HS, Katz JL. Ultrasonic wave propagation and attenuation in wet bone. J Biomed Eng. 1986;8:143–8.

    Article  CAS  PubMed  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO. On the mechanistic origins of toughness in bone. Annu Rev Mater Res. 2010;40:25–53.

    Article  CAS  Google Scholar 

  • Lekhnitskii SG. Theory of elasticity of an anisotropic body (English translation). San Francisco: Holden-Day; 1963.

    Google Scholar 

  • Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behavior of trabecular bone specimens. J Biomech. 1992;25:359–68.

    Article  CAS  PubMed  Google Scholar 

  • Lipson SF, Katz JL. The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech. 1984;17:231–40.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie JK. The elastic constants of a solid containing spherical holes. Proc Phys Soc. 1950;B63:2–11.

    Article  Google Scholar 

  • Margel-Robertson D, Smith DC. Compressive strength of mandibular bone as a function of microstructure and strain rate. J Biomech. 1978;11:455–71.

    Article  Google Scholar 

  • Martin RB. Porosity and specific surface of bone. Crit Rev Biomed Eng. 1984;10:179–222.

    CAS  PubMed  Google Scholar 

  • Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech. 1993;26:1047–54.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech. 1989;22:419–26.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB, Pickett JC, Zinaich S. Studies of skeletal remodeling in aging men. Clin Orthop Relat Res. 1980;149:268–82.

    PubMed  Google Scholar 

  • Martin RB, Lau ST, Mathews PV, Gibson VA, Stover SM. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. J Biomech. 1996;29:1515–22.

    Article  CAS  PubMed  Google Scholar 

  • Mazess RB, Cameron JR. Direct readout of bone mineral content using radionuclide absorptiometry. Int J Appl Radiat Isot. 1972;23:471–9.

    Article  CAS  PubMed  Google Scholar 

  • McElhaney JH. Dynamic response of bone and muscle tissue. J Appl Physiol. 1966;21:1231–6.

    CAS  PubMed  Google Scholar 

  • McElhaney J, Alem N, Roberts V. A porous block model for cancellous bones. ASME Paper No. 70-WA/BHF-2, American Society of Mechanical Engineers, New York; 1970. p. 1–9

    Google Scholar 

  • Moyle DD, Bowden RW. Fracture of human femoral bone. J Biomech. 1984;17:203–13.

    Article  CAS  PubMed  Google Scholar 

  • Moyle DD, Welborn JW, Cooke FW. Work to fracture of canine femoral bone. J Biomech. 1978;11:435–40.

    Article  CAS  PubMed  Google Scholar 

  • Murray JD. Mathematical biology. New York, NY: Springer; 2003.

    Google Scholar 

  • Murray PDF. Bones: a study of the development and structure of the vertebrate skeleton. (Copyright 1936 Cambridge University Press). Cambridge: Cambridge University Press. Reprinted 1985.

    Google Scholar 

  • Neil JL, Demos TC, Stone JL, Hayes WC. Tensile and compressive properties of vertebral trabecular bone. Trans Orthop Res Soc. 1983;8:344.

    Google Scholar 

  • Norrdin RW, Phemister RD, Jaenke RS, LoPresi CA. Density and composition of trabecular and cortical bone in perinatally irradiated beagles with chronic renal failure. Calcif Tissue Res. 1977;24:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Norrdin RW, Histand MB, Sheahan HJ, Carpenter TR. Effects of corticosteroids on mechanical strength of intervertebral joints and vertebrae in dogs. Clin Orthop Relat Res. 1990;259:268–76.

    PubMed  Google Scholar 

  • Olivo OM. Rispondenza della funzione meccanica varia degli osteoni con la loro diversa minuta architettura. Bollenttino della Societa Italiana Biologia Sperimentale. 1937;12:400–1.

    Google Scholar 

  • Olivo OM, Maj G, Toajari E. Sul significato della minuta struttura del tessuto osseo compatto. Bollenttino della Societa Italiana Biologia Sperimentale. 1937;109:369–94.

    Google Scholar 

  • Ozkaya N, Nordin M. Fundamentals of biomechanics: equilibrium, motion and deformation. 3rd ed. New York, NY: Springer; 2012.

    Book  Google Scholar 

  • Panjabi MM, White AA, Southwick WO. Mechanical properties of bone as a function of rate of deformation. J Bone Joint Surg. 1973;55A:322–30.

    Google Scholar 

  • Pauwels F. Biomechanics of the locomotor apparatus: contributions on the functional anatomy of the locomotor apparatus. Berlin: Springer; 1980.

    Book  Google Scholar 

  • Pidaparti R, Burr DB. Collagen fiber orientation and geometry effects on the mechanical properties of secondary osteons. J Biomech. 1992;25:869–80.

    Article  CAS  PubMed  Google Scholar 

  • Piekarski K. Analysis of bone as a composite material. J Biomech. 1973a;11:557–65.

    CAS  Google Scholar 

  • Piekarski K. Analysis of bone as a composite aggregate. Int J Eng Sci. 1973b;11:557.

    Article  CAS  Google Scholar 

  • Portigliatti-Barbos M, Bianco P, Ascenzi A. Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. Acta Anat. 1983;115:178–86.

    Article  CAS  PubMed  Google Scholar 

  • Portigliatti-Barbos M, Bianco P, Ascenzi A, Boyde A. Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the human femoral shaft with reference to its mechanical properties. Metab Bone Dis Relat Res. 1984;5:309–15.

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers JGM. The dynamic shear modulus of bone in dependence on the form. Acta Morphol Neerl Scand. 1977;15:185–201.

    CAS  PubMed  Google Scholar 

  • Ramaekers JGM. The rheological behavior of cortical bone and cartilage of Bos taurus. The importance of maximal damping capacity in collagen. Acta Morphol Neerl Scand. 1978;16:55–67.

    CAS  PubMed  Google Scholar 

  • Ramaekers JGM. The mechanical properties of mallard humeral bone in dependence on the form. Acta Morphol Neerl Scand. 1979a;17:173–80.

    CAS  PubMed  Google Scholar 

  • Ramaekers JGM. The dynamic shear modulus and damping of compact bovine metacarpal bone in dependence on the topography along the bone shaft. Neth J Zool. 1979b;29:151–65.

    Article  CAS  Google Scholar 

  • Ramaekers JGM. The rheological behavior of skeletal material originating from several classes of vertebrates. Neth J Zool. 1979c;29:166–76.

    Article  Google Scholar 

  • Ranvier J. Traite Technique d’Histologie. Paris: Savy; 1889.

    Google Scholar 

  • Raux P, Townsend PR, Miegel R, Rose RM, Radin EL. Trabecular architecture of the human patella. J Biomech. 1975;8:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Reilly DT, Burstein AH. The mechanical properties of cortical bone. J Bone Joint Surg. 1974;56A:1001–21.

    Google Scholar 

  • Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8:393–405.

    Article  CAS  PubMed  Google Scholar 

  • Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech. 1974;7:271–5.

    Article  CAS  PubMed  Google Scholar 

  • Rho J-Y, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile specimens. J Biomech. 1993;26:111–9.

    Article  CAS  PubMed  Google Scholar 

  • Rho JY, Currey JD, Zioupos P, Pharr GM. The anisotropic Young’s modulus of equine secondary osteons and interstitial bone determined by nanoindentation. J Exp Biol. 2001;204:1775–81.

    CAS  PubMed  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA. On the dependency of the elasticity and strength of cancellous bone on apparent density. J Biomech. 1988;21:155–68.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RO. The conflicts between strength and toughness. Nat Mat. 2011;10:817–22.

    Article  CAS  Google Scholar 

  • Roesler H. The history of some fundamental concepts in bone biomechanics. J Biomech. 1987;20:1025–34.

    Article  CAS  PubMed  Google Scholar 

  • Rohl L, Larsen E, Linde F, Odgaard A, Jorgensen J. Tensile and compressive properties of cancellous bone. J Biomech. 1991;24:1143–9.

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri A, Raspanti M, Martini D, Guizzardi S. Bone as a composite material: collagen fibers orientation and functional requirements. In: Motta PM, editor. Recent advances in microscopy of cells, tissue, and organs. Rome: Antonio Delfino Editore; 1997. p. 167–1970.

    Google Scholar 

  • Schaffler MB. Stiffness and fatigue of compact bone at physiological strains and strain rates. Doctoral dissertation, West Virginia University, Morgantown, WV; 1985.

    Google Scholar 

  • Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21:13–6.

    Article  CAS  PubMed  Google Scholar 

  • Schaffler MB, Radin EL, Burr DB. Mechanical and morphological effects of strain rate on fatigue of compact bone. Bone (New York). 1989;10:207–14.

    CAS  Google Scholar 

  • Sedlin ED. A rheological model for cortical bone. Acta Orthop Scand. 1965;83:1–78.

    Article  Google Scholar 

  • Skedros JG, Holmes JL, Vada EG, et al. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A. 2005;286:781–803.

    Article  Google Scholar 

  • Smith RW, Keiper DA. Dynamic measurement of viscoelastic properties of bone. Am J Med Electron. 1965;4(4):156–60.

    PubMed  Google Scholar 

  • Smith JW, Walmsley R. Factors affecting the elasticity of bone. J Anat. 1959;93:503–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stech EL. A descriptive model of lamellar bone anisotropy. In: Byars EF, editor. Biomechanics monographs. New York, NY: ASME; 1967. p. 236–45.

    Google Scholar 

  • Townsend PR, Raux P, Rose RM, Miegel RE, Radin EL. The distribution and anisotropy of the stiffness of cancellous bone in the human patella. J Biomech. 1975;8:363–7.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH. Yield behavior of bovine cancellous bone. J Biomech Eng. 1989;111:256–60.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone (New York). 1993;14:595–608.

    CAS  Google Scholar 

  • Turner CH, Burr DB. Orientation of collagen in osteonal bone. Calcif Tissue Int. 1997;60:90.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH, Cowin SC. Dependence of elastic constants of an anisotropic porous material upon porosity and fabric. J Mater Sci. 1987;22:3178–84.

    Article  CAS  Google Scholar 

  • Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC. The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech. 1990;23:549–61.

    Article  CAS  PubMed  Google Scholar 

  • Underwood EE. Quantitative stereology. Reading, MA: Addison-Wesley; 1970.

    Google Scholar 

  • Vahey JW, Lewis JL, Vanderby R. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. J Biomech. 1987;20:29–33.

    Article  CAS  PubMed  Google Scholar 

  • Van Buskirk WC, Cowin SC, Ward RN. Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone. J Biomech Eng. 1981;103:67–72.

    Article  PubMed  Google Scholar 

  • Viceconti M. Multiscale modeling of the skeletal system. Cambridge: Cambridge University Press; 2012.

    Google Scholar 

  • Vincentelli R, Evans FG. Relations among mechanical properties, collagen fibers, and calcification in adult human cortical bone. J Biomech. 1971;4:193–201.

    Article  CAS  PubMed  Google Scholar 

  • Vincentelli R, Grigorov M. The effect of Haversian remodeling on the tensile properties of human cortical bone. J Biomech. 1985;18:201–7.

    Article  CAS  PubMed  Google Scholar 

  • Von Ebner V. Uber den feineren bau der knochensubstanz. Sitzungsberichte der Deutschen Akademie der Wissenschaften Zu Berlin. 1875;72:45–138.

    Google Scholar 

  • Vose GP, Kubala AL. Bone strength—its relationship to x-ray-determined ash content. Human Biol. 1959;31:261–70.

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM. Mechanical design in organisms. New York, NY: Halsted Press; 1976.

    Google Scholar 

  • Walmsley R, Smith JW. Variation in bone structure and the value of Young’s modulus. J Anat Lond. 1957;91:603.

    Google Scholar 

  • Whitehouse WJ. A stereological method for calculating internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions. J Microsc (Oxford). 1974a;101:169–80.

    Article  CAS  Google Scholar 

  • Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J Microsc (Oxford). 1974b;101(2):153–68.

    Article  CAS  Google Scholar 

  • Whitehouse WJ, Dyson ED. Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat. 1974;118:417–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams JL, Lewis JL. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng. 1982;104:50–6.

    Article  CAS  PubMed  Google Scholar 

  • Wolff J. The law of bone remodeling (Translation of Wolff’s Das Gesetz der Transformation der Knochen by P. Maquet and R. Furlong.). Berlin: Springer; 1892.

    Google Scholar 

  • Yamada H. Strength of biological materials. Huntington: Krieger; 1973.

    Google Scholar 

  • Yoon HS, Katz JL. Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry. J Biomech. 1976a;9:407–12.

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Katz JL. Ultrasonic wave propagation in human cortical bone. II. Measurements of elastic properties and microhardness. J Biomech. 1976b;9:459–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Mechanical Properties of Bone. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_7

Download citation

Publish with us

Policies and ethics