Skip to main content

Linear Canonical Transforms on Quantum States of Light

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

Many quantum information and quantum computation protocols exploit high-dimensional Hilbert spaces. Photons, which constitute the main carrier of information between nodes of quantum networks, can store high-dimensional quantum bits in their spatial degrees of freedom. These degrees of freedom can be tailored by resorting to the symplectic invariant approach based on lossless linear canonical transformations. These transformations enable one to manipulate the transverse structure of a single photon prepared in superpositions of paraxial modes. We present a basic introduction of these transformations acting on photons and discuss some of their applications for elementary quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use a slightly different symplectic metric matrix Ω to that used in Chap. 2. For every \(\mathbf{T} \in Sp(4, \mathbb{R})\), the symplecticity condition reads as T Ω T T = Ω.

  2. 2.

    The metaplectic group is a double cover of the symplectic group.

  3. 3.

    For simplicity, we focus on the transverse profile of a single-photon, considering a certain polarization \(\sigma\) and a frequency ω, see Eq. (15.25). Also, without loss of generality, we consider all \(\mathcal{O}_{\ell,p}\) having  ≥ 0. Spheres with  < 0 exhibit a state configuration identical to those with  > 0, after inversion with respect to their centers.

References

  1. G.S. Agarwal, SU(2) structure of the Poincaré sphere for light beams with orbital angular momentum. J. Opt. Soc. Am. A 16, 2914–2916 (1999)

    Article  ADS  Google Scholar 

  2. G.S. Agarwal, E. Wolf, Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics: I. Mapping theorems and ordering of functions of noncommuting operators. Phys. Rev. D 2, 2161–2186 (1970)

    MathSciNet  MATH  Google Scholar 

  3. G.S. Agarwal, E. Wolf, Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics: II. Quantum mechanics in phase space. Phys. Rev. D 2, 2187–2205 (1970)

    MathSciNet  MATH  Google Scholar 

  4. T. Alieva, M.J. Bastiaans, Mode mapping in paraxial lossless optics. Opt. Lett. 30, 1461–1463 (2005)

    Article  ADS  Google Scholar 

  5. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  6. Arvind, B. Dutta, N. Mukunda, R. Simon, The real symplectic groups in quantum mechanics and optics. Pramana J. Phys. 45, 471–497 (1995)

    Article  ADS  Google Scholar 

  7. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nature Phys. 8, 285–291 (2012)

    Article  ADS  Google Scholar 

  8. M.A. Bandres, J.C. Gutiérrez-Vega, Ince Gaussian beams. Opt. Lett. 29, 144–146 (2004)

    Article  ADS  Google Scholar 

  9. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  10. S.M. Barnett, Methods in Theoretical Quantum Optics (Oxford University Press, New York, 2003)

    Google Scholar 

  11. M.J. Bastiaans, The Wigner distribution function applied to optical signals and systems. Opt. Commun. 25, 26–30 (1978)

    Article  ADS  Google Scholar 

  12. M.J. Bastiaans, Wigner distribution function and its application to first-order optics. J. Opt. Soc. Am. A 69, 1710–1716 (1979)

    Article  ADS  Google Scholar 

  13. M.J. Bastiaans, T. Alieva, Synthesis of an arbitrary ABCD system with fixed lens positions. Opt. Lett. 31, 2414–2416 (2006)

    Article  ADS  Google Scholar 

  14. H. Bechmann-Pasquinucci, A. Peres, Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313–3316 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Bialynicki-Birula, Exponential Localization of Photons. Phys. Rev. Lett. 24, 5247–5250 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MATH  Google Scholar 

  17. D. Bruss, C. Macchiavello, Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  18. G.F. Calvo, Wigner representation and geometric transformations of optical orbital angular momentum spatial modes. Opt. Lett. 30, 1207–1209 (2005)

    Article  ADS  Google Scholar 

  19. G.F. Calvo, A. Picón, Manipulation of single-photon states encoded in transverse spatial modes: possible and impossible tasks. Phys. Rev. A 77, 012302 (2008)

    Article  ADS  Google Scholar 

  20. G.F. Calvo, A. Picón, E. Bagan, Quantum field theory of photons with orbital angular momentum. Phys. Rev. A 73, 013805 (2006)

    Article  ADS  Google Scholar 

  21. G.F. Calvo, A. Picón, R. Zambrini, Measuring the complete transverse spatial mode spectrum of a wave field. Phys. Rev. Lett. 100, 173902 (2008)

    Article  ADS  Google Scholar 

  22. O. Castaños, E. López-Moreno, K.B. Wolf, Lie Methods in Optics (Springer, Berlin, 1986)

    Google Scholar 

  23. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  24. D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  25. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, G.-C. Guo, Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502 (2015)

    Article  ADS  Google Scholar 

  26. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    Article  MATH  Google Scholar 

  27. D. Dragoman, Phase space correspondence between classical optics and quantum mechanics. Prog. Opt. 43, 433–496 (2002)

    Article  Google Scholar 

  28. A.J. Dragt, Lie algebraic theory of geometrical optics and optical aberrations. J. Opt. Soc. Am. 72, 372–379 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  29. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  Google Scholar 

  30. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485–487 (2001)

    Article  ADS  Google Scholar 

  31. R. Fickler, R. Lapkiewicz, W.N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger, Quantum entanglement of high angular momenta. Science 338, 640–643 (2012)

    Article  ADS  Google Scholar 

  32. S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299–313 (2008)

    Article  Google Scholar 

  33. E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher, P.J. Haglin, R.E. Williams, Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum. Phys. Rev. Lett. 90, 203901 (2003)

    Article  ADS  Google Scholar 

  34. A.D. Greentree, S.G. Schirmer, F. Green, L.C.L. Hollenberg, A.R. Hamilton, R.G. Clark, Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004)

    Article  ADS  Google Scholar 

  35. S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, A. Zeilinger, Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)

    Article  ADS  Google Scholar 

  36. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  37. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, A. Zeilinger, Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418–4421 (2000)

    Article  ADS  Google Scholar 

  39. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  40. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  41. B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. Ralph, K.J. Resch, G.J. Pryde, J.L. O’Brien, A. Gilchrist, A.G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009)

    Article  Google Scholar 

  42. M. Lassen, G. Leuchs, U.L. Andersen, Continuous variable entanglement and squeezing of orbital angular momentum states. Phys. Rev. Lett. 102, 163602 (2009)

    Article  ADS  Google Scholar 

  43. H. Lee, Theory and application of the quantum phase-space distribution functions. Phys. Rep. 259, 147–211 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1983)

    Google Scholar 

  45. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)

    Book  Google Scholar 

  46. W. Mecklenbraüker, F.F. Hlawatsch (eds.), The Wigner Distribution-Theory and Applications in Signal Processing (Elsevier, Amsterdam, 1997)

    Google Scholar 

  47. G. Nienhuis, L. Allen, Paraxial wave optics and harmonic oscillators. Phys. Rev. A 48, 656–665 (1993)

    Article  ADS  Google Scholar 

  48. J.L. O’Brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)

    Article  ADS  Google Scholar 

  49. M.J. Padgett, J. Courtial, Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 24, 430–432 (1999)

    Article  ADS  Google Scholar 

  50. T.C. Ralph, G.J. Pryde, Optical quantum computation. Prog. Opt. 54, 209–269 (2010)

    Article  Google Scholar 

  51. J. Řeháček, Z. Hradil, Z. Bouchal, R. Čelechovský, I. Rigas, L.L. Sánchez-Soto, Full tomography from compatible measurements. Phys. Rev. Lett. 103, 250402 (2009)

    Article  Google Scholar 

  52. J.J. Sakurai, Modern Quantum Optics (Addison-Wesley, Madrid, 1994)

    Google Scholar 

  53. F. Scheck, Quantum Physics (Springer, Heidelberg, 2007)

    MATH  Google Scholar 

  54. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001)

    Book  MATH  Google Scholar 

  55. A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)

    Google Scholar 

  56. R. Simon, G.S. Agarwal, Wigner representation of Laguerre–Gaussian beams. Opt. Lett. 25, 1313–1315 (2000)

    Article  ADS  Google Scholar 

  57. R. Simon, N. Mukunda, Optical phase space, Wigner representation, and invariant quality parameters. J. Opt. Soc. Am. A 17, 2440–2463 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  58. R. Simon, K.B. Wolf, Structure of the set of paraxial optical systems. J. Opt. Soc. Am. A 17, 342–355 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  59. K. Sundar, N. Mukunda, R. Simon, Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams. J. Opt. Soc. Am. A 12, 560–569 (1995)

    Article  ADS  Google Scholar 

  60. S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, D.B. Ostrowsky, On the genesis and evolution of integrated quantum optics. Laser Photonics Rev. 6, 115–143 (2011)

    Article  Google Scholar 

  61. D.S. Tasca, R.M. Gomes, F. Toscano, P.H. Souto Ribeiro, S.P. Walborn, Continuous-variable quantum computation with spatial degrees of freedom of photons. Phys. Rev. A 83, 052325 (2011)

    Article  ADS  Google Scholar 

  62. M.E. Testorf, B.M. Hennelly, J. Ojeda-Castañeda (eds.), Phase-Space Optics: Fundamentals and Applications (McGraw-Hill, New York, 2009)

    Google Scholar 

  63. A. Torre, Linear Ray and Wave Optics in Phase Space (Elsevier, Amsterdam, 2005)

    Google Scholar 

  64. J.P. Torres, L. Torner (eds.), Twisted Photons (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  65. S.J. van Enk, Geometric phase, transformations of gaussian light beams and angular momentum transfer. Opt. Commun. 102, 59–64 (1993)

    Article  ADS  Google Scholar 

  66. M. VanValkenburgh, Manipulation of semiclassical photon states. J. Math. Phys. 50, 023501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  67. S.P. Walborn, D.S. Lemelle, M.P. Almeida, P.H. Souto Ribeiro, Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)

    Article  ADS  Google Scholar 

  68. X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  69. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Article  ADS  Google Scholar 

  70. K.B. Wolf, Linear transformations and aberrations in continuous and finite systems. J. Phys. A Math. Theor. 41, 304026 (2008)

    Article  Google Scholar 

  71. Z.S. Yuan, X.H. Bao, C.Y. Lu, J. Zhang, C.Z. Peng, J.W. Pan, Entangled photons and quantum communication. Phys. Rep. 497, 1–40 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract # DE-AC02-06CH11357. G.F.C. gratefully acknowledges the University of Castilla-La Mancha for financial support. G.F.C and A.P. acknowledge fruitful discussions with T. Alieva, J.A. Rodrigo, M.L. Calvo, M. VanValkenburgh, and S. Walborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Picón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calvo, G.F., Picón, A. (2016). Linear Canonical Transforms on Quantum States of Light. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_15

Download citation

Publish with us

Policies and ethics