Skip to main content

Characterizing f-vectors (Supplemental)

  • Chapter
Eulerian Numbers

Part of the book series: Birkhäuser Advanced Texts Basler Lehrbücher ((BAT))

  • 2064 Accesses

Abstract

What characterizes an f-vector of a simplicial complex? The entries are obviously nonnegative integers, and f 0 = 1, but what other restrictions are there? Well, for one thing, if there are n vertices there can be at most \(\binom{n}{2}\) edges, since there is at most one edge for every pair of vertices. That is,

$$\displaystyle{f_{2} \leq \binom{f_{1}}{2}.}$$

This simple observation can be greatly generalized. It turns out there is a sharp upper bound on the number of (k + 1)-faces expressed as a polynomial in f k . (Likewise, there is a sharp lower bound on the number of k faces required for a given number of (k + 1)-faces.) Collectively, these restrictions, known as the Kruskal-Katona-Schützenberger inequalities (or KKS inequalities), characterize the set of f-vectors of simplicial complexes. We remark that characterizing f-vectors of boolean complexes is much, much simpler. See Problem 8.7 (Fig. 10.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aisbett N. Frankl-Füredi-Kalai inequalities on the γ-vectors of flag nestohedra. Discrete Comput Geom. 2014;51(2):323–36.

    Article  MATH  MathSciNet  Google Scholar 

  2. Billera LJ, Lee CW. A proof of the sufficiency of McMullen’s conditions for f-vectors of simplicial convex polytopes. J Combin Theory Ser A. 1981;31(3):237–55. Available from: http://dx.doi.org/10.1016/0097-3165(81)90058-3.

    Google Scholar 

  3. Björner A, Frankl P, Stanley R. The number of faces of balanced Cohen-Macaulay complexes and a generalized Macaulay theorem. Combinatorica. 1987;7(1):23–34. Available from: http://dx.doi.org/10.1007/BF02579197.

    Article  MATH  MathSciNet  Google Scholar 

  4. Charney R, Davis M. The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific J Math. 1995;171(1):117–37. Available from: http://projecteuclid.org/euclid.pjm/1102370321.

    MATH  MathSciNet  Google Scholar 

  5. Frohmader A. Face vectors of flag complexes. Isr J Math. 2008;164:153–64. Available from: http://dx.doi.org/10.1007/s11856-008-0024-3.

    Article  MATH  MathSciNet  Google Scholar 

  6. Gal ŚR. Real root conjecture fails for five- and higher-dimensional spheres. Discrete Comput Geom. 2005;34(2):269–84. Available from: http://dx.doi.org/10.1007/s00454-005-1171-5.

    Article  MATH  MathSciNet  Google Scholar 

  7. Karu K. The cd-index of fans and posets. Compos Math. 2006;142(3):701–18. Available from: http://dx.doi.org/10.1112/S0010437X06001928.

    Article  MATH  MathSciNet  Google Scholar 

  8. Katona G. A theorem of finite sets. In: Theory of graphs (Proc. Colloq., Tihany, 1966). Academic Press, New York; 1968. p. 187–207.

    Google Scholar 

  9. Kruskal JB. The number of simplices in a complex. In: Mathematical optimization techniques. Univ. of California Press, Berkeley, Calif.; 1963. p. 251–78.

    Google Scholar 

  10. Macaulay FS. Some Properties of Enumeration in the Theory of Modular Systems. Proc Lond Math Soc;S2-26(1):531. Available from: http://dx.doi.org/10.1112/plms/s2-26.1.531.

  11. McMullen P. The maximum numbers of faces of a convex polytope. Mathematika. 1970;17:179–84.

    Article  MATH  MathSciNet  Google Scholar 

  12. Murai S, Nevo E. On the cd-index and γ-vector of S-shellable CW-spheres. Math Z. 2012;271(3-4):1309–19. Available from: http://dx.doi.org/10.1007/s00209-011-0917-4.

    Article  MATH  MathSciNet  Google Scholar 

  13. Nevo E, Petersen TK. On γ-vectors satisfying the Kruskal-Katona inequalities. Discrete Comput Geom. 2011;45(3):503–21. Available from: http://dx.doi.org/10.1007/s00454-010-9243-6.

    Article  MATH  MathSciNet  Google Scholar 

  14. Nevo E, Petersen TK, Tenner BE. The γ-vector of a barycentric subdivision. J Combin Theory Ser A. 2011;118(4):1364–80. Available from: http://dx.doi.org/10.1016/j.jcta.2011.01.001.

    Article  MATH  MathSciNet  Google Scholar 

  15. Reisner GA. Cohen-Macaulay quotients of polynomial rings. Adv Math. 1976;21(1):30–49.

    Article  MATH  MathSciNet  Google Scholar 

  16. Schützenberger MP. A characteristic property of certain polynomials of E. F. Moore and C. E. Shannon. RLE Quarterly Progress Report. 1959;55(4):117–8. Available from: http://dx.doi.org/10.1137/0604046.

    Google Scholar 

  17. Stanley RP. The upper bound conjecture and Cohen-Macaulay rings. Stud Appl Math. 1975;54(2):135–42.

    Article  MATH  Google Scholar 

  18. Stanley RP. Balanced Cohen-Macaulay complexes. Trans Am Math Soc. 1979;249(1):139–57. Available from: http://dx.doi.org/10.2307/1998915.

    Article  MATH  Google Scholar 

  19. Volodin VD. Geometric realization of γ-vectors of 2-truncated cubes. Uspekhi Mat Nauk. 2012;67(3(405)):181–82. Available from: http://dx.doi.org/10.1070/RM2012v067n03ABEH004800.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petersen, T.K. (2015). Characterizing f-vectors (Supplemental). In: Eulerian Numbers. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-3091-3_10

Download citation

Publish with us

Policies and ethics