Skip to main content

Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

  • Chapter
  • First Online:
The Magnetodiscs and Aurorae of Giant Planets

Abstract

The ionospheric response to auroral precipitation at the giant planets is reviewed, using models and observations. The emission processes for aurorae at radio, infrared, visible, ultraviolet, and X-ray wavelengths are described, and exemplified using ground- and space-based observations. Comparisons between the emissions at different wavelengths are made, where possible, and interpreted in terms of precipitating particle characteristics or atmospheric conditions. Finally, the spatial distributions and dynamics of the various components of the aurorae (moon footprints, low-latitude, main oval, polar) are related to magnetospheric processes and boundaries, using theory, in situ, and remote observations, with the aim of distinguishing between those related to internally-driven dynamics, and those related to the solar wind interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Achilleos, S. Miller, J. Tennyson, A.D. Aylward, I. Müller-Wodarg, D. Rees, JIM: A time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res. 103, 20089–20112 (1998). doi:10.1029/98JE00947

    Article  ADS  Google Scholar 

  • M.H. Acuña, K.W. Behannon, J.E.P. Connerney, Jupiter’s magnetic field and magnetosphere, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler, (1983), pp. 1–50

    Chapter  Google Scholar 

  • J.M. Ajello, W. Pryor, L. Esposito, I. Stewart, W. McClintock, J. Gustin, D. Grodent, J.-C. Gérard, J.T. Clarke, The Cassini campaign observations of the Jupiter aurora by the ultraviolet imaging spectrograph and the space telescope imaging spectrograph. Icarus 178, 327–345 (2005). doi:10.1016/j.icarus.2005.01.023

    Article  ADS  Google Scholar 

  • D.J. Andrews, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, L. Lamy, G. Provan, P. Zarka, Magnetospheric period oscillations at Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south Saturn kilometric radiation periods. J. Geophys. Res. 115, 12252 (2010). doi:10.1029/2010JA015666

    Google Scholar 

  • D.J. Andrews, B. Cecconi, S.W.H. Cowley, M.K. Dougherty, L. Lamy P. G, P. Zarka, Planetary period oscillations in Saturn’s magnetosphere: Evidence in magnetic field phase data for rotational modulation of Saturn kilometric radiation emissions. J. Geophys. Res. 116 (2011). doi:10.1029/2011JA016636

    Google Scholar 

  • O.V. Arkhypov, H.O. Rucker, Amalthea’s modulation of Jovian decametric radio emission. Astron. Astrophys. 467, 353–358 (2007). doi:10.1051/0004-6361:20066505

    Article  ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007). doi:10.5194/angeo-25-941-2007

    Article  ADS  Google Scholar 

  • S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. 110 (2005). doi:10.1029/2005JA011240

  • S.V. Badman, S.W.H. Cowley, J.-C. Gérard, D. Grodent, A statistical analysis of the location and width of Saturn’s southern auroras. Ann. Geophys. 24(12), 3533–3545 (2006)

    Article  ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, L. Lamy, B. Cecconi, P. Zarka, Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts. Ann. Geophys. 26(12), 3641–3651 (2008)

    Article  ADS  Google Scholar 

  • S.V. Badman, N. Achilleos, K.H. Baines, R.H. Brown, E.J. Bunce, M.K. Dougherty, H. Melin, J.D. Nichols, T. Stallard, Location of Saturn’s northern infrared aurora determined from Cassini VIMS images. Geophys. Res. Lett. 38 (2011a). doi:10.1029/2010GL046193

    Google Scholar 

  • S.V. Badman, C. Tao, A. Grocott, S. Kasahara, H. Melin, R.H. Brown, K.H. Baines, M. Fujimoto, T. Stallard, Cassini VIMS observations of latitudinal and hemispheric variations in Saturn’s infrared auroral intensity. Icarus 216, 367–375 (2011b). doi:10.1016/j.icarus.2011.09.031

    Article  ADS  Google Scholar 

  • S.V. Badman, N. Achilleos, C.S. Arridge, K.H. Baines, R.H. Brown, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, M. Fujimoto, G. Hospodarsky, S. Kasahara, T. Kimura, H. Melin, D.G. Mitchell, T. Stallard, C. Tao, Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res. 117 (2012a). doi:10.1029/2011JA017222

  • S.V. Badman, D.J. Andrews, S.W.H. Cowley, L. Lamy, G. Provan, C. Tao, S. Kasahara, T. Kimura, M. Fujimoto, H. Melin, T. Stallard, R.H. Brown, K.H. Baines, Rotational modulation and local time dependence of Saturn’s infrared \(\mathrm{H}_{3}^{+}\) auroral intensity. J. Geophys. Res. 117(A9), 09228 (2012b)

    Article  Google Scholar 

  • S.V. Badman, A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, A.J. Coates, Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013). doi:10.1002/grl.50199

    Article  ADS  Google Scholar 

  • S.V. Badman, C.M. Jackman, J.D. Nichols, J.-C. Gérard, Open flux in Saturn’s magnetosphere. Icarus 231, 137–145 (2014). doi:10.1016/j.icarus.2013.12.004

    Article  ADS  Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, 5209 (2011). doi:10.1029/2010JA016294

    Article  Google Scholar 

  • F. Bagenal, T.E. Dowling, W.B. McKinnon, Jupiter (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • S.J. Bame, B.L. Barraclough, W.C. Feldman, G.R. Gisler, J.T. Gosling, D.J. McComas, J.L. Phillips, M.F. Thomsen, B.E. Goldstein, M. Neugebauer, Jupiter’s magnetosphere: Plasma description from the ulysses flyby. Science 257, 1539–1543 (1992). doi:10.1126/science.257.5076.1539

    Article  ADS  Google Scholar 

  • R.L. Baron, T. Owen, J.E.P. Connerney, T. Satoh, J. Harrington, Solar wind control of Jupiter’s \(\mathrm{H}_{3}^{+}\) auroras. Icarus 120, 437–442 (1996). doi:10.1006/icar.1996.0063

    Article  ADS  Google Scholar 

  • C.H. Barrow, Jupiter’s decametric radio emission and solar activity. Planet. Space Sci. 26, 1193–1199 (1978). doi:10.1016/0032-0633(78)90059-4

    Article  ADS  Google Scholar 

  • C.H. Barrow, Association of corotating magnetic sector structure with Jupiter’s decameter-wave radio emission. J. Geophys. Res. 84, 5366–5372 (1979). doi:10.1029/JA084iA09p05366

    Article  ADS  Google Scholar 

  • C.H. Barrow, Latitudinal beaming and local time effects in the decametre-wave radiation from Jupiter observed at the Earth and from Voyager. Astron. Astrophys. 101, 142–149 (1981)

    ADS  Google Scholar 

  • D. Barrow, K.I. Matcheva, Impact of atmospheric gravity waves on the Jovian ionosphere. Icarus 211, 609–622 (2011). doi:10.1016/j.icarus.2010.10.017

    Article  ADS  Google Scholar 

  • D.J. Barrow, K.I. Matcheva, Modeling the effect of atmospheric gravity waves on Saturn’s ionosphere. Icarus 224(1), 32–42 (2013). doi:10.1016/j.icarus.2013.01.027

    Article  ADS  Google Scholar 

  • E.S. Belenkaya, S.W.H. Cowley, J.D. Nichols, M.S. Blokhina, V.V. Kalegaev, Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model. Ann. Geophys. 29, 1233–1246 (2011). doi:10.5194/angeo-29-1233-2011

    Article  ADS  Google Scholar 

  • R.F. Benson, W. Calvert, Isis 1 observations at the source of auroral kilometric radiation. Geophys. Res. Lett. 6, 479–482 (1979). doi:10.1029/GL006i006p00479

    Article  ADS  Google Scholar 

  • A. Bhardwaj, G.R. Gladstone, Auroral emissions of the giant planets. Rev. Geophys. 38, 295–354 (2000). doi:10.1029/1998RG000046

    Article  ADS  Google Scholar 

  • A. Bhardwaj, G. Branduardi-Raymont, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Solar control on Jupiter’s equatorial X-ray emissions: 26-29 November 2003 XMM-Newton observation. Geophys. Res. Lett. 32, 3 (2005a). doi:10.1029/2004GL021497

    Article  Google Scholar 

  • A. Bhardwaj, R.F. Elsner, J.H. Waite Jr., G.R. Gladstone, T.E. Cravens, P.G. Ford, The discovery of oxygen K\(\alpha\) X-ray emission from the rings of Saturn. Astrophys. J. Lett. 627, 73–76 (2005b). doi:10.1086/431933

    Article  ADS  Google Scholar 

  • A. Bhardwaj, R.F. Elsner, J.H. Waite Jr., G.R. Gladstone, T.E. Cravens, P.G. Ford Chandra, Observation of an X-ray flare at Saturn: Evidence of direct solar control on Saturn’s disk X-ray emissions. Astrophys. J. Lett. 624, 121–124 (2005c). doi:10.1086/430521

    Article  ADS  Google Scholar 

  • A. Boischot, Y. Leblanc, A. Lecacheux, B.M. Pedersen, M.L. Kaiser, Arc structure in Saturn’s radio dynamic spectra. Nature 292, 727 (1981). doi:10.1038/292727a0

    Article  ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, A. Radioti, J. Saur, S. Jacobsen, UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophys. Res. Lett. 35(5) (2008). doi:10.1029/2007GL032418

  • B. Bonfond, M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, V. Coumans, Quasi-periodic polar flares at Jupiter: A signature of pulsed dayside reconnections? Geophys. Res. Lett. 38, 2104 (2011). doi:10.1029/2010GL045981

    Article  ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39 (2012). doi:10.1029/2011GL050253

    Google Scholar 

  • B. Bonfond, S. Hess, F. Bagenal, J.-C. Gérard, D. Grodent, A. Radioti, J. Gustin, J.T. Clarke, The multiple spots of the Ganymede auroral footprint. Geophys. Res. Lett. 40, 4977–4981 (2013). doi:10.1002/grl.50989

    Article  ADS  Google Scholar 

  • S.W. Bougher, J.H. Waite, T. Majeed, G.R. Gladstone, Jupiter thermospheric general circulation model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. 110, 4008 (2005). doi:10.1029/2003JE002230

    Article  Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite Jr., T.E. Cravens, A study of Jupiter’s aurorae with XMM-Newton. Astron. Astrophys. 463, 761–774 (2007a). doi:10.1051/0004-6361:20066406

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, G.R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J.H. Waite, T.E. Cravens, Latest results on Jovian disk X-rays from XMM-Newton. Planet. Space Sci. 55, 1126–1134 (2007b). doi:10.1016/j.pss.2006.11.017

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, R.F. Elsner, M. Galand, D. Grodent, T.E. Cravens, P. Ford, G.R. Gladstone, J.H. Waite, Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. 113, 2202 (2008). doi:10.1029/2007JA012600

    Article  Google Scholar 

  • G. Branduardi-Raymont, A. Bhardwaj, R.F. Elsner, P. Rodriguez, X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05. Astron. Astrophys. 510, 73 (2010). doi:10.1051/0004-6361/200913110

    Article  ADS  Google Scholar 

  • G. Branduardi-Raymont, P.G. Ford, K.C. Hansen, L. Lamy, A. Masters, B. Cecconi, A.J. Coates, M.K. Dougherty, G.R. Gladstone, P. Zarka, Search for Saturn’s X-ray aurorae at the arrival of a solar wind shock. J. Geophys. Res. 118 (2013). doi:10.1002/jgra.50112

    Google Scholar 

  • R.H. Brown, K.H. Baines, G. Bellucci, J.P. Bibring, B.J. Buratti, F. Capaccioni, P. Cerroni, R.N. Clark, A. Coradini, D.P. Cruikshank, P. Drossart, V. Formisano, R. Jaumann, Y. Langevin, D.L. Matson, T.B. McCord, V. Mennella, E. Miller, R.M. Nelson, P.D. Nicholson, B. Sicardy, C. Sotin, The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci. Rev. 115(1–4), 111–168 (2004). doi:10.1007/s11214-004-1453-x

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, J.A. Wild, Azimuthal magnetic fields in Saturn’s magnetosphere: Effects associated with plasma sub-corotation and the magnetopause-tail current system. Ann. Geophys. 21, 1709–1722 (2003). doi:10.5194/angeo-21-1709-2003

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, T.K. Yeoman, Jovian cusp processes: Implications for the polar aurora. J. Geophys. Res. 109, 9 (2004). doi:10.1029/2003JA010280

    Article  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, S.E. Milan, Interplanetary magnetic field control of Saturn’s polar cusp aurora. Ann. Geophys. 23, 1405–1431 (2005a). doi:10.5194/angeo-23-1405-2005

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 322, L20S04 (2005b). doi:10.1029/2005GL022888

    Google Scholar 

  • E.J. Bunce, C.S. Arridge, J.T. Clarke, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, J.-C. Gérard, D. Grodent, K.C. Hansen, J.D. Nichols, D.J. Southwood, D.L. Talboys, Origin of Saturn’s aurora: Simultaneous observations by Cassini and the Hubble space telescope. J. Geophys. Res. 113 (2008). doi:10.1029/2008JA013257

    Google Scholar 

  • B.F. Burke, K.L. Franklin, Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955). doi:10.1029/JZ060i002p00213

    Article  ADS  Google Scholar 

  • J.F. Carbary, The morphology of Saturn’s ultraviolet aurora. J. Geophys. Res. 117 (2012). doi:10.1029/2012JA017670

    Google Scholar 

  • J.F. Carbary, Longitude dependences of Saturn’s ultraviolet aurora. Geophys. Res. Lett. 40(10), 1902–1906 (2013). doi:10.1002/grl.50430

    Article  ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Statistical morphology of ENA emissions at Saturn. J. Geophys. Res. 113, 5210 (2008). doi:10.1029/2007JA012873

    Google Scholar 

  • J.A. Carter, S. Sembay, A.M. Read, A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM-Newton. Mon. Not. R. Astron. Soc. 402, 867–878 (2010). doi:10.1111/j.1365-2966.2009.15985.x

    Article  ADS  Google Scholar 

  • B. Cecconi, Goniopolarimetric techniques for low-frequency radio astronomy in space, in Observing Photons in Space, vol. 9, (2010), pp. 263–277

    Google Scholar 

  • B. Cecconi, L. Lamy, P. Zarka, R. Prangé, W.S. Kurth, P. Louarn, Goniopolarimetric study of the revolution 29 perikrone using the Cassini radio and plasma wave science instrument high-frequency radio receiver. J. Geophys. Res. 114, 3215 (2009). doi:10.1029/2008JA013830

    Google Scholar 

  • B. Cecconi, S. Hess, A. Hérique, M.R. Santovito, D. Santos-Costa, P. Zarka, G. Alberti, D. Blankenship, J.-L. Bougeret, L. Bruzzone, W. Kofman, Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter. Planet. Space Sci. 61, 32–45 (2012). doi:10.1016/j.pss.2011.06.012

    Article  ADS  Google Scholar 

  • J.-Y. Chaufray, T.K. Greathouse, G.R. Gladstone, J.H. Waite, J.-P. Maillard, T. Majeed, S.W. Bougher, E. Lellouch, P. Drossart, Spectro-imaging observations of Jupiter’s 2 \(\mu\)m auroral emission. II: Thermospheric winds. Icarus 211, 1233–1241 (2011). doi:10.1016/j.icarus.2010.11.021

    Article  ADS  Google Scholar 

  • J.T. Clarke, J. Ajello, G. Ballester, L. Ben Jaffel, J. Connerney, J.-C. Gérard, G.R. Gladstone, D. Grodent, W. Pryor, J. Trauger, J.H. Waite, Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415(6875), 997–1000 (2002)

    Article  ADS  Google Scholar 

  • J.T. Clarke, D. Grodent, S.W.H. Cowley, E.J. Bunce, P. Zarka, J.E.P. Connerney, T. Satoh, Jupiter’s aurora, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 639–670

    Google Scholar 

  • J.T. Clarke, J.-C. Gérard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F. Crary, M. Dougherty, W. Kurth, S.W.H. Cowley, E.J. Bunce, T. Hill, J. Kim, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433(7027), 717–719 (2005). doi:10.1038/nature03331

    Article  ADS  Google Scholar 

  • J.T. Clarke, J. Nichols, J.-C. Gerard, D. Grodent, K.C. Hansen, W. Kurth, G.R. Gladstone, J. Duval, S. Wannawichian, E. Bunce, S.W.H. Cowley, F. Crary, M. Dougherty, L. Lamy, D. Mitchell, W. Pryor, K. Retherford, T. Stallard, B. Zieger, P. Zarka, B. Cecconi, Response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114 (2009). doi:10.1029/2008JA013694

    Google Scholar 

  • J.E.P. Connerney, J.H. Waite, New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312(5990), 136–138 (1984)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, R. Baron, T. Satoh, T. Owen, Images of excited \(\mathrm{H}_{3}^{+}\) at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262, 1035–1038 (1993). doi:10.1126/science.262.5136.1035

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929–11940 (1998). doi:10.1029/97JA03726

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001). doi:10.1016/S0032-0633(00)00167-7

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, A. Balogh, M.K. Dougherty, T.M. Edwards, R.J. Forsyth, R.J. Hynds, K. Staines, Ulysses observations of anti-sunward flow on Jovian polar cap field lines. Planet. Space Sci. 41, 987–998 (1993). doi:10.1016/0032-0633(93)90103-9

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: Theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003). doi:10.1029/2002GL016030

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, J.M. O’Rourke, A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. 109 (2004a). doi:10.1029/2003JA010375

  • S.W.H. Cowley, E.J. Bunce, R. Prange, Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22(4), 1379–1394 (2004b)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. Gérard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. 110(A2) (2005). doi:10.1029/2004JA010796

  • S.W.H. Cowley, C.S. Arridge, E.J. Bunce, J.T. Clarke, A.J. Coates, M.K. Dougherty, J.-C. Gérard, D. Grodent, J.D. Nichols, D.L. Talboys, Auroral current systems in Saturn’s magnetosphere: Comparison of theoretical models with Cassini and HST observations. Ann. Geophys. 26(9), 2613–2630 (2008)

    Article  ADS  Google Scholar 

  • F.J. Crary, On the generation of an electron beam by Io. J. Geophys. Res. 102, 37–50 (1997). doi:10.1029/96JA02409

    Article  ADS  Google Scholar 

  • F. Crary, J. Clarke, M. Dougherty, P. Hanlon, K. Hansen, J. Steinberg, B. Barraclough, A. Coates, J. Gerard, D. Grodent, W. Kurth, D. Mitchell, A. Rymer, D. Young, Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature 433(7027), 720–722 (2005). doi:10.1038/nature03333

    Article  ADS  Google Scholar 

  • T.E. Cravens, Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter. J. Geophys. Res. 92, 11083–11100 (1987). doi:10.1029/JA092iA10p11083

    Article  ADS  Google Scholar 

  • T.E. Cravens, Comet Hyakutake x-ray source: Charge transfer of solar wind heavy ions. Geophys. Res. Lett. 24, 105–108 (1997). doi:10.1029/96GL03780

    Article  ADS  Google Scholar 

  • T.E. Cravens, Heliospheric X-ray emission associated with charge transfer of the solar wind with interstellar neutrals. Astrophys. J. Lett. 532, 153–156 (2000). doi:10.1086/312574

    Article  ADS  Google Scholar 

  • T.E. Cravens, N. Ozak, Auroral Ion Precipitation and Acceleration at the Outer Planets. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 197 (2012), pp. 287–294. doi:10.1029/2011GM001159

    Google Scholar 

  • T.E. Cravens, E. Howell, J.H. Waite, G.R. Gladstone, Auroral oxygen precipitation at Jupiter. J. Geophys. Res. 100, 17153–17162 (1995). doi:10.1029/95JA00970

    Article  ADS  Google Scholar 

  • T.E. Cravens, J.H. Waite, T.I. Gombosi, N. Lugaz, G.R. Gladstone, B.H. Mauk, R.J. MacDowall, Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. J. Geophys. Res. 108, 1465 (2003). doi:10.1029/2003JA010050

    Article  Google Scholar 

  • A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser. 125, 237–256 (1999). doi:10.1086/313267

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010). doi:10.1029/2010JA015347

    Google Scholar 

  • G.T. Delory, R.E. Ergun, C.W. Carlson, L. Muschietti, C.C. Chaston, W. Peria, J.P. McFadden, R. Strangeway, FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069–2072 (1998). doi:10.1029/98GL00705

    Article  ADS  Google Scholar 

  • K. Dennerl, X-rays from Venus observed with Chandra. Planet. Space Sci. 56, 1414–1423 (2008). doi:10.1016/j.pss.2008.03.008

    Article  ADS  Google Scholar 

  • K. Dennerl, High resolution X-ray spectroscopy of comets with Xmm-newton/rgs (2009). http://www.mssl.ucl.ac.uk/~gbr/workshop3/papers/comets_mssl_2009_kd.pdf

  • K. Dennerl, Charge transfer reactions. Space Sci. Rev. 157, 57–91 (2010). doi:10.1007/s11214-010-9720-5

    Article  ADS  Google Scholar 

  • K. Dennerl, C.M. Lisse, A. Bhardwaj, V. Burwitz, J. Englhauser, H. Gunell, M. Holmström, F. Jansen, V. Kharchenko, P.M. Rodríguez-Pascual, First observation of Mars with XMM-Newton. High resolution X-ray spectroscopy with RGS. Astron. Astrophys. 451, 709–722 (2006). doi:10.1051/0004-6361:20054253

    Article  ADS  Google Scholar 

  • K. Dennerl, C.M. Lisse, A. Bhardwaj, D.J. Christian, S.J. Wolk, D. Bodewits, T.H. Zurbuchen, M. Combi, S. Lepri, Solar system X-rays from charge exchange processes. Astron. Nachr. 333, 324 (2012). doi:10.1002/asna.201211663

    Article  ADS  Google Scholar 

  • M.D. Desch, Radio emission signature of Saturn immersions in Jupiter’s magnetic tail. J. Geophys. Res. 88, 6904–6910 (1983). doi:10.1029/JA088iA09p06904

    Article  ADS  Google Scholar 

  • M.D. Desch, M.L. Kaiser, Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8, 253–256 (1981). doi:10.1029/GL008i003p00253

    Article  ADS  Google Scholar 

  • M.D. Desch, H.O. Rucker, The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983). doi:10.1029/JA088iA11p08999

    Article  ADS  Google Scholar 

  • M.D. Desch, H.O. Rucker, Saturn radio emission and the solar wind—Voyager-2 studies. Adv. Space Res. 5, 333–336 (1985). doi:10.1016/0273-1177(85)90159-0

    Article  ADS  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. 118, 3087–3095 (2013). doi:10.1002/jgra.50294

    Article  Google Scholar 

  • A.J. Dessler, Physics of the Jovian Magnetosphere (Cambridge University Press, Cambridge, 1983)

    Book  Google Scholar 

  • M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311(5766), 1406–1409 (2006). doi:10.1126/science.1120985. http://www.sciencemag.org/content/311/5766/1406.abstract

    Article  ADS  Google Scholar 

  • M.K. Dougherty, L.W. Esposito, S.M. Krimigis, Saturn from Cassini-Huygens (Springer, Dordrecht Heidelberg London New York, 2009). doi:10.1007/978-1-4020-9217-6

    Book  Google Scholar 

  • P. Drossart, J.P. Maillard, J. Caldwell, S.J. Kim, J.K.G. Watson, W.A. Majewski, J. Tennyson, S. Miller, S.K. Atreya, J.T. Clarke, J.H. Waite, R. Wagener, Detection of \(\mathrm{H}_{3}^{+}\) on Jupiter. Nature 340, 539–541 (1989)

    Article  ADS  Google Scholar 

  • J.W. Dungey, The structure of the exosphere or adventures in velocity space, in Geophysics, the Earth’s Environment, ed. by C. De Witt, J. Hieblot, L. Le Beau, (1963), p. 503

    Google Scholar 

  • U.A. Dyudina, A.P. Ingersoll, S.P. Ewald, C.C. Porco, G. Fischer, W.S. Kurth, R.A. West, Detection of visible lightning on Saturn. Geophys. Res. Lett. 37, 9205 (2010). doi:10.1029/2010GL043188

    Article  ADS  Google Scholar 

  • R.F. Elsner, G.R. Gladstone, J.H. Waite, F.J. Crary, R.R. Howell, R.E. Johnson, P.G. Ford, A.E. Metzger, K.C. Hurley, E.D. Feigelson, G.P. Garmire, A. Bhardwaj, D.C. Grodent, T. Majeed, A.F. Tennant, M.C. Weisskopf, Discovery of soft X-ray emission from Io, Europa, and the Io plasma torus. Astrophys. J. 572, 1077–1082 (2002). doi:10.1086/340434

    Article  ADS  Google Scholar 

  • R.F. Elsner, N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, P. Ford, D. Grodent, A. Bhardwaj, R.J. MacDowall, M.D. Desch, T. Majeed, Simultaneous Chandra X ray, Hubble space telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. 110, 1207 (2005). doi:10.1029/2004JA010717

    Article  Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, R.J. Strangeway, P.L. Pritchett, Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. Astrophys. J. 538, 456–466 (2000). doi:10.1086/309094

    Article  ADS  Google Scholar 

  • Y. Ezoe, K. Ishikawa, T. Ohashi, Y. Miyoshi, N. Terada, Y. Uchiyama, H. Negoro, Discovery of diffuse hard X-ray emission around Jupiter with Suzaku. Astrophys. J. Lett. 709, 178–182 (2010). doi:10.1088/2041-8205/709/2/L178

    Article  ADS  Google Scholar 

  • W.M. Farrell, M.L. Kaiser, M.D. Desch, A model of the lightning discharge at Jupiter. Geophys. Res. Lett. 26, 2601–2604 (1999). doi:10.1029/1999GL900527

    Article  ADS  Google Scholar 

  • G. Fischer, M.D. Desch, P. Zarka, M.L. Kaiser, D.A. Gurnett, W.S. Kurth, W. Macher, H.O. Rucker, A. Lecacheux, W.M. Farrell, B. Cecconi, Saturn lightning recorded by Cassini/RPWS in 2004. Icarus 183, 135–152 (2006). doi:10.1016/j.icarus.2006.02.010

    Article  ADS  Google Scholar 

  • G. Fischer, W.S. Kurth, U.A. Dyudina, M.L. Kaiser, P. Zarka, A. Lecacheux, A.P. Ingersoll, D.A. Gurnett, Analysis of a giant lightning storm on Saturn. Icarus 190, 528–544 (2007). doi:10.1016/j.icarus.2007.04.002

    Article  ADS  Google Scholar 

  • G. Fischer, D.A. Gurnett, W.S. Kurth, F. Akalin, P. Zarka, U.A. Dyudina, W.M. Farrell, M.L. Kaiser, Atmospheric electricity at Saturn. Space Sci. Rev. 137, 271–285 (2008). doi:10.1007/s11214-008-9370-z

    Article  ADS  Google Scholar 

  • G. Fischer, D.A. Gurnett, P. Zarka, L. Moore, U.A. Dyudina, Peak electron densities in Saturn’s ionosphere derived from the low-frequency cutoff of Saturn lightning. J. Geophys. Res. 116, 4315 (2011). doi:10.1029/2010JA016187

    Article  Google Scholar 

  • B.L. Fleshman, P.A. Delamere, F. Bagenal, T. Cassidy, The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds. J. Geophys. Res. 117, 5007 (2012). doi:10.1029/2011JE003996

    Article  Google Scholar 

  • D. Flower, Molecular Collisions in the Interstellar Medium (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  • J.L. Fox, M.I. Galand, R.E. Johnson, Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev. 139, 3–62 (2008). doi:10.1007/s11214-008-9403-7

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA015228

    Google Scholar 

  • M. Galand, S. Chakrabarti, Auroral processes in the solar system. Washington DC American Geophysical Union Geophysical Monograph Series 130, 55 (2002)

    ADS  Google Scholar 

  • M. Galand, S. Chakrabarti, Proton aurora observed from the ground. J. Atmos. Terr. Phys. 68, 1488–1501 (2006). doi:10.1016/j.jastp.2005.04.013

    Article  ADS  Google Scholar 

  • M. Galand, D. Lummerzheim, Contribution of proton precipitation to space-based auroral FUV observations. J. Geophys. Res. 109, 3307 (2004). doi:10.1029/2003JA010321

    Article  Google Scholar 

  • M. Galand, L. Moore, B. Charnay, I. Müller-Wodarg, M. Mendillo, Solar primary and secondary ionization at Saturn. J. Geophys. Res. 114, 6313 (2009). doi:10.1029/2008JA013981

    Article  Google Scholar 

  • M. Galand, L. Moore, I. Müller-Wodarg, M. Mendillo, S. Miller, Response of Saturn’s auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity. J. Geophys. Res. 116, 9306 (2011). doi:10.1029/2010JA016412

    Article  Google Scholar 

  • P.H.M. Galopeau, A. Lecacheux, Variations of Saturn’s radio rotation period measured at kilometer wavelengths. J. Geophys. Res. 105, 13089–13102 (2000). doi:10.1029/1999JA005089

    Article  ADS  Google Scholar 

  • P.H.M. Galopeau, P. Zarka, D.L. Quéau, Source location of Saturn’s kilometric radiation: The Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 1002, 26397–26410 (1995). doi:10.1029/95JE02132

    Article  ADS  Google Scholar 

  • N. Gehrels, E.C. Stone, Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation. J. Geophys. Res. 88, 5537–5550 (1983). doi:10.1029/JA088iA07p05537

    Article  ADS  Google Scholar 

  • F. Genova, P. Zarka, C.H. Barrow, Voyager and Nancay observations of the Jovian radio-emission at different frequencies—Solar wind effect and source extent. Astron. Astrophys. 182, 159–162 (1987)

    ADS  Google Scholar 

  • J.-C. Gérard, V. Singh, A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. J. Geophys. Res. 87, 4525–4532 (1982). doi:10.1029/JA087iA06p04525

    Article  ADS  Google Scholar 

  • J.-C. Gérard, J. Gustin, D. Grodent, P. Delamere, J.T. Clarke, Excitation of the FUV Io tail on Jupiter: Characterization of the electron precipitation. J. Geophys. Res. 107, 1394 (2002). doi:10.1029/2002JA009410

    Article  Google Scholar 

  • J.-C. Gérard, J. Gustin, D. Grodent, J.T. Clarke, A. Grard, Spectral observations of transient features in the FUV Jovian polar aurora. J. Geophys. Res. 108, 1319 (2003). doi:10.1029/2003JA009901

    Article  Google Scholar 

  • J.-C. Gérard, D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, J.T. Trauger, Characteristics of Saturn’s FUV aurora observed with the space telescope imaging spectrograph. J. Geophys. Res. 109(A9) (2004). doi:10.1029/2004JA010513

  • J.-C. Gérard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: Simultaneous Hubble space telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110 (2005). doi:10.1029/2005JA011094

  • J.-C. Gérard, B. Bonfond, J. Gustin, D. Grodent, J.T. Clarke, D. Bisikalo, V. Shematovich, Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36 (2009). doi:10.1029/2008GL036554

    Google Scholar 

  • J.-C. Gérard, J. Gustin, W.R. Pryor, D. Grodent, B. Bonfond, A. Radioti, G.R. Gladstone, J.T. Clarke, J.D. Nichols, Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations. Icarus 223(1) (2013). doi:10.1016/j.icarus.2012.11.033

    Google Scholar 

  • G.R. Gladstone, J.H. Waite, D. Grodent, W.S. Lewis, F.J. Crary, R.F. Elsner, M.C. Weisskopf, T. Majeed, J.-M. Jahn, A. Bhardwaj, J.T. Clarke, D.T. Young, M.K. Dougherty, S.A. Espinosa, T.E. Cravens, A pulsating auroral X-ray hot spot on Jupiter. Nature 415, 1000–1003 (2002)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, T.P. Armstrong, C.S. Arridge, K.K. Khurana, S.M. Krimigis, N. Krupp, A.M. Persoon, M.F. Thomsen, Saturn’s magnetospheric configuration, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009), pp. 203–255

    Chapter  Google Scholar 

  • A. Grocott, S.V. Badman, S.W.H. Cowley, S.E. Milan, J.D. Nichols, T.K. Yeoman, Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J. Geophys. Res. 114 (2009). doi:10.1029/2009JA014330

    Google Scholar 

  • D. Grodent, J.H. Waite Jr., J.-C. Gérard, A self-consistent model of the Jovian auroral thermal structure. J. Geophys. Res. 106, 12933–12952 (2001). doi:10.1029/2000JA900129

    Article  ADS  Google Scholar 

  • D. Grodent, J.T. Clarke, J. Kim, J.H. Waite, S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003a). doi:10.1029/2003JA009921

    Article  Google Scholar 

  • D. Grodent, J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003b). doi:10.1029/2003JA010017

    Article  Google Scholar 

  • D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. 109, 5201 (2004). doi:10.1029/2003JA010341

    Article  Google Scholar 

  • D. Grodent, J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, J.T. Clarke, Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. 110 (2005). doi:10.1029/2004JA010983

  • D. Grodent, B. Bonfond, J.-C. GéRard, A. Radioti, J. Gustin, J.T. Clarke, J. Nichols, J.E.P. Connerney, Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, 9201 (2008). doi:10.1029/2008JA013185

    Google Scholar 

  • D. Grodent, A. Radioti, B. Bonfond, J.-C. Gérard, On the origin of Saturn’s outer auroral emission. J. Geophys. Res. 115, 8219 (2010). doi:10.1029/2009JA014901

    Article  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, F.L. Scarf, The structure of the Jovian magnetotail from plasma wave observations. Geophys. Res. Lett. 7, 53–56 (1980). doi:10.1029/GL007i001p00053

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, J.D. Menietti, A.M. Persoon, An unusual rotationally modulated attenuation band in the Jovian hectometric radio emission spectrum. Geophys. Res. Lett. 25, 1841–1844 (1998). doi:10.1029/98GL01400

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, P. Zarka, A. Lecacheux, S.J. Bolton, M.D. Desch, W.M. Farrell, M.L. Kaiser, H.-P. Ladreiter, H.O. Rucker, P. Galopeau, P. Louarn, D.T. Young, W.R. Pryor, M.K. Dougherty, Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415, 985–987 (2002)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, T.F. Averkamp, B. Cecconi, A. Lecacheux, P. Zarka, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Roux, C. Harvey, P. Louarn, R. Bostrom, G. Gustafsson, J.-E. Wahlund, M.D. Desch, W.M. Farrell, M.L. Kaiser, K. Goetz, P.J. Kellogg, G. Fischer, H.-P. Ladreiter, H. Rucker, H. Alleyne, A. Pedersen, Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255–1259 (2005). doi:10.1126/science.1105356

    Article  ADS  Google Scholar 

  • D.A. Gurnett, A. Lecacheux, W.S. Kurth, A.M. Persoon, J.B. Groene, L. Lamy, P. Zarka, J.F. Carbary, Discovery of a north-south asymmetry in Saturn’s radio rotation period. Geophys. Res. Lett. 36, 16102 (2009). doi:10.1029/2009GL039621

    Article  ADS  Google Scholar 

  • D.A. Gurnett, J.B. Groene, A.M. Persoon, J.D. Menietti, S.-Y. Ye, W.S. Kurth, R.J. MacDowall, A. Lecacheux, The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox. Geophys. Res. Lett. 37, 24101 (2010a). doi:10.1029/2010GL045796

    ADS  Google Scholar 

  • D.A. Gurnett, A.M. Persoon, A.J. Kopf, W.S. Kurth, M.W. Morooka, J.-E. Wahlund, K.K. Khurana, M.K. Dougherty, D.G. Mitchell, S.M. Krimigis, N. Krupp, A plasmapause-like density boundary at high latitudes in Saturn’s magnetosphere. Geophys. Res. Lett. 37, 16806 (2010b). doi:10.1029/2010GL044466

    ADS  Google Scholar 

  • J. Gustin, P.D. Feldman, J.-C. Gérard, D. Grodent, A. Vidal-Madjar, L. Ben Jaffel, J.-M. Desert, H.W. Moos, D.J. Sahnow, H.A. Weaver, B.C. Wolven, J.M. Ajello, J.H. Waite, E. Roueff, H. Abgrall, Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus 171, 336–355 (2004a). doi:10.1016/j.icarus.2004.06.005

    Article  ADS  Google Scholar 

  • J. Gustin, J.-C. Gérard, D. Grodent, S.W.H. Cowley, J.T. Clarke, A. Grard, Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations. J. Geophys. Res. 109, 10205 (2004b). doi:10.1029/2003JA010365

    Article  Google Scholar 

  • J. Gustin, J.-C. Gérard, G.R. Gladstone, D. Grodent, J.T. Clarke, Characteristics of Jovian morning bright FUV aurora from Hubble space Telescope/space telescope imaging spectrograph imaging and spectral observations. J. Geophys. Res. 111, 9220 (2006). doi:10.1029/2006JA011730

    Article  Google Scholar 

  • J. Gustin, J.-C. Gérard, W.R. Pryor, P.D. Feldman, D. Grodent, G. Holsclaw, Characteristics of Saturn’s polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus 200(1), 176–187 (2009). doi:10.1016/j.icarus.2008.11.013

    Article  ADS  Google Scholar 

  • J. Gustin, B. Bonfond, D. Grodent, J.-C. Gérard, Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for \(\mathrm{H}_{2}\) giant planets. J. Geophys. Res. 117, 7316 (2012). doi:10.1029/2012JA017607

    Article  Google Scholar 

  • J. Gustin, J.-C. Gérard, D. Grodent, G.R. Gladstone, J.T. Clarke, W.R. Pryor, V. Dols, B. Bonfond, A. Radioti, L. Lamy, J.M. Ajello, Effects of methane on giant planet’s UV emissions and implications for the auroral characteristics. J. Mol. Spectrosc. 291, 108–117 (2013). doi:10.1016/j.jms.2013.03.010

    Article  ADS  Google Scholar 

  • C.J. Hansen, L. Esposito, A.I.F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West, Enceladus’ water vapor plume. Science 311, 1422–1425 (2006). doi:10.1126/science.1121254

    Article  ADS  Google Scholar 

  • W. Harris, J.T. Clarke, M.A. McGrath, G.E. Ballester, Analysis of Jovian auroral H Ly-alpha emission (1981–1991). Icarus 123, 350–365 (1996). doi:10.1006/icar.1996.0164

    Article  ADS  Google Scholar 

  • S. Hess, F. Mottez, P. Zarka, Jovian S burst generation by Alfvén waves. J. Geophys. Res. 112, 11212 (2007a). doi:10.1029/2006JA012191

    Article  Google Scholar 

  • S. Hess, P. Zarka, F. Mottez, Io Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci. 55, 89–99 (2007b). doi:10.1016/j.pss.2006.05.016

    Article  ADS  Google Scholar 

  • S. Hess, B. Cecconi, P. Zarka, Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett. 35, 13107 (2008). doi:10.1029/2008GL033656

    Article  ADS  Google Scholar 

  • S. Hess, F. Mottez, P. Zarka, Effect of electric potential structures on Jovian S-burst morphology. Geophys. Res. Lett. 36 (2009a). doi:10.1029/2009GL039084

  • S. Hess, P. Zarka, F. Mottez, V.B. Ryabov, Electric potential jumps in the Io-Jupiter flux tube. Planet. Space Sci. 57(1), 23–33 (2009b). doi:10.1016/j.pss.2008.10.006

    Article  ADS  Google Scholar 

  • S.L.G. Hess, A. Petin, P. Zarka, B. Bonfond, B. Cecconi, Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci. 58(10), 1188–1198 (2010). doi:10.1016/j.pss.2010.04.011

    Article  ADS  Google Scholar 

  • S.L.G. Hess, B. Bonfond, P. Zarka, D. Grodent, Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, 5217 (2011a). doi:10.1029/2010JA016262

    Article  Google Scholar 

  • S.L.G. Hess, P.A. Delamere, F. Bagenal, N.M. Schneider, A.J. Steffl, Longitudinal modulation of hot electrons in the Io plasma torus. J. Geophys. Res. 116 (2011b). doi:10.1029/2011JA016918

    Google Scholar 

  • S.L.G. Hess, E. Echer, P. Zarka, Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planet. Space Sci. 70, 114–125 (2012). doi:10.1016/j.pss.2012.05.011

    Article  ADS  Google Scholar 

  • S.L.G. Hess, B. Bonfond, P.A. Delamere, How could the Io footprint disappear? Planet. Space Sci. 89, 102–110 (2013). doi:10.1016/j.pss.2013.08.014

    Article  ADS  Google Scholar 

  • S.L.G. Hess, E. Echer, P. Zarka, L. Lamy, P. Delamere, Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planet. Space Sci. (2014, submitted)

    Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi:10.1029/JA084iA11p06554

    Article  ADS  Google Scholar 

  • T.W. Hill, The Jovian auroral oval. J. Geophys. Res. 106, 8101–8108 (2001). doi:10.1029/2000JA000302

    Article  ADS  Google Scholar 

  • T.W. Hill, V.M. Vasyliũnas, Jovian auroral signature of Io’s corotational wake. J. Geophys. Res. 107, 1464 (2002). doi:10.1029/2002JA009514

    Article  Google Scholar 

  • M.E. Hill, D.K. Haggerty, R.L. McNutt, C.P. Paranicas, Energetic particle evidence for magnetic filaments in Jupiter’s magnetotail. J. Geophys. Res. 114 (2009). doi:10.1029/2009JA014374

    Google Scholar 

  • Y. Hiraki, C. Tao, Parameterization of ionization rate by auroral electron precipitation in Jupiter. Ann. Geophys. 26, 77–86 (2008). doi:10.5194/angeo-26-77-2008

    Article  ADS  Google Scholar 

  • M. Horanyi, T.E. Cravens, J.H. Waite Jr., The precipitation of energetic heavy ions into the upper atmosphere of Jupiter. J. Geophys. Res. 93, 7251–7271 (1988). doi:10.1029/JA093iA07p07251

    Article  ADS  Google Scholar 

  • T.S. Huang, T.W. Hill, Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 94, 3761–3765 (1989). doi:10.1029/JA094iA04p03761

    Article  ADS  Google Scholar 

  • D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102(A11), 24289–24302 (1997)

    Article  ADS  Google Scholar 

  • D.L. Huestis, Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres. Planet. Space Sci. 56, 1733–1743 (2008). doi:10.1016/j.pss.2008.07.012

    Article  ADS  Google Scholar 

  • Y. Hui, D.R. Schultz, V.A. Kharchenko, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, The Ion-induced charge-exchange X-ray emission of the Jovian auroras: Magnetospheric or solar wind origin? Astrophys. J. 702, 158–162 (2009). doi:10.1088/0004-637X/702/2/L158

    Article  ADS  Google Scholar 

  • Y. Hui, T.E. Cravens, N. Ozak, D.R. Schultz, What can be learned from the absence of auroral X-ray emission from Saturn? J. Geophys. Res. 115, 10239 (2010a). doi:10.1029/2010JA015639

    Google Scholar 

  • Y. Hui, D.R. Schultz, V.A. Kharchenko, A. Bhardwaj, G. Branduardi-Raymont, P.C. Stancil, T.E. Cravens, C.M. Lisse, A. Dalgarno, Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories. J. Geophys. Res. 115, 7102 (2010b). doi:10.1029/2009JA014854

    Google Scholar 

  • K. Imai, L. Wang, T.D. Carr, Modeling Jupiter’s decametric modulation lanes. J. Geophys. Res. 102, 7127–7136 (1997). doi:10.1029/96JA03960

    Article  ADS  Google Scholar 

  • A.P. Ingersoll, A.R. Vasavada, B. Little, C.D. Anger, S.J. Bolton, C. Alexander, K.P. Klaasen, W.K. Tobiska, Imaging Jupiter’s aurora at visible wavelengths. Icarus 135, 251–264 (1998). doi:10.1006/icar.1998.5971

    Article  ADS  Google Scholar 

  • M. Ishimoto, M.R. Torr, Energetic He(+) precipitation in a mid-latitude aurora. J. Geophys. Res. 92, 3284–3292 (1987). doi:10.1029/JA092iA04p03284

    Article  ADS  Google Scholar 

  • C.M. Jackman, L. Lamy, M.P. Freeman, P. Zarka, B. Cecconi, W.S. Kurth, S.W.H. Cowley, M.K. Dougherty, On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, 8211 (2009). doi:10.1029/2008JA013997

    Google Scholar 

  • C.M. Jackman, C.S. Arridge, J.A. Slavin, S.E. Milan, L. Lamy, M.K. Dougherty, A.J. Coates, In situ observations of the effect of a solar wind compression on Saturn’s magnetotail. J. Geophys. Res. 115, 10240 (2010). doi:10.1029/2010JA015312

    Article  Google Scholar 

  • C.M. Jackman, J.A. Slavin, S.W.H. Cowley, Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn. J. Geophys. Res. 116 (2011). doi:10.1029/2011JA016682

    Google Scholar 

  • C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82, 34–42 (2013)

    Article  ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, 1309 (2002). doi:10.1029/2001JA009146

    Article  Google Scholar 

  • S. Jurac, J.D. Richardson, A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J. Geophys. Res. 110, 9220 (2005). doi:10.1029/2004JA010635

    Article  Google Scholar 

  • M.L. Kaiser, M.D. Desch, J.W. Warwick, J.B. Pearce, Voyager detection of nonthermal radio emission from Saturn. Science 209, 1238–1240 (1980). doi:10.1126/science.209.4462.1238

    Article  ADS  Google Scholar 

  • M.L. Kaiser, M.D. Desch, A. Lecacheux, Saturnian kilometric radiation—Statistical properties and beam geometry. Nature 292, 731–733 (1981). doi:10.1038/292731a0

    Article  ADS  Google Scholar 

  • M.L. Kaiser, M.D. Desch, J.E.P. Connerney, Saturn’s ionosphere—Inferred electron densities. J. Geophys. Res. 89, 2371–2376 (1984a). doi:10.1029/JA089iA04p02371

    Article  ADS  Google Scholar 

  • M.L. Kaiser, M.D. Desch, W.S. Kurth, A. Lecacheux, F. Genova, B.M. Pedersen, D.R. Evans, Saturn as a radio source, in Saturn, ed. by T. Gehrels, M.S. Matthews, (1984b), pp. 378–415

    Google Scholar 

  • S. Kasahara, E.A. Kronberg, N. Krupp, T. Kimura, C. Tao, S.V. Badman, A. Retinò, M. Fujimoto, Magnetic reconnection in the Jovian tail: X-line evolution and consequent plasma sheet structures. J. Geophys. Res. 116, 11219 (2011). doi:10.1029/2011JA016892

    Article  Google Scholar 

  • V. Kharchenko, W. Liu, A. Dalgarno, X ray and EUV emission spectra of oxygen ions precipitating into the Jovian atmosphere. J. Geophys. Res. 103, 26687–26698 (1998). doi:10.1029/98JA02395

    Article  ADS  Google Scholar 

  • V. Kharchenko, A. Dalgarno, D.R. Schultz, P.C. Stancil, Ion emission spectra in the Jovian X-ray aurora. Geophys. Res. Lett. 33, 11105 (2006). doi:10.1029/2006GL026039

    Article  ADS  Google Scholar 

  • V. Kharchenko, A. Bhardwaj, A. Dalgarno, D.R. Schultz, P.C. Stancil, Modeling spectra of the north and south Jovian X-ray auroras. J. Geophys. Res. 113, 8229 (2008). doi:10.1029/2008JA013062

    Article  Google Scholar 

  • K.K. Khurana, M.G. Kivelson, V.M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B.H. Mauk, W.S. Kurth, The configuration of Jupiter’s magnetosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 593–616

    Google Scholar 

  • Y.H. Kim, J.L. Fox, The Jovian ionospheric E region. Geophys. Res. Lett. 18, 123–126 (1991). doi:10.1029/90GL02587

    Article  ADS  Google Scholar 

  • Y.H. Kim, J.L. Fox, The chemistry of hydrocarbon ions in the Jovian ionosphere. Icarus 112, 310–325 (1994). doi:10.1006/icar.1994.1186

    Article  ADS  Google Scholar 

  • Y.H. Kim, J.L. Fox, H.S. Porter, Densities and vibrational distribution of H(3+) in the Jovian auroral ionosphere. J. Geophys. Res. 97, 6093–6101 (1992). doi:10.1029/92JE00454

    Article  ADS  Google Scholar 

  • Y.H. Kim, W.D. Pesnell, J.M. Grebowsky, J.L. Fox, Meteoric ions in the ionosphere of Jupiter. Icarus 150, 261–278 (2001). doi:10.1006/icar.2001.6590

    Article  ADS  Google Scholar 

  • T. Kimura, F. Tsuchiya, H. Misawa, A. Morioka, H. Nozawa, M. Fujimoto, Periodicity analysis of Jovian quasi-periodic radio bursts based on Lomb-Scargle periodograms. J. Geophys. Res. 116, 3204 (2011). doi:10.1029/2010JA016076

    Google Scholar 

  • T. Kimura, L. Lamy, C. Tao, S.V. Badman, S. Kasahara, B. Cecconi, P. Zarka, A. Morioka, Y. Miyoshi, D. Maruno, Y. Kasaba, M. Fujimoto, Long-term modulations of Saturn’s auroral radio emissions by the solar wind and seasonal variations controlled by the solar ultraviolet flux. J. Geophys. Res. 118(11), 7019–7035 (2013). doi:10.1002/2013JA018833

    Article  Google Scholar 

  • M.G. Kivelson, Moon-magnetosphere interactions: A tutorial. Adv. Space Res. 33, 2061 (2004). doi:10.1016/j.asr.2003.08.042

    Article  ADS  Google Scholar 

  • A.J. Kliore, I.R. Patel, G.F. Lindal, D.N. Sweetnam, H.B. Hotz, J.H. Waite, T. McDonough, Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. J. Geophys. Res. 85, 5857–5870 (1980). doi:10.1029/JA085iA11p05857

    Article  ADS  Google Scholar 

  • A.J. Kliore, A.F. Nagy, E.A. Marouf, A. Anabtawi, E. Barbinis, D.U. Fleischman, D.S. Kahan, Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J. Geophys. Res. 114, 4315 (2009). doi:10.1029/2008JA013900

    Article  Google Scholar 

  • S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973). doi:10.1016/0032-0633(73)90093-7

    Article  ADS  Google Scholar 

  • P.S. Krstić, Inelastic processes from vibrationally excited states in slow \(\mathrm{H}^{+}{+} \mathrm{H2}\) and \(\mathrm{H} {+} \mathrm{H2}^{+}\) collisions: Excitations and charge transfer. Phys. Rev. A 66, 042717 (2002). doi:10.1103/PhysRevA.66.042717

    Article  ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25, 1249–1252 (1998). doi:10.1029/98GL00863

    Article  ADS  Google Scholar 

  • N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, E.C. Roelof, D.J. Williams, Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation. J. Geophys. Res. 106, 26017–26032 (2001). doi:10.1029/2000JA900138

    Article  ADS  Google Scholar 

  • W.S. Kurth, D.A. Gurnett, J.T. Clarke, P. Zarka, M.D. Desch, M.L. Kaiser, B. Cecconi, A. Lecacheux, W.M. Farrell, P. Galopeau, J.-C. Gérard, D. Grodent, R. Prangé, M.K. Dougherty, F.J. Crary, An Earth-like correspondence between Saturn’s auroral features and radio emission. Nature 433, 722–725 (2005). doi:10.1038/nature03334

    Article  ADS  Google Scholar 

  • W.S. Kurth, E.J. Bunce, J.T. Clarke, F.J. Crary, D.C. Grodent, A.P. Ingersoll, U.A. Dyudina, L. Lamy, D.G. Mitchell, A.M. Persoon, W.R. Pryor, J. Saur, T. Stallard, Auroral processes, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009)

    Google Scholar 

  • H.P. Ladreiter, P. Zarka, A. Lacacheux, Direction finding study of Jovian hectometric and broadband kilometric radio emissions: Evidence for their auroral origin. Planet. Space Sci. 42, 919–931 (1994). doi:10.1016/0032-0633(94)90052-3

    Article  ADS  Google Scholar 

  • H.R. Lai, H.Y. Wei, C.T. Russell, C.S. Arridge, M.K. Dougherty, Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. J. Geophys. Res. 117 (2012). doi:10.1029/2011JA017263

    Google Scholar 

  • H.A. Lam, N. Achilleos, S. Miller, J. Tennyson, L.M. Trafton, T.R. Geballe, G. Ballester, A baseline spectroscopic study of the infrared auroras of Jupiter. Icarus 127 (1997). doi:10.1006/icar.1997.5698

    Google Scholar 

  • L. Lamy, Variability of southern and northern periodicities of Saturn kilometric radiation, in Planetary Radio Emissions, ed. by H.O. Rucker (Austrian Acad. Sci. Press, Vienna, 2011), pp. 39–50. doi:10.1553/PRE7s39

    Chapter  Google Scholar 

  • L. Lamy, P. Zarka, B. Cecconi, S. Hess, R. Prangé, Modeling of Saturn kilometric radiation arcs and equatorial shadow zone. J. Geophys. Res. 113, 10213 (2008a). doi:10.1029/2008JA013464

    Google Scholar 

  • L. Lamy, P. Zarka, B. Cecconi, R. Prangé, W.S. Kurth, D.A. Gurnett, Saturn kilometric radiation: Average and statistical properties. J. Geophys. Res. 113, 7201 (2008b). doi:10.1029/2007JA012900

    Google Scholar 

  • L. Lamy, B. Cecconi, R. Prangé, P. Zarka, J.D. Nichols, J.T. Clarke, An auroral oval at the footprint of Saturn’s kilometric radio sources, colocated with the UV aurorae. J. Geophys. Res. 114, 10212 (2009). doi:10.1029/2009JA014401

    Google Scholar 

  • L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 37, 12104 (2010). doi:10.1029/2010GL043415

    Article  ADS  Google Scholar 

  • L. Lamy, B. Cecconi, P. Zarka, P. Canu, P. Schippers, W.S. Kurth, R.L. Mutel, D.A. Gurnett, D. Menietti, P. Louarn, Emission and propagation of Saturn kilometric radiation: Magnetoionic modes, beaming pattern, and polarization state. J. Geophys. Res. 116, 4212 (2011). doi:10.1029/2010JA016195

    Article  Google Scholar 

  • L. Lamy, R. Prangé, K.C. Hansen, J.T. Clarke, P. Zarka, B. Cecconi, J. Aboudarham, N. André, G. Branduardi-Raymont, R. Gladstone, M. Barthélémy, N. Achilleos, P. Guio, M.K. Dougherty, H. Melin, S.W.H. Cowley, T.S. Stallard, J.D. Nichols, G. Ballester, Earth-based detection of Uranus’ aurorae. Geophys. Res. Lett. 39, 7105 (2012). doi:10.1029/2012GL051312

    Article  ADS  Google Scholar 

  • L. Lamy, R. Prangé, W. Pryor, J. Gustin, S.V. Badman, H. Melin, T. Stallard, D.G. Mitchell, P.C. Brandt, Multi-spectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation. J. Geophys. Res. 118, 1–27 (2013). doi:10.1002/jgra.50404

    Article  Google Scholar 

  • L.J. Lanzerotti, T.P. Armstrong, R.E. Gold, K.A. Anderson, S.M. Krimigis, R.P. Lin, M. Pick, E.C. Roelof, E.T. Sarris, G.M. Simnett, The hot plasma environment at Jupiter—ULYSSES results. Science 257, 1518–1524 (1992). doi:10.1126/science.257.5076.1518

    Article  ADS  Google Scholar 

  • G.F. Lindal, D.N. Sweetnam, V.R. Eshleman, The atmosphere of Saturn—An analysis of the Voyager radio occultation measurements. Astron. J. 90, 1136–1146 (1985)

    Article  ADS  Google Scholar 

  • T.A. Livengood, H.W. Moos, Jupiter’s north and south polar aurorae with IUE data. Geophys. Res. Lett. 17, 2265–2268 (1990). doi:10.1029/GL017i012p02265

    Article  ADS  Google Scholar 

  • D.A. Lorentzen, Latitudinal and longitudinal dispersion of energetic auroral protons. Ann. Geophys. 18, 81–89 (2000). doi:10.1007/s00585-000-0081-3

    Article  ADS  Google Scholar 

  • P. Louarn, D. Le Quéau, Generation of the auroral kilometric radiation in plasma cavities—II. The cyclotron maser instability in small size sources. Planet. Space Sci. 44, 211–224 (1996). doi:10.1016/0032-0633(95)00122-0

    Article  ADS  Google Scholar 

  • P. Louarn, A. Roux, S. Perraut, W. Kurth, D. Gurnett, A study of the large-scale dynamics of the Jovian magnetosphere using the Galileo plasma wave experiment. Geophys. Res. Lett. 25, 2905–2908 (1998). doi:10.1029/98GL01774

    Article  ADS  Google Scholar 

  • R.J. MacDowall, M.L. Kaiser, M.D. Desch, W.M. Farrell, R.A. Hess, R.G. Stone, Quasiperiodic Jovian radio bursts: Observations from the ulysses radio and plasma wave experiment. Planet. Space Sci. 41, 1059–1072 (1993). doi:10.1016/0032-0633(93)90109-F

    Article  ADS  Google Scholar 

  • T. Majeed, J.C. McConnell, The upper ionospheres of Jupiter and Saturn. Planet. Space Sci. 39, 1715–1732 (1991). doi:10.1016/0032-0633(91)90031-5

    Article  ADS  Google Scholar 

  • A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma \(\beta\) conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39 (2012). doi:10.1029/2012GL051372

    Google Scholar 

  • K.I. Matcheva, D.J. Barrow, Small-scale variability in Saturn’s lower ionosphere. Icarus 221, 525–543 (2012). doi:10.1016/j.icarus.2012.08.022

    Article  ADS  Google Scholar 

  • B.H. Mauk, J.T. Clarke, D. Grodent, J.H. Waite, C.P. Paranicas, D.J. Williams, Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003–1005 (2002)

    Article  ADS  Google Scholar 

  • B.H. Mauk, D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler, R.M. Thorne, Fundamental plasma processes in Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis, (2009). Chap. Fundamental plasma processes in Saturn’s magnetosphere. doi:10.1007/978-1-4020-9217-6

    Google Scholar 

  • H.J. McAndrews, C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, D.T. Young, Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. 113(A4) (2008). doi:10.1029/2007JA012581

    Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: A fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL031078

  • J.C. McConnell, J.B. Holberg, G.R. Smith, B.R. Sandel, D.E. Shemansky, A.L. Broadfoot, A new look at the ionosphere of Jupiter in light of the UVS occultation results. Planet. Space Sci. 30, 151–167 (1982). doi:10.1016/0032-0633(82)90086-1

    Article  ADS  Google Scholar 

  • M.B. McElroy, The ionospheres of the Major planets. Space Sci. Rev. 14, 460–473 (1973). doi:10.1007/BF00214756

    Article  ADS  Google Scholar 

  • H. Melin, S. Miller, T. Stallard, D. Grodent, Non-LTE effects on \(\mathrm{H}_{3}^{+}\) emission in the Jovian upper atmosphere. Icarus 178, 97–103 (2005). doi:10.1016/j.icarus.2005.04.016

    Article  ADS  Google Scholar 

  • H. Melin, S. Miller, T. Stallard, L.M. Trafton, T.R. Geballe, Variability in the \(\mathrm{H}_{3}^{+}\) emission of Saturn: Consequences for ionisation rates and temperature. Icarus 186(1), 234–241 (2007). doi:10.1016/j.icarus.2006.08.014

    Article  ADS  Google Scholar 

  • H. Melin, T. Stallard, S. Miller, J. Gustin G. M, S.V. Badman, W.R. Pryor, J. O’Donoghue, R.H. Brown, K.H. Baines, Simultaneous Cassini VIMS and UVIS observations of Saturn’s southern aurora: Comparing emissions from H, \(\mathrm{H}_{2}\) and \(\mathrm{H}_{3}^{+}\) at a high spatial resolution. Geophys. Res. Lett. 38 (2011). doi:10.1029/2011GL048457

  • H. Menager, M. Barthélemy, J. Lilensten, H. Lyman, \(\alpha\) line in Jovian aurorae: Electron transport and radiative transfer coupled modelling. Astron. Astrophys. 509, 56 (2010). doi:10.1051/0004-6361/200912952

    Article  Google Scholar 

  • J.D. Menietti, D.A. Gurnett, G.B. Hospodarsky, C.A. Higgins, W.S. Kurth, P. Zarka, Modeling radio emission attenuation lanes observed by the Galileo and Cassini spacecraft. Planet. Space Sci. 51, 533–540 (2003). doi:10.1016/S0032-0633(03)00078-3

    Article  ADS  Google Scholar 

  • J.D. Menietti, R.L. Mutel, P. Schippers, S.-Y. Ye, D.A. Gurnett, L. Lamy, Analysis of Saturn kilometric radiation near a source center. J. Geophys. Res. 116, 12222 (2011). doi:10.1029/2011JA017056

    Google Scholar 

  • C.J. Meredith, S.W.H. Cowley, K.C. Hansen, J.D. Nichols, T.K. Yeoman, Simultaneous conjugate observations of small-scale structures in Saturn’s dayside ultraviolet auroras—Implications for physical origins. J. Geophys. Res. 118(5), 2244–2266 (2013). doi:10.1002/jgra.50270

    Article  Google Scholar 

  • A.E. Metzger, D.A. Gilman, J.L. Luthey, K.C. Hurley, H.W. Schnopper, F.D. Seward, J.D. Sullivan, The detection of X rays from Jupiter. J. Geophys. Res. 88, 7731–7741 (1983). doi:10.1029/JA088iA10p07731

    Article  ADS  Google Scholar 

  • S. Miller, R.D. Joseph, J. Tennyson, Infrared emissions of \(\mathrm{H}_{3}^{+}\) in the atmosphere of Jupiter in the 2.1 and 4.0 micron region. Astrophys. J. Lett. 360, 55–58 (1990). doi:10.1086/185811

    Article  ADS  Google Scholar 

  • S. Miller, A. Aylward, G. Millward, Giant planet ionospheres and thermospheres: The importance of ion-neutral coupling. Space Sci. Rev. 116, 319–343 (2005). doi:10.1007/s11214-005-1960-4

    Article  ADS  Google Scholar 

  • S. Miller, T. Stallard, H. Melin, J. Tennyson, \(\mathrm{H}_{3}^{+}\) cooling in planetary atmospheres. Faraday Discuss. 147, 283 (2010). doi:10.1039/c004152c

    Article  ADS  Google Scholar 

  • G. Millward, S. Miller, T. Stallard, A.D. Aylward, N. Achilleos, On the dynamics of the Jovian ionosphere and Thermosphere. III. The modelling of auroral conductivity. Icarus 160, 95–107 (2002). doi:10.1006/icar.2002.6951

    Article  ADS  Google Scholar 

  • G. Millward, S. Miller, T. Stallard, N. Achilleos, A.D. Aylward, On the dynamics of the Jovian ionosphere and thermosphere. Icarus 173, 200–211 (2005). doi:10.1016/j.icarus.2004.07.027

    Article  ADS  Google Scholar 

  • D.G. Mitchell, J.F. Carbary, S.W.H. Cowley, T.W. Hill, P. Zarka, The dynamics of Saturn’s magnetosphere, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Dordrecht Heidelberg London New York, 2009a). Chap. The dynamics of Saturn’s magnetosphere. doi:10.1007/978-1-4020-9217-6

    Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009b). doi:10.1016/j.pss.2009.04.002

    Article  ADS  Google Scholar 

  • L.E. Moore, M. Mendillo, Are plasma depletions in Saturn’s ionosphere a signature of time-dependent water input? Geophys. Res. Lett. 34(12) (2007). doi:10.1029/2007GL029381

  • L.E. Moore, M. Mendillo, I.C.F. Müller-Wodarg, D.L. Murr, Modeling of global variations and ring shadowing in Saturn’s ionosphere. Icarus 172, 503–520 (2004). doi:10.1016/j.icarus.2004.07.007

    Article  ADS  Google Scholar 

  • L. Moore, A.F. Nagy, A.J. Kliore, I. Müller-Wodarg, J.D. Richardson, M. Mendillo, Cassini radio occultations of Saturn’s ionosphere: Model comparisons using a constant water flux. Geophys. Res. Lett. 33, 22202 (2006). doi:10.1029/2006GL027375

    Article  ADS  Google Scholar 

  • L. Moore, M. Galand, I. Müller-Wodarg, R. Yelle, M. Mendillo, Plasma temperatures in Saturn’s ionosphere. J. Geophys. Res. 113, 10306 (2008). doi:10.1029/2008JA013373

    Google Scholar 

  • L. Moore, I. Müller-Wodarg, M. Galand, A. Kliore, M. Mendillo, Latitudinal variations in Saturn’s ionosphere: Cassini measurements and model comparisons. J. Geophys. Res. 115, 11317 (2010). doi:10.1029/2010JA015692

    Google Scholar 

  • L. Moore, G. Fischer, I. Müller-Wodarg, M. Galand, M. Mendillo, Diurnal variation of electron density in Saturn’s ionosphere: Model comparisons with Saturn electrostatic discharge (SED) observations. Icarus 221, 508–516 (2012). doi:10.1016/j.icarus.2012.08.010

    Article  ADS  Google Scholar 

  • J.I. Moses, S.F. Bass, The effects of external material on the chemistry and structure of Saturn’s ionosphere. J. Geophys. Res. 105, 7013–7052 (2000). doi:10.1029/1999JE001172

    Article  ADS  Google Scholar 

  • F. Mottez, S. Hess, P. Zarka, Explanation of dominant oblique radio emission at Jupiter and comparison to the terrestrial case. Planet. Space Sci. 58, 1414–1422 (2010). doi:10.1016/j.pss.2010.05.012

    Article  ADS  Google Scholar 

  • I.C.F. Müller-Wodarg, M. Mendillo, R.V. Yelle, A.D. Aylward, A global circulation model of Saturn’s thermosphere. Icarus 180, 147–160 (2006). doi:10.1016/j.icarus.2005.09.002

    Article  ADS  Google Scholar 

  • I.C.F. Müller-Wodarg, L. Moore G. M, M. Mendillo, Magnetosphere–atmosphere coupling at Saturn: 1—Response of thermosphere and ionosphere to steady state polar forcing. Icarus 221(2) (2012). doi:10.1016/j.icarus.2012.08.034

    Google Scholar 

  • R.L. Mutel, J.D. Menietti, D.A. Gurnett, W. Kurth, P. Schippers, C. Lynch, L. Lamy, C. Arridge, B. Cecconi, CMI growth rates for Saturnian kilometric radiation. Geophys. Res. Lett. 37, 19105 (2010). doi:10.1029/2010GL044940

    Article  ADS  Google Scholar 

  • A.F. Nagy, A.J. Kliore, E. Marouf, R. French, M. Flasar, N.J. Rappaport, A. Anabtawi, S.W. Asmar, D. Johnston, E. Barbinis, G. Goltz, D. Fleischman, First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft. J. Geophys. Res. 111, 6310 (2006). doi:10.1029/2005JA011519

    Article  Google Scholar 

  • A.F. Nagy, A.J. Kliore, M. Mendillo, S. Miller, L. Moore, J.I. Moses, I. Müller-Wodarg, D.E. Shemansky, Upper atmosphere and ionosphere of Saturn, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis, (2009)

    Google Scholar 

  • N.F. Ness, M.H. Acuna, R.P. Lepping, J.E.P. Connerney, K.W. Behannon, L.F. Burlaga, F.M. Neubauer, Magnetic field studies by Voyager 1—Preliminary results at Saturn. Science 212, 211–217 (1981). doi:10.1126/science.212.4491.211

    Article  ADS  Google Scholar 

  • F.M. Neubauer, Nonlinear standing Alfven wave current system at Io—Theory. J. Geophys. Res. 85, 1171–1178 (1980). doi:10.1029/JA085iA03p01171

    Article  ADS  Google Scholar 

  • J.D. Nichols, Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: Implications for detectability of auroral radio emissions. Mon. Not. R. Astron. Soc. 414, 2125–2138 (2011). doi:10.1111/j.1365-2966.2011.18528.x

    Article  ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Ann. Geophys. 21, 1419–1441 (2003). doi:10.5194/angeo-21-1419-2003

    Article  ADS  Google Scholar 

  • J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004). doi:10.5194/angeo-22-1799-2004

    Article  ADS  Google Scholar 

  • J.D. Nichols, J.T. Clarke, J.C. Gérard, D. Grodent, Observations of Jovian polar auroral filaments. Geophys. Res. Lett. 36 (2009a). doi:10.1029/2009GL037578

  • J.D. Nichols, J.T. Clarke, J.C. Gérard, D. Grodent, K.C. Hansen, Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. 114, 6210 (2009b). doi:10.1029/2009JA014051

    Google Scholar 

  • J.D. Nichols, B. Cecconi, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, A. Grocott, D. Grodent, L. Lamy, P. Zarka, Variation of Saturn’s UV aurora with SKR phase. Geophys. Res. Lett. 37 (2010a). doi:10.1029/2010GL044057

    Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, L. Lamy, Dawn-dusk oscillation of Saturn’s conjugate auroral ovals. Geophys. Res. Lett. 372, 24102 (2010b). doi:10.1029/2010GL045818

    ADS  Google Scholar 

  • J. O’Donoghue, T.S. Stallard, H. Melin, G.H. Jones, S.W.H. Cowley, S. Miller, K.H. Baines, J.S.D. Blake, The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature 496(7444), 193–195 (2013). doi:10.1038/nature12049

    Article  ADS  Google Scholar 

  • J. O’Donoghue, T.S. Stallard, H. Melin, S.W.H. Cowley, S.V. Badman, L. Moore, S. Miller, C. Tao, K.H. Baines, J.S.D. Blake, Conjugate observations of Saturn’s northern and southern \(\mathrm{H}_{3}^{+}\) aurorae. Icarus 229, 214–220 (2014). doi:10.1016/j.icarus.2013.11.009

    Article  ADS  Google Scholar 

  • N. Ozak, D.R. Schultz, T.E. Cravens, V. Kharchenko, Y.-W. Hui, Auroral X-ray emission at Jupiter: Depth effects. J. Geophys. Res. 115, 11306 (2010). doi:10.1029/2010JA015635

    Article  Google Scholar 

  • L. Pallier, R. Prangé, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001). doi:10.1016/S0032-0633(01)00023-X

    Article  ADS  Google Scholar 

  • L. Pallier, R. Prangé, Detection of the southern counterpart of the Jovian northern polar cusp: Shared properties. Geophys. Res. Lett. 31, 6701 (2004). doi:10.1029/2003GL018041

    Article  ADS  Google Scholar 

  • M. Panchenko, H. Rucker, W. Farrell, Periodic bursts of Jovian non-Io decametric radio emission. Planet. Space Sci. 77, 3–11 (2013)

    Article  ADS  Google Scholar 

  • J.D. Patterson, T.P. Armstrong, C.M. Laird, D.L. Detrick, A.T. Weatherwax, Correlation of solar energetic protons and polar cap absorption. J. Geophys. Res. 106, 149–164 (2001). doi:10.1029/2000JA002006

    Article  ADS  Google Scholar 

  • J.J. Perry, Y.H. Kim, J.L. Fox, H.S. Porter, Chemistry of the Jovian auroral ionosphere. J. Geophys. Res. 104, 16541–16566 (1999). doi:10.1029/1999JE900022

    Article  ADS  Google Scholar 

  • R. Prangé, D. Rego, J.-C. Gerard, Auroral Lyman alpha and H2 bands from the giant planets. 2: Effect of the anisotropy of the precipitating particles on the interpretation of the ‘color ratio’. J. Geophys. Res. 100, 7513–7521 (1995). doi:10.1029/94JE03176

    Article  ADS  Google Scholar 

  • R. Prangé, D. Rego, D. Southwood, P. Zarka, S. Miller, W. Ip, Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit. Nature 379, 323–325 (1996). doi:10.1038/379323a0

    Article  ADS  Google Scholar 

  • R. Prangé, L. Pallier, K.C. Hansen, R. Howard, A. Vourlidas, R. Courtin, C. Parkinson, An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004). doi:10.1038/nature02986

    Article  ADS  Google Scholar 

  • W.R. Pryor, A.M. Rymer, D.G. Mitchell, T.W. Hill, D.T. Young, J. Saur, G.H. Jones, S. Jacobsen, S.W.H. Cowley, B.H. Mauk, A.J. Coates, J. Gustin, D. Grodent, J.-C. Gérard, L. Lamy, J.D. Nichols, S.M. Krimigis, L.W. Esposito, M.K. Dougherty, A.J. Jouchoux, A.I.F. Stewart, W.E. McClintock, G.M. Holsclaw, J.M. Ajello, J.E. Colwell, A.R. Hendrix, F.J. Crary, J.T. Clarke, X. Zhou, The auroral footprint of Enceladus on Saturn. Nature 472, 331–333 (2011). doi:10.1038/nature09928

    Article  ADS  Google Scholar 

  • A. Radioti, J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, J. Woch, Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. 113, 1215 (2008a). doi:10.1029/2007JA012610

    Article  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35, 3104 (2008b). doi:10.1029/2007GL032460

    Article  ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, E. Roussos, C. Paranicas, B. Bonfond, D.G. Mitchell, N. Krupp, S. Krimigis, J.T. Clarke, Transient auroral features at Saturn: Signatures of energetic particle injections in the magnetosphere. J. Geophys. Res. 114, 3210 (2009). doi:10.1029/2008JA013632

    Article  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, S.E. Milan, B. Bonfond, J. Gustin, W.R. Pryor, Bifurcations of the main auroral ring at Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. 116 (2011a). doi:10.1029/2011JA016661

    Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, 3221 (2011b). doi:10.1029/2010JA016200

    Article  Google Scholar 

  • A. Radioti, M. Lystrup, B. Bonfond, J.-C. Gérard, Jupiter’s aurora in ultraviolet and infrared: Simultaneous observations with the Hubble space telescope and the NASA infrared telescope facility. J. Geophys. Res. 118(5), 2286–2295 (2013a). doi:10.1002/jgra.50245

    Article  Google Scholar 

  • A. Radioti, E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, W. Pryor, Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. 118, 1922–1933 (2013b). doi:10.1002/jgra.50161

    Article  Google Scholar 

  • L.C. Ray, S. Hess, Modelling the Io-related DAM emission by modifying the beaming angle. J. Geophys. Res. 113, 11218 (2008). doi:10.1029/2008JA013669

    Article  Google Scholar 

  • L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. 115, 9211 (2010). doi:10.1029/2010JA015423

    Article  Google Scholar 

  • L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: A parameter space study. J. Geophys. Res. 117, 1205 (2012a). doi:10.1029/2011JA016899

    Article  Google Scholar 

  • L.C. Ray, M. Galand, L.E. Moore, B.L. Fleshman, Characterizing the limitations to the coupling between Saturn’s ionosphere and middle magnetosphere. J. Geophys. Res. 117, 7210 (2012b). doi:10.1029/2012JA017735

    Article  Google Scholar 

  • J.C. Raymond, X-rays from charge transfer in astrophysics: Overview. Astron. Nachr. 333, 290 (2012). doi:10.1002/asna.201211677

    Article  ADS  Google Scholar 

  • E. Raynaud, E. Lellouch, J.-P. Maillard, G.R. Gladstone, J.H. Waite, B. Bézard, P. Drossart, T. Fouchet, Spectro-imaging observations of Jupiter’s 2-\(\mu\)m auroral emission. I. \(\mathrm{H}_{3}^{+}\) distribution and temperature. Icarus 171, 133–152 (2004). doi:10.1016/j.icarus.2004.04.020

    Article  ADS  Google Scholar 

  • M.H. Rees, Physics and Chemistry of the Upper Atmosphere (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  • D. Rego, R. Prange, J.-C. Gerard, Auroral Lyman \(\alpha\) and \(\mathrm{H}_{2}\) bands from the giant planets: 1. Excitation by proton precipitation in the Jovian atmosphere. J. Geophys. Res. 99, 17075–17094 (1994). doi:10.1029/93JE03432

    Article  ADS  Google Scholar 

  • D. Rego, R. Prangé, L. Ben Jaffel, Auroral Lyman \(\alpha\) and \(\mathrm{H}_{2}\) bands from the giant planets 3. Lyman \(\alpha\) spectral profile including charge exchange and radiative transfer effects and \(\mathrm{H}_{2}\) color ratios. J. Geophys. Res. 104, 5939–5954 (1999). doi:10.1029/1998JE900048

    Article  ADS  Google Scholar 

  • D. Rego, S. Miller, N. Achilleos, R. Prangé, R.D. Joseph, Latitudinal profiles of the Jovian IR emissions of \(\mathrm{H}_{3}^{+}\) at 4 \(\mu\)m with the NASA infrared telescope facility: Energy inputs and thermal balance. Icarus 147, 366–385 (2000). doi:10.1006/icar.2000.6444

    Article  ADS  Google Scholar 

  • M.J. Reiner, J. Fainberg, R.G. Stone, Source characteristics of Jovian hectometric radio emissions. J. Geophys. Res. 98, 18767–18777 (1993a). doi:10.1029/93JE01779

    Article  ADS  Google Scholar 

  • M.J. Reiner, J. Fainberg, R.G. Stone, M.L. Kaiser, M.D. Desch, R. Manning, P. Zarka, B.-M. Pedersen, Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. 98, 13163 (1993b). doi:10.1029/93JE00536

    Article  ADS  Google Scholar 

  • A. Roux, A. Hilgers, H. de Féraudy, D. Le Quéau, P. Louarn, S. Perraut, A. Bahnsen, M. Jespersen, E. Ungstrup, M. André, Auroral kilometric radiation sources—In situ and remote observations from Viking. J. Geophys. Res. 98, 11657 (1993). doi:10.1029/92JA02309

    Article  ADS  Google Scholar 

  • H.O. Rucker, M. Panchenko, K.C. Hansen, U. Taubenschuss, M.Y. Boudjada, W.S. Kurth, M.K. Dougherty, J.T. Steinberg, P. Zarka, P.H.M. Galopeau, D.J. McComas, C.H. Barrow, Saturn kilometric radiation as a monitor for the solar wind? Adv. Space Res. 42, 40–47 (2008). doi:10.1016/j.asr.2008.02.008

    Article  ADS  Google Scholar 

  • B.R. Sandel, D.E. Shemansky, A.L. Broadfoot, J.B. Holberg, G.R. Smith, J.C. McConnell, D.F. Strobel, S.K. Atreya, T.M. Donahue, H.W. Moos, D.M. Hunten, R.B. Pomphrey, S. Linick, Extreme ultraviolet observations from the Voyager 2 encounter with Saturn. Science 215, 548–553 (1982). doi:10.1126/science.215.4532.548

    Article  ADS  Google Scholar 

  • T. Satoh, J.E.P. Connerney, Jupiter’s \(\mathrm{H}_{3}^{+}\) emissions viewed in corrected Jovimagnetic coordinates. Icarus 141, 236–252 (1999). doi:10.1006/icar.1999.6173

    Article  ADS  Google Scholar 

  • P. Schippers, C.S. Arridge, J.D. Menietti, D.A. Gurnett, L. Lamy, B. Cecconi, D.G. Mitchell, N. André, W.S. Kurth, S. Grimald, M.K. Dougherty, A.J. Coates, N. Krupp, D.T. Young, Auroral electron distributions within and close to the Saturn kilometric radiation source region. J. Geophys. Res. 116, 05203 (2011). doi:10.1029/2011JA016461

    Article  Google Scholar 

  • L. Scurry, C.T. Russell, Proxy studies of energy transfer to the magnetosphere. J. Geophys. Res. 96, 9541–9548 (1991). doi:10.1029/91JA00569

    Article  ADS  Google Scholar 

  • J.A. Simpson, J.D. Anglin, A. Balogh, J.R. Burrows, S.W.H. Cowley, P. Ferrando, B. Heber, R.J. Hynds, H. Kunow, R.G. Marsden, Energetic charged-particle phenomena in the Jovian magnetosphere—First results from the ULYSSES COSPIN collaboration. Science 257, 1543–1550 (1992). doi:10.1126/science.257.5076.1543

    Article  ADS  Google Scholar 

  • R.P. Singhal, S.C. Chakravarty, A. Bhardwaj, B. Prasad, Energetic electron precipitation in Jupiter’s upper atmosphere. J. Geophys. Res. 97, 18245 (1992). doi:10.1029/92JE01894

    Article  ADS  Google Scholar 

  • E.C. Sittler, N. Andre, M. Blanc, M. Burger, R.E. Johnson, A. Coates, A. Rymer, D. Reisenfeld, M.F. Thomsen, A. Persoon, M. Dougherty, H.T. Smith, R.A. Baragiola, R.E. Hartle, D. Chornay, M.D. Shappirio, D. Simpson, D.J. McComas, D.T. Young, Ion and neutral sources and sinks within Saturn’s inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3–18 (2008). doi:10.1016/j.pss.2007.06.006

    Article  ADS  Google Scholar 

  • T.G. Slanger, T.E. Cravens, J. Crovisier, S. Miller, D.F. Strobel, Photoemission phenomena in the solar system. Space Sci. Rev. 139, 267–310 (2008). doi:10.1007/s11214-008-9387-3

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Saturn’s thermosphere and magnetosphere: A thermospheric modelling study. Ann. Geophys. 26, 1007–1027 (2008). doi:10.5194/angeo-26-1007-2008

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199–230 (2009). doi:10.5194/angeo-27-199-2009

    Article  ADS  Google Scholar 

  • E.J. Smith, R.W. Fillius, J.H. Wolfe, Compression of Jupiter’s magnetosphere by the solar wind. J. Geophys. Res. 83, 4733–4742 (1978). doi:10.1029/JA083iA10p04733

    Article  ADS  Google Scholar 

  • C.G.A. Smith, S. Miller, A.D. Aylward, Magnetospheric energy inputs into the upper atmospheres of the giant planets. Ann. Geophys. 23, 1943–1947 (2005). doi:10.5194/angeo-23-1943-2005

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, G.H. Millward, S. Miller, L.E. Moore, An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007a). doi:10.1038/nature05518

    Article  ADS  Google Scholar 

  • H.T. Smith, R.E. Johnson, E.C. Sittler, M. Shappirio, D. Reisenfeld, O.J. Tucker, M. Burger, F.J. Crary, D.J. McComas, D.T. Young, Enceladus: The likely dominant nitrogen source in Saturn’s magnetosphere. Icarus 188, 356–366 (2007b). doi:10.1016/j.icarus.2006.12.007

    Article  ADS  Google Scholar 

  • S.C. Solomon, Auroral electron transport using the Monte Carlo method. Geophys. Res. Lett. 20, 185–188 (1993). doi:10.1029/93GL00081

    Article  ADS  Google Scholar 

  • S.C. Solomon, Auroral particle transport using Monte Carlo and hybrid methods. J. Geophys. Res. 106, 107–116 (2001). doi:10.1029/2000JA002011

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, The source of Saturn’s periodic radio emission. J. Geophys. Res. 114, 9201 (2009). doi:10.1029/2008JA013800

    Article  Google Scholar 

  • T. Stallard, S. Miller, G.E. Ballester, D. Rego, R.D. Joseph, L.M. Trafton, The \(\mathrm{H}_{3}^{+}\) latitudinal profile of Saturn. Astrophys. J. Lett. 521, 149–152 (1999). doi:10.1086/312189

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. I. The measurement of ion winds. Icarus 154, 475–491 (2001). doi:10.1006/icar.2001.6681

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the Jovian ionosphere and thermosphere. II. The measurement of \(\mathrm{H}_{3}^{+}\) vibrational temperature, column density, and total emission. Icarus 156, 498–514 (2002). doi:10.1006/icar.2001.6793

    Article  ADS  Google Scholar 

  • T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30, 1221 (2003). doi:10.1029/2002GL016031

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, H. Melin, M. Lystrup, M.K. Dougherty, N. Achilleos, Saturn’s auroral/polar \({H}_{3}^{+}\) infrared emission I. General morphology and ion velocity structure. Icarus 189(1), 1–13 (2007a). doi:10.1016/j.icarus.2006.12.027

    Article  ADS  Google Scholar 

  • T. Stallard, C. Smith, S. Miller, H. Melin, M. Lystrup, A. Aylward, N. Achilleos, M.K. Dougherty, Saturn’s auroral/polar \(\mathrm{H}_{3}^{+}\) infrared emission—II. A comparison with plasma flow models. Icarus 191(2), 678–690 (2007b). doi:10.1016/j.icarus.2007.05.016

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, M. Lystrup, N. Achilleos, E.J. Bunce, C.S. Arridge, M.K. Dougherty, S.W.H. Cowley, S.V. Badman, D.L. Talboys, R.H. Brown, K.H. Baines, B.J. Buratti, R.N. Clark, C. Sotin, P.D. Nicholson, P. Drossart, Complex structure within Saturn’s infrared aurora. Nature 456(7219), 214–217 (2008a). doi:10.1038/nature07440

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, H. Melin, M. Lystrup, S.W.H. Cowley, E.J. Bunce, N. Achilleos, M. Dougherty, Jovian-like aurorae on Saturn. Nature 453(7198), 1083–1085 (2008b). doi:10.1038/nature07077

    Article  ADS  Google Scholar 

  • T. Stallard, H. Melin, S.W.H. Cowley, S. Miller, M.B. Lystrup, Location and magnetospheric mapping of Saturn’s mid-latitude infrared auroral oval. Astrophys. J. Lett. 722, 85–89 (2010). doi:10.1088/2041-8205/722/1/L85

    Article  ADS  Google Scholar 

  • T.S. Stallard, A. Masters, S. Miller, H. Melin, E.J. Bunce, C.S. Arridge, N. Achilleos, M.K. Dougherty, S.W.H. Cowley, Saturn’s auroral/polar \(\mathrm{H}_{3}^{+}\) infrared emission: The effect of solar wind compression. J. Geophys. Res. 117, 12302 (2012a). doi:10.1029/2012JA018201

    Article  Google Scholar 

  • T.S. Stallard, H. Melin, S. Miller, J. O’Donoghue, S.W.H. Cowley, S.V. Badman, A. Adriani, R.H. Brown, K.H. Baines, Temperature changes and energy inputs in giant planet atmospheres: What we are learning from \(\mathrm{H}_{3}^{+}\). Philos. Trans. R. Soc. Lond. A 370, 5213–5224 (2012b). doi:10.1098/rsta.2012.0028

    Article  ADS  Google Scholar 

  • T.S. Stallard, H. Melin, S. Miller, S.V. Badman, R.H. Brown, K.H. Baines, Peak emission altitude of Saturn’s \(\mathrm{H}_{3}^{+}\) aurora. Geophys. Res. Lett. 39(15), L15103 (2012c). doi:10.1029/2012GL052806

    Article  ADS  Google Scholar 

  • A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. III. Observations of temporal and azimuthal variability. Icarus 180, 124–140 (2006). doi:10.1016/j.icarus.2005.07.013

    Article  ADS  Google Scholar 

  • A.J. Steffl, P.A. Delamere, F. Bagenal, Cassini UVIS observations of the Io plasma torus. IV. Modeling temporal and azimuthal variability. Icarus 194, 153–165 (2008). doi:10.1016/j.icarus.2007.09.019

    Article  ADS  Google Scholar 

  • R.G. Stone, B.M. Pedersen, C.C. Harvey, P. Canu, N. Cornilleau-Wehrlin, M.D. Desch, C. de Villedary, J. Fainberg, W.M. Farrell, K. Goetz, ULYSSES radio and plasma wave observations in the Jupiter environment. Science 257, 1524–1531 (1992). doi:10.1126/science.257.5076.1524

    Article  ADS  Google Scholar 

  • C. Tao, H. Fujiwara, Y. Kasaba, Neutral wind control of the Jovian magnetosphere-ionosphere current system. J. Geophys. Res. 114, 8307 (2009). doi:10.1029/2008JA013966

    Google Scholar 

  • C. Tao, H. Fujiwara, Y. Kasaba, Jovian magnetosphere-ionosphere current system characterized by diurnal variation of ionospheric conductance. Planet. Space Sci. 58, 351–364 (2010). doi:10.1016/j.pss.2009.10.005

    Article  ADS  Google Scholar 

  • C. Tao, S.V. Badman, M. Fujimoto, UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus 213, 581–592 (2011). doi:10.1016/j.icarus.2011.04.001

    Article  ADS  Google Scholar 

  • C. Tao, S.V. Badman, T. Uno, M. Fujimoto, On the feasibility of characterising Jovian auroral electrons via \(\mathrm{H}_{3}^{+}\) infrared line emission analysis. Icarus 221, 236–247 (2012). doi:10.1016/j.icarus.2012.07.015

    Article  ADS  Google Scholar 

  • C. Tao, S.V. Badman, M. Fujimoto, Characteristic time scales of Uv and Ir auroral emissions at Jupiter and Saturn and their possible observable effects, in Proc. of the 12th Symposium on Planetary Science (TERRAPUB, Japan, 2013)

    Google Scholar 

  • T. Terasawa, K. Maezawa, S. Machida, Solar wind effect on Jupiter’s non-Io-related radio emission. Nature 273, 131 (1978). doi:10.1038/273131a0

    Article  ADS  Google Scholar 

  • J.R. Thieman, M.L. Goldstein, Arcs in Saturn’s radio spectra. Nature 292, 728–731 (1981). doi:10.1038/292728a0

    Article  ADS  Google Scholar 

  • M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, 10220 (2010). doi:10.1029/2010JA015267

    Article  Google Scholar 

  • A.T. Tomás, J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, W.S. Kurth, Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. J. Geophys. Res. 109, 6203 (2004). doi:10.1029/2004JA010405

    Article  Google Scholar 

  • J.T. Trauger, J.T. Clarke, G.E. Ballester, R.W. Evans, C.J. Burrows, D. Crisp, J.S. Gallagher, R.E. Griffiths, J.J. Hester, J.G. Hoessel, J.A. Holtzman, J.E. Krist, J.R. Mould, R. Sahai, P.A. Scowen, K.R. Stapelfeldt, A.M. Watson, Saturn’s hydrogen aurora: Wide field and planetary camera 2 imaging from the Hubble space telescope. J. Geophys. Res. 103(E9), 20237–20244 (1998). doi:10.1029/98JE01324

    Article  ADS  Google Scholar 

  • R.A. Treumann, Planetary radio emission mechanisms: A tutorial, in Radio Astronomy at Long Wavelengths, ed. by R.G. Stone, K.W. Weiler, M.L. Goldstein, J.-L. Bougeret. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 119, (2000)

    Chapter  Google Scholar 

  • R.A. Treumann, The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev. 13, 229–315 (2006). doi:10.1007/s00159-006-0001-y

    Article  ADS  Google Scholar 

  • A.R. Vasavada, A.H. Bouchez, A.P. Ingersoll, B. Little, C.D. Anger (Galileo SSI Team), Jupiter’s visible aurora and Io footprint. J. Geophys. Res. 104, 27133–27142 (1999). doi:10.1029/1999JE001055

    Article  ADS  Google Scholar 

  • V.M. Vasyliunas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge University Press, Cambridge, 1983), pp. 395–453

    Chapter  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA015098

    Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, 3220 (2011). doi:10.1029/2010JA016148

    Article  Google Scholar 

  • J.H. Waite Jr., The ionosphere of Saturn. Ph.D. thesis, Michigan Univ., Ann Arbor (1981)

    Google Scholar 

  • J.H. Waite Jr., J.T. Clarke, T.E. Cravens, C.M. Hammond, The Jovian aurora—Electron or ion precipitation? J. Geophys. Res. 93, 7244–7250 (1988). doi:10.1029/JA093iA07p07244

    Article  ADS  Google Scholar 

  • J.H. Waite Jr., F. Bagenal, F. Seward, C. Na, G.R. Gladstone, T.E. Cravens, K.C. Hurley, J.T. Clarke, R. Elsner, S.A. Stern, ROSAT observations of the Jupiter aurora. J. Geophys. Res. 99, 14799 (1994). doi:10.1029/94JA01005

    Article  ADS  Google Scholar 

  • J.H. Waite Jr., G.R. Gladstone, K. Franke, W.S. Lewis, A.C. Fabian, W.N. Brandt, C. Na, F. Haberl, J.T. Clarke, K.C. Hurley, M. Sommer, S. Bolton, ROSAT observations of X-ray emissions from Jupiter during the impact of comet Shoemaker-Levy 9. Science 268, 1598–1601 (1995). doi:10.1126/science.268.5217.1598

    Article  ADS  Google Scholar 

  • J.H. Waite Jr., W.S. Lewis, G.R. Gladstone, T.E. Cravens, A.N. Maurellis, P. Drossart, J.E.P. Connerney, S. Miller, H.A. Lam, Outer planet ionospheres—A review of recent research and a look toward the future. Adv. Space Res. 20, 243 (1997). doi:10.1016/S0273-1177(97)00542-5

    Article  ADS  Google Scholar 

  • J.H. Waite, T.E. Cravens, J. Kozyra, A.F. Nagy, S.K. Atreya, R.H. Chen, Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. 88, 6143–6163 (1983). doi:10.1029/JA088iA08p06143

    Article  ADS  Google Scholar 

  • J.H. Waite, G.R. Gladstone, W.S. Lewis, P. Drossart, T.E. Cravens, A.N. Maurellis, B.H. Mauk, S. Miller, Equatorial X-ray emissions: Implications for Jupiter’s high exospheric temperatures. Science 276, 104–108 (1997). doi:10.1126/science.276.5309.104

    Article  ADS  Google Scholar 

  • J.H. Waite, G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, P. Riley, R.J. Walker, P. Robertson, S. Desai, J.T. Clarke, D.T. Young, An auroral flare at Jupiter. Nature 410, 787–789 (2001)

    Article  ADS  Google Scholar 

  • R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90, 7397–7404 (1985). doi:10.1029/JA090iA08p07397

    Article  ADS  Google Scholar 

  • J.W. Warwick, J.B. Pearce, D.R. Evans, T.D. Carr, J.J. Schauble, J.K. Alexander, M.L. Kaiser, M.D. Desch, M. Pedersen, A. Lecacheux, G. Daigne, A. Boischot, C.H. Barrow, Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212, 239–243 (1981). doi:10.1126/science.212.4491.239

    Article  ADS  Google Scholar 

  • J.W. Warwick, D.R. Evans, J.H. Romig, J.K. Alexander, M.D. Desch, M.L. Kaiser, M.G. Aubier, Y. Leblanc, A. Lecacheux, B.M. Pedersen, Planetary radio astronomy observations from Voyager 2 near Saturn. Science 215, 582–587 (1982). doi:10.1126/science.215.4532.582

    Article  ADS  Google Scholar 

  • R.J. Wilson, R.L. Tokar, M.G. Henderson, Thermal ion flow in Saturn’s inner magnetosphere measured by the Cassini plasma spectrometer: A signature of the Enceladus torus? Geophys. Res. Lett. 36, 23104 (2009). doi:10.1029/2009GL040225

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Quasi-periodic modulations of the Jovian magnetotail. Geophys. Res. Lett. 25, 1253–1256 (1998). doi:10.1029/98GL00861

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, A. Tomás, The structure and dynamics of the Jovian energetic particle distribution. Adv. Space Res. 33, 2030–2038 (2004). doi:10.1016/j.asr.2003.04.050

    Article  ADS  Google Scholar 

  • B.C. Wolven, P.D. Feldman, Self-absorption by vibrationally excited \(\mathrm{H}_{2}\) in the Astro-2 Hopkins ultraviolet telescope spectrum of the Jovian aurora. Geophys. Res. Lett. 25, 1537–1540 (1998). doi:10.1029/98GL01063

    Article  ADS  Google Scholar 

  • C.S. Wu, Kinetic cyclotron and synchrotron maser instabilities—Radio emission processes by direct amplification of radiation. Space Sci. Rev. 41, 215–298 (1985). doi:10.1007/BF00190653

    Article  ADS  Google Scholar 

  • C.S. Wu, L.C. Lee, A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621–626 (1979). doi:10.1086/157120

    Article  ADS  Google Scholar 

  • R.V. Yelle, S. Miller, Jupiter’s thermosphere and ionosphere, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon, (2004), pp. 185–218

    Google Scholar 

  • M. Yoneda, M. Kagitani, S. Okano, Short-term variability of Jupiter’s extended sodium nebula. Icarus 204(2), 589–596 (2009). doi:10.1016/j.icarus.2009.07.023

    Article  ADS  Google Scholar 

  • M. Yoneda, F. Tsuchiya, H. Misawa, B. Bonfond, C. Tao, M. Kagitani, S. Okano, Io’s volcanism controls Jupiter’s radio emissions. Geophys. Res. Lett. 40(4), 671–675 (2013)

    Article  ADS  Google Scholar 

  • P. Zarka, On detection of radio bursts associated with Jovian and Saturnian lightning. Astron. Astrophys. 146, 15–18 (1985)

    ADS  Google Scholar 

  • P. Zarka, The auroral radio emissions from planetary magnetospheres—What do we know, what don’t we know, what do we learn from them? Adv. Space Res. 12, 99–115 (1992). doi:10.1016/0273-1177(92)90383-9

    Article  ADS  Google Scholar 

  • P. Zarka, Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. 103, 20159–20194 (1998). doi:10.1029/98JE01323

    Article  ADS  Google Scholar 

  • P. Zarka, Radio and plasma waves at the outer planets. Adv. Space Res. 33, 2045–2060 (2004). doi:10.1016/j.asr.2003.07.055

    Article  ADS  Google Scholar 

  • P. Zarka, Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007). doi:10.1016/j.pss.2006.05.045

    Article  ADS  Google Scholar 

  • P. Zarka, F. Genova, Low-frequency Jovian emission and solar wind magnetic sector structure. Nature 306, 767–768 (1983). doi:10.1038/306767a0

    Article  ADS  Google Scholar 

  • P. Zarka, T. Farges, B.P. Ryabov, M. Abada-Simon, L. Denis, A scenario for Jovian S-bursts. Geophys. Res. Lett. 23, 125–128 (1996). doi:10.1029/95GL03780

    Article  ADS  Google Scholar 

  • P. Zarka, L. Lamy, B. Cecconi, R. Prangé, H.O. Rucker, Modulation of Saturn’s radio clock by solar wind speed. Nature 450, 265–267 (2007). doi:10.1038/nature06237

    Article  ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, Statistical validation of a solar wind propagation model from 1 to 10 au. J. Geophys. Res. 113(A8) (2008). doi:10.1029/2008JA013046

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah V. Badman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Badman, S.V. et al. (2016). Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra. In: Szego, K., et al. The Magnetodiscs and Aurorae of Giant Planets. Space Sciences Series of ISSI, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3395-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3395-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3394-5

  • Online ISBN: 978-1-4939-3395-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics