Skip to main content

Feto-Maternal Cell Trafficking and Labor

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Abstract

Maternal-fetal cellular trafficking is a complex process in which fetal cells migrate into the maternal circulation and maternal cells migrate into the fetal circulation. This phenomenon can result in long-lived microchimerism within the mother and her progeny. Recently, examination of the levels of trafficking between the mother and fetus has gained momentum with improvements in strategies to detect microchimerism. The long-term consequences of trafficking have been explored in the context of transplant tolerance and autoimmunity. In addition to long-term effects, trafficking may also lead to pregnancy complications, such as preeclampsia, intrauterine growth restriction, and preterm labor, which are the leading causes of morbidity and mortality during pregnancy. Fetal surgery, a strategy that has improved survival in many fetuses with severe congenital anomalies, may enhance cellular trafficking and is often accompanied by pregnancy complications. However, the connection between the two entities remains unknown. In this chapter, we will review current techniques to detect fetal and maternal microchimerism and implications of microchimerism as it relates to maternal and fetal/child health, with a particular emphasis on pregnancy complications. Finally, we will explore the effects congenital abnormalities and fetal surgery on maternal-fetal cellular trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2001;41(12):1524–30. PubMed.

    Article  CAS  PubMed  Google Scholar 

  2. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93(2):705–8. PubMed Pubmed Central PMCID: 40117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gammill HS, Guthrie KA, Aydelotte TM, Adams Waldorf KM, Nelson JL. Effect of parity on fetal and maternal microchimerism: interaction of grafts within a host? Blood. 2010;116(15):2706–12. PubMed Pubmed Central PMCID: 2974583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen JA, Bean MA. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood. 1995;86(7):2829–32. PubMed.

    CAS  PubMed  Google Scholar 

  5. Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, et al. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104(1):41–7. PubMed Pubmed Central PMCID: 408407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Srivatsa B, Srivatsa S, Johnson KL, Bianchi DW. Maternal cell microchimerism in newborn tissues. J Pediatr. 2003;142(1):31–5. PubMed.

    Article  PubMed  Google Scholar 

  7. Chen CP, Lee MY, Huang JP, Aplin JD, Wu YH, Hu CS, et al. Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins. Stem Cells. 2008;26(2):550–61. PubMed.

    Article  CAS  PubMed  Google Scholar 

  8. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med. 2001;193(9):1005–14. PubMed Pubmed Central PMCID: 2193424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Galazios G, Papazoglou D, Giagloglou K, Vassaras G, Koutlaki N, Maltezos E. Umbilical cord serum vascular endothelial growth factor (VEGF) levels in normal pregnancies and in pregnancies complicated by preterm delivery or pre-eclampsia. Int J Gynaecol Obstet. 2004;85(1):6–11. PubMed.

    Article  CAS  PubMed  Google Scholar 

  10. Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest. 2011;121(2):582–92. PubMed Pubmed Central PMCID: 3026737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science. 2012;336(6086):1317–21. PubMed Pubmed Central PMCID: 3727649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, Anderson JR, et al. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet. 2004;364(9429):179–82. PubMed.

    Article  PubMed  Google Scholar 

  13. Koopmans M, Kremer Hovinga IC, Baelde HJ, Fernandes RJ, de Heer E, Bruijn JA, et al. Chimerism in kidneys, livers and hearts of normal women: implications for transplantation studies. Am J Transplant. 2005;5(6):1495–502. PubMed.

    Article  PubMed  Google Scholar 

  14. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46(3):319–23. PubMed.

    CAS  PubMed  Google Scholar 

  15. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75. PubMed Pubmed Central PMCID: 1377040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lapaire O, Holzgreve W, Oosterwijk JC, Brinkhaus R, Bianchi DW. Georg Schmorl on trophoblasts in the maternal circulation. Placenta. 2007;28(1):1–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  17. Desai RG, Creger WP. Maternofetal passage of leukocytes and platelets in man. Blood. 1963;21:665–73. PubMed.

    CAS  PubMed  Google Scholar 

  18. Al-Yatama MK, Mustafa AS, Ali S, Abraham S, Khan Z, Khaja N. Detection of Y chromosome-specific DNA in the plasma and urine of pregnant women using nested polymerase chain reaction. Prenat Diagn. 2001;21(5):399–402. PubMed.

    Article  CAS  PubMed  Google Scholar 

  19. Farina A, LeShane ES, Romero R, Gomez R, Chaiworapongsa T, Rizzo N, et al. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery. Am J Obstet Gynecol. 2005;193(2):421–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  20. Traeger-Synodinos J. Real-time PCR, for prenatal and preimplantation genetic diagnosis of monogenic diseases. Mol Aspects Med. 2006;27(2–3):176–91. PubMed.

    Article  CAS  PubMed  Google Scholar 

  21. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  22. Alberry M, Maddocks D, Jones M, Abdel Hadi M, Abdel-Fattah S, Avent N, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn. 2007;27(5):415–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta AK, Holzgreve W, Huppertz B, Malek A, Schneider H, Hahn S. Detection of fetal DNA and RNA in placenta-derived syncytiotrophoblast microparticles generated in vitro. Clin Chem. 2004;50(11):2187–90. PubMed.

    Article  CAS  PubMed  Google Scholar 

  24. Lee TH, Chafets DM, Reed W, Wen L, Yang Y, Chen J, et al. Enhanced ascertainment of microchimerism with real-time quantitative polymerase chain reaction amplification of insertion-deletion polymorphisms. Transfusion. 2006;46(11):1870–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  25. Saadai P, Lee TH, Bautista G, Gonzales KD, Nijagal A, Busch MP, et al. Alterations in maternal-fetal cellular trafficking after fetal surgery. J Pediatr Surg. 2012;47(6):1089–94. PubMed Pubmed Central PMCID: 3377979.

    Article  PubMed  PubMed Central  Google Scholar 

  26. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet Gynecol. 2007;110(6):1459–67. PubMed

    Google Scholar 

  27. Alfirevic Z, Sundberg K, Brigham S. Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev. 2003;3, CD003252. PubMed.

    PubMed  Google Scholar 

  28. Scheffer PG, van der Schoot CE, Page-Christiaens GC, de Haas M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience. BJOG. 2011;118(11):1340–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  29. Mold JE, Michaelsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322(5907):1562–5. PubMed Pubmed Central PMCID: 2648820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krabchi K, Gros-Louis F, Yan J, Bronsard M, Masse J, Forest JC, et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clin Genet. 2001;60(2):145–50. PubMed.

    Article  CAS  PubMed  Google Scholar 

  31. Nijagal A, Fleck S, Hills NK, Feng S, Tang Q, Kang SM, et al. Decreased risk of graft failure with maternal liver transplantation in patients with biliary atresia. Am J Transplant. 2012;12(2):409–19. PubMed.

    Article  CAS  PubMed  Google Scholar 

  32. Stern M, Ruggeri L, Mancusi A, Bernardo ME, de Angelis C, Bucher C, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112(7):2990–5. PubMed Pubmed Central PMCID: 2962448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Rood JJ, Loberiza Jr FR, Zhang MJ, Oudshoorn M, Claas F, Cairo MS, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002;99(5):1572–7. PubMed.

    Article  PubMed  Google Scholar 

  34. Nijagal A, MacKenzie TC. Clinical implications of maternal-fetal cellular trafficking. Semin Pediatr Surg. 2013;22(1):62–5. PubMed.

    Article  PubMed  Google Scholar 

  35. Kiefer AS, Lang TR, Hein MS, McNallan KT, Moir CR, Reed AM. Maternal microchimerism in Hirschsprung’s disease. Am J Perinatol. 2012;29(2):71–8. PubMed.

    Article  PubMed  Google Scholar 

  36. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998;351(9102):559–62. PubMed.

    Article  CAS  PubMed  Google Scholar 

  37. Scaletti C, Vultaggio A, Bonifacio S, Emmi L, Torricelli F, Maggi E, et al. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum. 2002;46(2):445–50. PubMed.

    Article  CAS  PubMed  Google Scholar 

  38. Gammill HS, Nelson JL. Naturally acquired microchimerism. Int J Dev Biol. 2010;54(2–3):531–43. PubMed Pubmed Central PMCID: 2887685.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Mufti R, Lees C, Albaiges G, Hambley H, Nicolaides KH. Fetal cells in maternal blood of pregnancies with severe fetal growth restriction. Hum Reprod. 2000;15(1):218–21. PubMed.

    Article  CAS  PubMed  Google Scholar 

  40. Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol. 1994;171(6):1660–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  41. Hamilton SA, Tower CL, Jones RL. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour. PLoS One. 2013;8(2):e56946. PubMed Pubmed Central PMCID: 3579936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jakobsen TR, Clausen FB, Rode L, Dziegiel MH, Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat Diagn. 2012;32(9):840–5. PubMed.

    CAS  PubMed  Google Scholar 

  43. Lee J, Romero R, Xu Y, Kim JS, Topping V, Yoo W, et al. A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d. PLoS One. 2011;6(2):e16806. PubMed Pubmed Central PMCID: 3033909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leung TN, Zhang J, Lau TK, Hjelm NM, Lo YM. Maternal plasma fetal DNA as a marker for preterm labour. Lancet. 1998;352(9144):1904–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  45. Romero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990;85(5):1392–400. PubMed Pubmed Central PMCID: 296584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Romero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994;734:414–29. PubMed.

    Article  CAS  PubMed  Google Scholar 

  47. Roberts JM, Redman CW. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet. 1993;341(8858):1447–51. PubMed.

    Article  CAS  PubMed  Google Scholar 

  48. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20(1):IX–XIV. PubMed.

    Article  CAS  PubMed  Google Scholar 

  49. Hauth JC, Ewell MG, Levine RJ, Esterlitz JR, Sibai B, Curet LB, et al. Pregnancy outcomes in healthy nulliparas who developed hypertension. Calcium for Preeclampsia Prevention Study Group. Obstet Gynecol. 2000;95(1):24–8. PubMed.

    CAS  PubMed  Google Scholar 

  50. Knuist M, Bonsel GJ, Zondervan HA, Treffers PE. Intensification of fetal and maternal surveillance in pregnant women with hypertensive disorders. Int J Gynaecol Obstet. 1998;61(2):127–33. PubMed.

    Article  CAS  PubMed  Google Scholar 

  51. Hnat MD, Sibai BM, Caritis S, Hauth J, Lindheimer MD, MacPherson C, et al. Perinatal outcome in women with recurrent preeclampsia compared with women who develop preeclampsia as nulliparas. Am J Obstet Gynecol. 2002;186(3):422–6. PubMed.

    Article  PubMed  Google Scholar 

  52. Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, Chun SH, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol. 1997;151(6):1809–18. PubMed Pubmed Central PMCID: 1858365.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Farina A, Sekizawa A, Sugito Y, Iwasaki M, Jimbo M, Saito H, et al. Fetal DNA in maternal plasma as a screening variable for preeclampsia. A preliminary nonparametric analysis of detection rate in low-risk nonsymptomatic patients. Prenat Diagn. 2004;24(2):83–6. PubMed.

    Article  PubMed  Google Scholar 

  54. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med Soc Exp Biol Med. 1999;222(3):222–35. PubMed.

    Article  CAS  Google Scholar 

  55. Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta. 2000;21(7):597–602. PubMed.

    Article  CAS  PubMed  Google Scholar 

  56. Roberts JM, Hubel CA. Oxidative stress in preeclampsia. Am J Obstet Gynecol. 2004;190(5):1177–8. PubMed.

    Article  PubMed  Google Scholar 

  57. Sheppard BL, Bonnar J. An ultrastructural study of utero-placental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation. Br J Obstet Gynaecol. 1981;88(7):695–705. PubMed.

    Article  CAS  PubMed  Google Scholar 

  58. Hahn S, Huppertz B, Holzgreve W. Fetal cells and cell free fetal nucleic acids in maternal blood: new tools to study abnormal placentation? Placenta. 2005;26(7):515–26. PubMed.

    Article  CAS  PubMed  Google Scholar 

  59. Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol. 2006;169(2):400–4. PubMed Pubmed Central PMCID: 1698796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cotter AM, Martin CM, O’Leary JJ, Daly SF. Increased fetal DNA in the maternal circulation in early pregnancy is associated with an increased risk of preeclampsia. Am J Obstet Gynecol. 2004;191(2):515–20. PubMed.

    Article  CAS  PubMed  Google Scholar 

  61. Hahn S, Holzgreve W. Fetal cells and cell-free fetal DNA in maternal blood: new insights into pre-eclampsia. Hum Reprod Update. 2002;8(6):501–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  62. Leung TN, Zhang J, Lau TK, Chan LY, Lo YM. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem. 2001;47(1):137–9. PubMed.

    CAS  PubMed  Google Scholar 

  63. Levine RJ, Qian C, Leshane ES, Yu KF, England LJ, Schisterman EF, et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am J Obstet Gynecol. 2004;190(3):707–13. PubMed.

    Article  CAS  PubMed  Google Scholar 

  64. Lo YM, Leung TN, Tein MS, Sargent IL, Zhang J, Lau TK, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem. 1999;45(2):184–8. PubMed.

    CAS  PubMed  Google Scholar 

  65. Zhong XY, Holzgreve W, Hahn S. The levels of circulatory cell free fetal DNA in maternal plasma are elevated prior to the onset of preeclampsia. Hypertens Pregnancy. 2002;21(1):77–83. PubMed.

    Article  CAS  PubMed  Google Scholar 

  66. Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol. 2001;184(3):414–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  67. Chua S, Wilkins T, Sargent I, Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br J Obstet Gynaecol. 1991;98(10):973–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  68. Holzgreve W, Ghezzi F, Di Naro E, Ganshirt D, Maymon E, Hahn S. Disturbed feto-maternal cell traffic in preeclampsia. Obstet Gynecol. 1998;91(5 Pt 1):669–72. PubMed.

    CAS  PubMed  Google Scholar 

  69. Illanes S, Parra M, Serra R, Pino K, Figueroa-Diesel H, Romero C, et al. Increased free fetal DNA levels in early pregnancy plasma of women who subsequently develop preeclampsia and intrauterine growth restriction. Prenat Diagn. 2009;29(12):1118–22. PubMed.

    Article  CAS  PubMed  Google Scholar 

  70. Stein W, Muller S, Gutensohn K, Emons G, Legler T. Cell-free fetal DNA and adverse outcome in low risk pregnancies. Eur J Obstet Gynecol Reprod Biol. 2013;166(1):10–3. PubMed.

    Article  CAS  PubMed  Google Scholar 

  71. Huppertz B, Kadyrov M, Kingdom JC. Apoptosis and its role in the trophoblast. Am J Obstet Gynecol. 2006;195(1):29–39. PubMed.

    Article  PubMed  Google Scholar 

  72. Smith SC, Baker PN, Symonds EM. Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol. 1997;177(6):1395–401. PubMed.

    Article  CAS  PubMed  Google Scholar 

  73. Smid M, Vassallo A, Lagona F, Valsecchi L, Maniscalco L, Danti L, et al. Quantitative analysis of fetal DNA in maternal plasma in pathological conditions associated with placental abnormalities. Ann N Y Acad Sci. 2001;945:132–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  74. Sekizawa A, Jimbo M, Saito H, Iwasaki M, Matsuoka R, Okai T, et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am J Obstet Gynecol. 2003;188(2):480–4. PubMed.

    Article  CAS  PubMed  Google Scholar 

  75. Crowley A, Martin C, Fitzpatrick P, Sheils O, O’Herlihy C, O’Leary JJ, et al. Free fetal DNA is not increased before 20 weeks in intrauterine growth restriction or pre-eclampsia. Prenat Diagn. 2007;27(2):174–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  76. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. PubMed.

    Article  PubMed  Google Scholar 

  77. Gomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I. Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol. 1995;22(2):281–342. PubMed.

    CAS  PubMed  Google Scholar 

  78. Brar HS, Medearis AL, De Vore GR, Platt LD. Maternal and fetal blood flow velocity waveforms in patients with preterm labor: relationship to outcome. Am J Obstet Gynecol. 1989;161(6 Pt 1):1519–22. PubMed.

    Article  CAS  PubMed  Google Scholar 

  79. Strigini FA, Lencioni G, De Luca G, Lombardo M, Bianchi F, Genazzani AR. Uterine artery velocimetry and spontaneous preterm delivery. Obstet Gynecol. 1995;85(3):374–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  80. Joseph KS, Allen AC, Dodds L, Vincer MJ, Armson BA. Causes and consequences of recent increases in preterm birth among twins. Obstet Gynecol. 2001;98(1):57–64. PubMed.

    CAS  PubMed  Google Scholar 

  81. Hassan SS, Romero R, Berry SM, Dang K, Blackwell SC, Treadwell MC, et al. Patients with an ultrasonographic cervical length < or =15 mm have nearly a 50 % risk of early spontaneous preterm delivery. Am J Obstet Gynecol. 2000;182(6):1458–67. PubMed.

    Article  CAS  PubMed  Google Scholar 

  82. Andersen HF, Nugent CE, Wanty SD, Hayashi RH. Prediction of risk for preterm delivery by ultrasonographic measurement of cervical length. Am J Obstet Gynecol. 1990;163(3):859–67. PubMed.

    Article  CAS  PubMed  Google Scholar 

  83. Lockwood CJ, Kuczynski E. Risk stratification and pathological mechanisms in preterm delivery. Paediatr Perinat Epidemiol. 2001;15 Suppl 2:78–89. PubMed.

    Article  PubMed  Google Scholar 

  84. Lee J, Romero R, Xu Y, Miranda J, Yoo W, Chaemsaithong P, et al. Detection of anti-HLA antibodies in maternal blood in the second trimester to identify patients at risk of antibody-mediated maternal anti-fetal rejection and spontaneous preterm delivery. Am J Reprod Immunol. 2013;70(2):162–75. PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wegorzewska M, Le T, Tang Q, MacKenzie TC. Increased maternal microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. Chimerism. Chimerism 2015 Mar 16:1–6.

    Google Scholar 

  86. Wegorzewska M, Nijagal A, Wong CM, Le T, Lescano N, Tang Q, et al. Fetal intervention increases maternal T cell awareness of the foreign conceptus and can lead to immune-mediated fetal demise. J Immunol. 2014;192(4):1938–45. PubMed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Adzick NS, Thom EA, Spong CY, Brock 3rd JW, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004. PubMed Pubmed Central PMCID: 3770179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrison MR, Keller RL, Hawgood SB, Kitterman JA, Sandberg PL, Farmer DL, et al. A randomized trial of fetal endoscopic tracheal occlusion for severe fetal congenital diaphragmatic hernia. N Engl J Med. 2003;349(20):1916–24. PubMed.

    Article  CAS  PubMed  Google Scholar 

  89. Rossi AC, D’Addario V. Laser therapy and serial amnioreduction as treatment for twin-twin transfusion syndrome: a metaanalysis and review of literature. Am J Obstet Gynecol. 2008;198(2):147–52. PubMed.

    Article  PubMed  Google Scholar 

  90. Ruano R, Yoshisaki CT, da Silva MM, Ceccon ME, Grasi MS, Tannuri U, et al. A randomized controlled trial of fetal endoscopic tracheal occlusion versus postnatal management of severe isolated congenital diaphragmatic hernia. Ultrasound Obstet Gynecol. 2012;39(1):20–7. PubMed.

    Article  CAS  PubMed  Google Scholar 

  91. Harrison MR, Sydorak RM, Farrell JA, Kitterman JA, Filly RA, Albanese CT. Fetoscopic temporary tracheal occlusion for congenital diaphragmatic hernia: prelude to a randomized, controlled trial. J Pediatr Surg. 2003;38(7):1012–20. PubMed.

    Article  PubMed  Google Scholar 

  92. Deprest J, Jani J, Gratacos E, Vandecruys H, Naulaers G, Delgado J, et al. Fetal intervention for congenital diaphragmatic hernia: the European experience. Semin Perinatol. 2005;29(2):94–103. PubMed.

    Article  PubMed  Google Scholar 

  93. Tjoa ML, Jani J, Lewi L, Peter I, Wataganara T, Johnson KL, et al. Circulating cell-free fetal messenger RNA levels after fetoscopic interventions of complicated pregnancies. Am J Obstet Gynecol. 2006;195(1):230–5. PubMed.

    Article  CAS  PubMed  Google Scholar 

  94. Wataganara T, Gratacos E, Jani J, Becker J, Lewi L, Sullivan LM, et al. Persistent elevation of cell-free fetal DNA levels in maternal plasma after selective laser coagulation of chorionic plate anastomoses in severe midgestational twin-twin transfusion syndrome. Am J Obstet Gynecol. 2005;192(2):604–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  95. Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet. 1997;61(4):822–9. PubMed Pubmed Central PMCID: 1715976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rava RP, Srinivasan A, Sehnert AJ, Bianchi DW. Circulating fetal cell-free DNA fractions differ in autosomal aneuploidies and monosomy x. Clin Chem. 2014;60(1):243–50. PubMed.

    Article  CAS  PubMed  Google Scholar 

  97. Fleck S, Bautista G, Keating SM, Lee TH, Keller RL, Moon-Grady AJ, et al. Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia. Pediatr Res. 2013;74(3):290–8. PubMed.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tippi C. MacKenzie M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Derderian, S.C., Jeanty, C., MacKenzie, T.C. (2016). Feto-Maternal Cell Trafficking and Labor. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_2

Download citation

Publish with us

Policies and ethics