Skip to main content

The Art of Complement: Complement Sensing of Nanoparticles and Consequences

  • Chapter
  • First Online:
Nanomedicine

Abstract

The complement system is a complex network of plasma and membrane-associated proteins and represents one of the major effector mechanisms of the innate immune system. The function of complement in innate host defence is accomplished through highly efficient and tightly orchestrated opsonisation, lytic and inflammatory processes. Nanoparticle-based medicines may trigger complement and a number of consequences ensue from complement activation. These comprise both beneficial and adverse reactions, depending on the extent and severity of complement activation as well as microenvironmental factors. These concepts are briefly discussed in relation to therapeutic applications of nanoparticles and anti-cancer nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–320

    Article  PubMed  CAS  Google Scholar 

  2. Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated approach and perspective. Annu Rev Pharmacol Toxicol 52:481–503

    Article  PubMed  CAS  Google Scholar 

  3. Moghimi SM, Parhamifar L, Ahmadvand D et al (2012) Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 4:509–528

    Article  PubMed  CAS  Google Scholar 

  4. Moghimi SM, Farhangrazi S (2014) Nanoparticle in medicine: nanoparticle engineering for macrophage targeting and nanoparticles that avoid macrophage recognition. In: Boraschi D, Duschl A (eds) Nanoparticles and the Immune System: Safety and Effects. Elsevier, San Diego, pp 77–89

    Google Scholar 

  5. Moghimi SM, Andersen A, Ahmadvand D et al (2011) Material properties in complement activation. Adv Drug Deliv Rev 63:1000–1007

    Article  PubMed  CAS  Google Scholar 

  6. Ricklin D, Hajishengallis G, Yang K et al (2010) Complement—a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fust G, Medgyesi GA, Rajnavolgyi E et al (1978) Possible mechanisms of the first step of the classical complement activation: binding and activation of C1. Immunology 35:873–884

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Moghimi SM, Hunter AC (2001) Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res 18:1–8

    Article  PubMed  CAS  Google Scholar 

  9. Moghimi SM, Hamad I (2008) Liposome-mediated triggering of complement cascade. J Liposome Res 18:195–209

    Article  PubMed  CAS  Google Scholar 

  10. Kishore U, Gupta SK, Perikoulis MV et al (2003) Modular organization of the carboxy-terminal, globular head region of human C1q A, B and C chains. J Immunol 171:812–820

    Article  PubMed  CAS  Google Scholar 

  11. Gaboriaud C, Thielens NM, Gregory LA et al (2004) Structure and activation of the C1 complex of complement: unravelling the puzzle. Trends Immunol 25:368–373

    Article  PubMed  CAS  Google Scholar 

  12. McGrath FD, Brouwer MC, Arlaud GJ et al (2006) Evidence that complement protein C1q interacts with C-reactive protein through its globular head region. J Immunol 176:2950–2957

    Article  PubMed  CAS  Google Scholar 

  13. Volanakis JE, Wirtz KWA (1979) Interaction of C-reactive protein with artificial phosphatidylcholine bilayers. Nature 281:155–157

    Article  PubMed  CAS  Google Scholar 

  14. Heja D, Kocsis A, Dobo J et al (2012) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A 109:10498–10503

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hamad I, Al-Hanbali O, Hunter AC et al (2010) Distinct polymer architecture mediates switching of complement activation pathways at nanosphere-serum interface: implications for stealth nanoparticles engineering. ACS Nano 4:6629–6638

    Article  PubMed  CAS  Google Scholar 

  16. Andersen AJ, Robinson JT, Dai H et al (2013) Single-walled carbon nanotubes surface control of complement sensing and activation. ACS Nano 7:1108–1119

    Article  PubMed  CAS  Google Scholar 

  17. Hamad I, Hunter AC, Moghimi SM (2013) Complement activation by Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins A-I and B-100. J Control Release 170:167–174

    Article  PubMed  CAS  Google Scholar 

  18. Simberg D, Park JH, Karmali PP et al (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yu K, Lai BFL, Foley JH et al (2014) Modulation of complement activation and amplification on nanoparticle surfaces by glycopolymer conformation and chemistry. ACS Nano 8:7687–7703

    Article  PubMed  CAS  Google Scholar 

  20. Klapper Y, Hamad OA, Teramura Y et al (2014) Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles. Biomaterials 35:3688–3696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schwaeble WJ, Reid KB (1999) Does properdin crosslink the cellular and the humoral immune responses. Immunol Today 20:17–21

    Article  PubMed  CAS  Google Scholar 

  22. Kemper C, Mitchell LM, Zhang L et al (2008) The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci U S A 105:9023–9028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bradley DV, Wong K, Serrano K et al (1994) Liposome-complement interactions in rat serum: implications for liposome survival studies. Biochim Biophys Acta 1191:43–51

    Article  Google Scholar 

  24. Lundqvist M, Stigler J, Elia G et al (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pedersen MB, Zhou X, Larsen EKU et al (2010) Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 184:1931–1945

    Article  PubMed  CAS  Google Scholar 

  26. Wibroe PP, Moghimi SM (2012) Complement sensing of nanoparticles and nanomedicines. In: Hepel M, Zhong CJ (eds) Functional nanoparticles for bioanalysis, nanomedicine and bioelectronic devices, vol 2, ACS Symposium Series. American Chemical Society, Washington, DC, pp 365–382

    Google Scholar 

  27. Tenzer S, Docter D, Kuharev J et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781

    Article  PubMed  CAS  Google Scholar 

  28. Ling WL, Biro A, Bally I et al (2011) Proteins of the innate immune system crystallize on carbon nanotubes but are not activated. ACS Nano 5:730–737

    Article  PubMed  CAS  Google Scholar 

  29. Pondman KM, Sobik M, Nayak A et al (2014) Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 10:1287–1299

    PubMed  CAS  Google Scholar 

  30. Crrol MV, Sim RB (2011) Complement in health and disease. Adv Drug Deliv Rev 63:965–975

    Article  CAS  Google Scholar 

  31. van Lookeren Campagne M, Wiesmann C, Brown EJ (2007) Macrophage complement receptors and pathogen clearance. Cell Microbiol 9:2095–2102

    Article  PubMed  CAS  Google Scholar 

  32. Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927

    Article  PubMed  CAS  Google Scholar 

  33. Cornacoff JB, Hebert LA, Smead WL et al (1983) Primate erythrocyte-immune complex-bearing mechanism. J Clin Invest 71:236–247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reinish LW, Bally MB, Loughrey HC et al (1988) Interaction of liposomes and platelets. Thromb Haemost 60:518–523

    PubMed  CAS  Google Scholar 

  35. Loughrey HC, Bally MB, Reinish LW et al (1990) The binding of phosphatidylglycerol liposomes to rat platelets is mediated by complement. Thromb Haemost 64:172–176

    PubMed  CAS  Google Scholar 

  36. Gbadamosi JK, Hunter AC, Moghimi SM (2002) PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett 532:338–344

    Article  PubMed  CAS  Google Scholar 

  37. Moghimi SM, Hamad I, Andresen TL et al (2006) Methylation of the phosphate oxygen moiety of phospholipid-methoxypoly(ethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J 20:2591–2593

    Article  PubMed  CAS  Google Scholar 

  38. Haxby JA, Gotze O, Muller-Eberhard HJ et al (1969) Release of trapped marker from liposomes by the action of purified complement components. Proc Natl Acad Sci U S A 64:290–295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yaghmur A, Laggner P, Almgren M et al (2008) Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition. PLoS One 3:e3747. doi:10.1371/journal.pone.0003747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moghimi SM (2009) The innate immune responses, adjuvants and delivery systems. In: Jorgensen L, Nielsen HM (eds) Delivery Technologies for Biopharmaceuticals. Peptides, Proteins, Nucleic Acids and Vaccines. Wiley, Chichester, pp 113–127

    Google Scholar 

  41. Dempsey PW, Allison ME, Akkaraju S et al (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    Article  PubMed  CAS  Google Scholar 

  42. Bajic G, Yatime L, Sim RB et al (2013) Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 110:16426–16431

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moghimi SM, Andersen AJ, Hashemi SH et al (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146:175–181

    Article  PubMed  CAS  Google Scholar 

  44. Szebeni J (2014) Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biological. Mol Immunol 61:163–173

    Article  PubMed  CAS  Google Scholar 

  45. Moghimi SM, Wibroe PP, Helvig SY et al (2012) Genomic perspectives in inter-individual adverse responses following nanomedicine administration: the way forward. Adv Drug Deliv Rev 64:1385–1393

    Article  PubMed  CAS  Google Scholar 

  46. Moghimi SM, Farhangrazi ZS (2013) Nanomedicine and complement paradigm. Nanomedicine 9:458–460

    PubMed  CAS  Google Scholar 

  47. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang X, Kimura Y, Fang C et al (2007) Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110:228–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kaczorowski DJ, Afrazi A, Scott MJ et al (2010) Pivotal advance: The pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms. J Leukoc Biol 88:609–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Moghimi SM (2014) Cancer nanomedicines and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release 190:556–562

    Article  PubMed  CAS  Google Scholar 

  51. Moghimi SM, Farhangrazi ZS (2014) Just so stories: random acts of anti-cancer nanomedicine performance. Nanomedicine 10:1661–1666

    Google Scholar 

  52. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles; theory to practice. Pharmacol Rev 53:283–318

    PubMed  CAS  Google Scholar 

  53. Schneider MC, Prosser BE, Caesar JJE et al (2009) Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 458:890–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wu YQ, Qu HC, Sfyroera G et al (2011) Protection of nonself surfaces from complement attach by factor H-binding peptides: implications for therapeutic medicine. J Immunol 186:4269–4277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

SMM acknowledges financial support by the Danish Agency for Science, Technology and Innovation, references 09-065736 (Det Strategiske Forskningsråd), and 12-126894 (Technology and Production). Financial support by Lundbeckfonden (reference R100-A9443) and the European Community’s Seventh Framework Programme (FP7-NMP-2012-Large-6) under grant agreement No. 310337-2 CosmoPHOS CP-IP is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Moein Moghimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Moghimi, S.M., Trippler, K.C., Simberg, D. (2016). The Art of Complement: Complement Sensing of Nanoparticles and Consequences. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_3

Download citation

Publish with us

Policies and ethics