Skip to main content

Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems

  • Chapter
  • First Online:
Analytical Techniques in the Pharmaceutical Sciences

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The focus of this chapter will be on asymmetrical flow field flow fractionation (AF4) for the separation and characterization of protein pharmaceuticals and particulate systems. The chapter will provide some background and historical information on field flow fractionation and the general working principle. In addition, a practical guide on how to use AF4 will be described and critical parameters for the development of a suitable separation method will be discussed. The use of AF4 for protein pharmaceuticals as well as particulate systems will be described and some examples given in the literature will be presented. Finally, a summary of the most recent trends in AF4 and an outlook will be given for potential application fields in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfi M, Park J (2014) Theoretical analysis of the local orientation effect and the lift-hyperlayer mode of rodlike particles in field-flow fractionation. J Sep Sci 37(7):876–883. doi:10.1002/jssc.201300902

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Ejima D, Li T, Philo JS (2010) The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J Pharm Sci 99(4):1674–1692. doi:10.1002/jps.21974

    Article  CAS  PubMed  Google Scholar 

  • Caldwell KD (1988) Field-flow fractionation. Anal Chem 60:959–971

    Article  Google Scholar 

  • Caldwell KD, Nguyen TT, Myers MN, Giddings JC (1979) Observations on anomalous retention in steric field-flow fractionation. Sep Sci Technol 14:935–946

    Article  CAS  Google Scholar 

  • Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G (2010) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 99(5):2200–2208. doi:10.1002/jps.21989

    Article  CAS  PubMed  Google Scholar 

  • Chuan YP, Fan YY, Lua L, Middelberg APJ (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99(6):1425–1433. doi:10.1002/bit.21710

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Fagan JA, Hobbie EK, Bauer BJ (2008) Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal Chem 80(7):2514–2523. doi:10.1021/ac7023624

    Article  CAS  PubMed  Google Scholar 

  • di Cagno M, Terndrup Nielsen T, Lambertsen Larsen K, Kuntsche J, Bauer-Brandl A (2014) β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs. Int J Pharma 468(1–2):258–263. doi:http://dx.doi.org/10.1016/j.ijpharm.2014.04.029

    Google Scholar 

  • Engel A, Plöger M, Mulac D, Langer K (2014) Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. Int J Pharma 461(1–2):137–144. doi:http://dx.doi.org/10.1016/j.ijpharm.2013.11.044

    Google Scholar 

  • Fincke A, Winter J, Bunte T, Olbrich C (2014) Thermally induced degradation pathways of three different antibody-based drug development candidates. Eur J Pharm Sci 62:148–160. doi:http://dx.doi.org/10.1016/j.ejps.2014.05.014

    Google Scholar 

  • Fraunhofer W (2003) Asymmetrical flow field-flow-fractionation in pharmaceutical analytics—investigations in aggregation tendencies of pharmaceutical antibodies. Ph.D. thesis, Ludwig-Maximilians-University of Munich

    Google Scholar 

  • Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharma Biopharma 58(2):369–383. doi:http://dx.doi.org/10.1016/j.ejpb.2004.03.034

    Google Scholar 

  • Fraunhofer W, Winter G, Coester C (2004) Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem 76(7):1909–1920. doi:10.1021/ac0353031

    Article  CAS  PubMed  Google Scholar 

  • Freitag AJ, Wittmann K, Immohr LI, Winter G, Myschik J (2011a) Asymmetrical flow field-flow fractionation—a preparative tool to obtain endotoxin-free protein Species. GIT Lab J 15:17–18

    CAS  Google Scholar 

  • Freitag AJ, Wittmann K, Winter G, Myschik J (2011b) The preparative use of flow field-flow fractionation (AF4). LC GC Europe 24(3):134–137

    CAS  Google Scholar 

  • Freitag A, Shomali M, Michalakis S, Biel M, Siedler M, Kaymakcalan Z, Carpenter J, Randolph T, Winter G, Engert J (2014) Investigation of the immunogenicity of different types of aggregates of a murine monoclonal antibody in mice. Pharm Res 32(2):430–444. doi:10.1007/s11095-014-1472-6

    Article  PubMed  Google Scholar 

  • Fukuda J, Iwura T, Yanagihara S, Kano K (2014) Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation. Anal Bioanal Chem 406(25):6257–6264. doi:10.1007/s00216-014-8065-4

    Article  CAS  PubMed  Google Scholar 

  • Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW (2007) Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci 96(2):268–279. doi:10.1002/jps.20760

    Article  CAS  PubMed  Google Scholar 

  • Giddings JC (1978) Displacement and dispersion of particles of finite size in flow channels with lateral forces: field-flow fractionation and hydrodynamic chromatography. Sep Sci Technol 13:241–245

    Article  Google Scholar 

  • Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465

    Article  CAS  PubMed  Google Scholar 

  • Gigault J, Pettibone JM, Schmitt C, Hackley VA (2014a) Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta 809:9–24. doi:http://dx.doi.org/10.1016/j.aca.2013.11.021

    Google Scholar 

  • Gigault J, Zhang W, Lespes G, Charleux B, Grassl B (2014b) Asymmetrical flow field-flow fractionation analysis of water suspensions of polymer nanofibers synthesized via RAFT-mediated emulsion polymerization. Anal Chim Acta 819:116–121. doi:http://dx.doi.org/10.1016/j.aca.2014.02.011

    Google Scholar 

  • Gottschalk S, Lang R, Winter G (2006). Quantification of Insoluble Monoclonal Antibody Aggregates. Wyatt Application Note (http://www.wyatt.com/files/literature/app-notes/fff-mals/insoluble-mab-aggregates.pdf), retrieved 08/06/2016

  • Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H (2014) The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem 406(16):3919–3927. doi:10.1007/s00216-014-7831-7

    Article  CAS  PubMed  Google Scholar 

  • Hinna A, Steiniger F, Hupfeld S, Brandl M, Kuntsche J (2014) Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Anal Bioanal Chem 406(30):7827–7813. doi:10.1007/s00216-014-7643-9

    Article  CAS  PubMed  Google Scholar 

  • Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M (2006) Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow fractionation. J Nanosci Nanotechnol 6(8):1–7

    Article  Google Scholar 

  • Hupfeld S, Ausbacher D, Brandl M (2009) Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables. J Sep Sci 32(9):1465–1470. doi:10.1002/jssc.200800626

    Article  CAS  PubMed  Google Scholar 

  • Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M (2010) Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids 163(2):141–147. doi:http://dx.doi.org/10.1016/j.chemphyslip.2009.10.009

    Google Scholar 

  • John C, Langer K (2014) Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes. J Chromatogr A 1346:97–106. doi:http://dx.doi.org/10.1016/j.chroma.2014.04.048

    Google Scholar 

  • Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Controlled Release 95(2):217–227. doi:http://dx.doi.org/10.1016/j.jconrel.2003.11.012

    Google Scholar 

  • Kanzer J, Hupfeld S, Vasskog T, Tho I, Hölig P, Mägerlein M, Fricker G, Brandl M (2010) In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J Pharm Biomed Anal 53(3):359–365. doi:http://dx.doi.org/10.1016/j.jpba.2010.04.012

    Google Scholar 

  • Klein T, Huerzeler C (1999) Characterization of biopolymers, proteins, particles and colloids by means of field-flow fractionation. GIT Labor-Fachzeitschrift 11:1224–1228

    Google Scholar 

  • Lang R, Winter G, Vogt L, Zürcher A, Dorigo B, Schimmele B (2009) Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharm 35(1):83–97. doi:10.1080/03639040802192806

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Williams SK, Allison SD, Anchordoquy TJ (2001) Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73:837–843

    Article  CAS  PubMed  Google Scholar 

  • Litzén A, Wahlund KG (1989) Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae. J Chromatogr 461:73–87

    Article  PubMed  Google Scholar 

  • Litzén A, Wahlund KG (1991) Zone broadening and dilution in rectangular and trapezoidal asymmetrical flow field-flow fractionation channels. Anal Chem 63:1001–1007

    Article  Google Scholar 

  • Litzén A, Walter JK, Krischollek H, Wahlund KG (1993) Separation and quantitation of monoclonal antibody aggregates by asymmetrical flow field-flow fractionation and comparison to gel permeation chromatography. Anal Biochem 212:469–480

    Article  PubMed  Google Scholar 

  • Ma D, Martin N, Tribet C, Winnik F (2014) Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Anal Bioanal Chem 406(29):7539–7547. doi:10.1007/s00216-014-8200-2

    Article  CAS  PubMed  Google Scholar 

  • Maskos M, Schupp W (2003) Circular asymmetrical flow field-flow fractionation for the semipreparative separation of particles. Anal Chem 75(22):6105–6108. doi:10.1021/ac034394z

    Article  CAS  PubMed  Google Scholar 

  • Mathaes R, Winter G, Engert J, Besheer A (2013) Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles. Int J Pharma 453(2):620–629. doi:http://dx.doi.org/10.1016/j.ijpharm.2013.05.046

    Google Scholar 

  • Noga M, Edinger D, Kläger R, Wegner SV, Spatz JP, Wagner E, Winter G, Besheer A (2013) The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials 34(10):2530–2538. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.12.025

    Google Scholar 

  • Pauck T, Coelfen H (1998) Hydrodynamic analysis of macromolecular conformation. A comparative study of flow field-flow fractionation and analytical ultracentrifugation. Anal Chem 70:3886–3891

    Article  CAS  Google Scholar 

  • Pease LF, Lipin DI, Tsai D-H, Zachariah MR, Lua LHL, Tarlov MJ, Middelberg APJ (2009) Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 102(3):845–855. doi:10.1002/bit.22085

    Article  CAS  PubMed  Google Scholar 

  • Phelan Jr FR, Bauer BJ (2009) Comparison of steric effects in the modeling of spheres and rodlike particles in field-flow fractionation. Chem Eng Sci 64(8):1747–1758. doi:http://dx.doi.org/10.1016/j.ces.2008.10.006

    Google Scholar 

  • Philo JS (2009) A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol 10(4):359–372

    Article  CAS  PubMed  Google Scholar 

  • Reschiglian P, Melucci D, Zattoni A, Malló L, Hansen M, Kummerow A, Miller M (2000) Working without accumulation membrane in flow field-flow fractionation. Anal Chem 15(24):5945–5954

    Article  Google Scholar 

  • Reschiglian P, Roda B, Zattoni A, Tanase M, Marassi V, Serani S (2014) Hollow-fiber flow field-flow fractionation with multi-angle laser scattering detection for aggregation studies of therapeutic proteins. Anal Bioanal Chem 406(6):1619–1627. doi:10.1007/s00216-013-7462-4

    Article  CAS  PubMed  Google Scholar 

  • Roessner D, Kulicke WM (1994) On-line coupling of flow field-flow fractionation and multi-angle laser light scattering. J Chromatogr A 687:249–258

    Article  CAS  Google Scholar 

  • Schimpf ME, Caldwell KD, Giddings JC (2000) Field-flow fractionation handbook. Wiley, New York

    Google Scholar 

  • Till U, Gaucher-Delmas M, Saint-Aguet P, Hamon G, Marty J-D, Chassenieux C, Payré B, Goudounèche D, Mingotaud A-F, Violleau F (2014) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques. Anal Bioanal Chem 406(30):7841–7853. doi:10.1007/s00216-014-7891-8

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US (2014) Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering—a comparison with traditional techniques. J Chromatogr A 1325:195–203. doi:http://dx.doi.org/10.1016/j.chroma.2013.11.049

    Google Scholar 

  • Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59:1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Williams PS, Giddings JC (1994) Theory of field-programmed field-flow fractionation with corrections for steric effects. Anal Chem 66:4215–4228

    Article  CAS  PubMed  Google Scholar 

  • Williams PS, Giddings MC, Giddings JC (2001) A data analysis algorithm for programmed field-flow fractionation. Anal Chem 73:4202–4211

    Article  CAS  PubMed  Google Scholar 

  • Wyatt PJ (1991) Absolute measurements with FFF and light scattering. Polym Mater Sci Eng 65:198–199

    CAS  Google Scholar 

  • Zattoni A, Rambaldi DC, Roda B, Parisi D, Roda A, Moon MH, Reschiglian P (2008) Hollow-fiber flow field-flow fractionation of whole blood serum. J Chromatogr A 1183(1–2):135–142. doi:http://dx.doi.org/10.1016/j.chroma.2008.01.022

    Google Scholar 

  • Zillies JC, Zwiorek K, Winter G, Coester C (2007) Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem 79(12):4574–4580. doi:10.1021/ac062135e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr.-Ing. Marcus Engert for preparing the schematic illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Engert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Engert, J., Mathaes, R., Winter, G. (2016). Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4029-5_15

Download citation

Publish with us

Policies and ethics