Skip to main content

Neurobiology of REM Sleep, NREM Sleep Homeostasis, and Gamma Band Oscillations

  • Chapter
  • First Online:
Sleep Disorders Medicine

Abstract

Scientific investigations conducted in the past century have begun to describe the complex neural systems and molecular mechanisms responsible for regulating the vigilance states (wake, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep), thereby informing the development of therapies to treat sleep pathologies. This chapter presents an encompassing survey of findings, largely performed in basic animal models, employing pharmacological, electrophysiological, optogenetic, and molecular techniques describing the neurobiology of sleep. Each of the three vigilance states is reviewed, focusing on electrophysiological characteristics, relevant brain nuclei/regions, neuroanatomical interconnections, and neurotransmitters. Special emphasis is placed on recent transformative technologies for basic sleep investigations, including optogenetic and pharmacogenetic cell-specific manipulations. We describe recent evidence indicating the importance of the cortical gamma band oscillation (i.e., ~40 Hz EEG frequency range), which are prominent during wake and REM sleep, in attention and cognitive processing. The proposed role of NREM sleep in promoting metabolic and synaptic homeostasis is also reviewed. Lastly, we revisit the reciprocal interaction model of REM sleep regulation, which now integrates recent findings including circadian and GABAergic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Committee on Sleep Medicine and Research, Institute of the National Academies (2006) Sleep disorders and sleep deprivation: an unmet public health problem. In: Colten HR, Altevogt BM (eds). National Academies Press, Washington, DC

    Google Scholar 

  2. Mitler ME, Dement WC, Dinges DF (2000) Sleep medicine, public policy, and public health. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice in sleep medicine. W.B. Saunders, Philadelphia, PA, pp 580–588

    Google Scholar 

  3. Berger H (1930) Ueber das elektroenkelogramm des Menchen. J Psychol Neurol 40:160–179

    Google Scholar 

  4. Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G (1937) Changes in human brain potentials during the onset of sleep. Science 86(2237):448–450

    Article  CAS  PubMed  Google Scholar 

  5. Loomis AL, Harvey EN, Hobart G (1935) Potential rhythms of the cerebral cortex during sleep. Science 81(2111):597–598

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyden ES (2011) Optogenetics: using light to control the brain. Cerebrum 2011:16

    PubMed  PubMed Central  Google Scholar 

  8. Zhu H, Roth BL (2014) Silencing Synapses with DREADDs. Neuron 82(4):723–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong S, Allen JA, Farrell M, Roth BL (2010) A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol BioSyst 6(8):1376–1380

    Article  CAS  PubMed  Google Scholar 

  10. Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7):309–316

    Article  CAS  PubMed  Google Scholar 

  11. Lisman J (2005) The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15(7):913–922

    Google Scholar 

  12. Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77(6):1002–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deco G, Thiele A (2009) Attention: oscillations and neuropharmacology. Eur J Neurosci 30(3):347–354

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li N, Wang Y (2008) M. W, Liu H. Effects of sleep deprivation on gamma oscillation of waking human EEG. Prog Nat Sci 18:1533–1537

    Article  CAS  Google Scholar 

  17. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsaki G (1999) High-frequency oscillations in human brain. Hippocampus 9(2):137–142

    Article  CAS  PubMed  Google Scholar 

  19. Puig MV, Ushimaru M, Kawaguchi Y (2008) Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc Natl Acad Sci U S A 105(24):8428–8433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394(6689):186–189

    Article  CAS  PubMed  Google Scholar 

  21. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615

    Article  CAS  PubMed  Google Scholar 

  22. Oren I, Hajos N, Paulsen O (2010) Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region. J Physiol 588(Pt 5):785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edden RA, Muthukumaraswamy SD, Freeman TC, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726

    Article  CAS  PubMed  Google Scholar 

  24. Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A 106(20):8356–8361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ainsworth M, Lee S, Cunningham MO, Roopun AK, Traub RD, Kopell NJ et al (2011) Dual gamma rhythm generators control interlaminar synchrony in auditory cortex. J Neurosci 31(47):17040–17051

    Article  CAS  PubMed  Google Scholar 

  26. LeBeau FE, Traub RD, Monyer H, Whittington MA, Buhl EH (2003) The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull 62(1):3–13

    Article  CAS  PubMed  Google Scholar 

  27. Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513(Pt 1):117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steriade M, Amzica F (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci U S A 93(6):2533–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4):709–719

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):6430–6433

    Article  CAS  Google Scholar 

  31. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65, 111–125

    Google Scholar 

  32. Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716

    Article  CAS  PubMed  Google Scholar 

  33. Gregoriou GG, Gotts SJ, Zhou H, Desimone R (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931):1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315(5820):1860–1862

    Article  CAS  PubMed  Google Scholar 

  35. Baldauf D, Desimone R (2014) Neural mechanisms of object-based attention. Science 344(6182):424–427

    Article  CAS  PubMed  Google Scholar 

  36. Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R et al (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13(12):1369–1374

    Article  PubMed  Google Scholar 

  37. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951

    Article  CAS  PubMed  Google Scholar 

  38. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG et al (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69(3):572–583

    Article  CAS  PubMed  Google Scholar 

  39. Von Economo C (1926) [Die Pathologie des Schlafes]. In: Von Bethe AVB A, Embden G, Ellinger A (eds). Bethes Handbuch der Normalen und Pathologischen Physiologie. Springer, Berlin

    Google Scholar 

  40. Bremer F (1935) Cerveaue isole et physiologie du sommeil. C R Soc Biol. 118:1235–1241

    Google Scholar 

  41. Bremer F (1936) [Cerveaue. Nouvelles recherches sur le mechanisme dur sommeil]. C R. Soc Biol 122:460–464

    Google Scholar 

  42. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4):455–473

    Article  CAS  PubMed  Google Scholar 

  43. Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586

    Article  CAS  PubMed  Google Scholar 

  44. Steriade M, McCarley RW (2005) Brain control of wakefulness and sleep, 2nd edn. Kluwer Academic/Plenum Publishers, New York, NY

    Google Scholar 

  45. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smythe JW, Colom LV, Bland BH (1992) The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neurosci Biobehav Rev 16(3):289–308

    Google Scholar 

  47. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81(4):893–926

    Article  CAS  PubMed  Google Scholar 

  48. Vertes RP, Hoover WB, Viana Di Prisco G (2004) Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev 3(3):173–200

    Google Scholar 

  49. Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16(11):1053–1063

    Article  CAS  PubMed  Google Scholar 

  50. Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172(3983):601–602

    Article  CAS  PubMed  Google Scholar 

  51. Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J Neurosci 14(9):5236–5242

    CAS  PubMed  Google Scholar 

  52. Vazquez J, Baghdoyan HA (2001) Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am J Physiol Regul Integr Comp Physiol 280(2):R598–R601

    CAS  PubMed  Google Scholar 

  53. Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20(4):1505–1518

    CAS  PubMed  Google Scholar 

  54. Manns ID, Alonso A, Jones BE (2003) Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol 89(2):1057–1066

    Article  CAS  PubMed  Google Scholar 

  55. Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25(17):4365–4369

    Article  CAS  PubMed  Google Scholar 

  56. Hassani OK, Lee MG, Henny P, Jones BE (2009) Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 29(38):11828–11840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H et al (2014) Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol 24(6):693–698

    Article  CAS  PubMed  Google Scholar 

  58. Zant JC, Kim T, Kalinchuk A, Yang C, Brown RE, McNally J et al (2013) Defining the role of neurotransmitter-type specific neuronal populations of the BF in sleep-wake behavior using opto-dialysis: A novel method combining optogenetics and In vivo microdialysis. Society for Neuroscience Abstracts; San Diego, CA

    Google Scholar 

  59. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  CAS  PubMed  Google Scholar 

  60. Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33(4):287–297

    Article  CAS  PubMed  Google Scholar 

  61. Basheer R, Porkka-Heiskanen T, Stenberg D, McCarley RW (1999) Adenosine and behavioral state control: adenosine increases c-Fos protein and AP1 binding in basal forebrain of rats. Brain Res Mol Brain Res 73(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  62. Greco MA, Lu J, Wagner D, Shiromani PJ (2000) c-Fos expression in the cholinergic basal forebrain after enforced wakefulness and recovery sleep. NeuroReport 11(3):437–440

    Article  CAS  PubMed  Google Scholar 

  63. McKenna JT, Cordeira JW, Jeffrey BA, Ward CP, Winston S, McCarley RW et al (2009) c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness. Brain Res Bull 80(6):382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ et al (2006) Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 26(31):8092–8100

    Article  CAS  PubMed  Google Scholar 

  65. Kaur S, Junek A, Black MA, Semba K (2008) Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats. J Neurosci 28(2):491–504

    Article  CAS  PubMed  Google Scholar 

  66. Kalinchuk AV, McCarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R (2008) The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 IgG-saporin lesions. Neuroscience 157(1):238–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsaki G (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience 62(4):1033–1047

    Article  CAS  PubMed  Google Scholar 

  68. Kapas L, Obal F Jr, Book AA, Schweitzer JB, Wiley RG, Krueger JM (1996) The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res 712(1):53–59

    Article  CAS  PubMed  Google Scholar 

  69. el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76(3):519–529

    Article  PubMed  Google Scholar 

  70. Steriade M, Pare D, Datta S, Oakson G (1990) Curro Dossi R. Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10(8):2560–2579

    CAS  PubMed  Google Scholar 

  71. Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE (2014) Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34(13):4708–4727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Grove EA (1988) Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol. 277(3):315–346

    Article  CAS  PubMed  Google Scholar 

  73. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol. 448(1):53–101

    Article  PubMed  Google Scholar 

  74. Morin LP, Meyer-Bernstein EL (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91(1):81–105

    Article  CAS  PubMed  Google Scholar 

  75. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668

    Article  CAS  PubMed  Google Scholar 

  76. Mouret J, Froment JL, Bobillier P, Jouvet M (1967) [Neuropharmacologic and biochemical study of insomnia induced by P. chlorophenylalanine]. J Physiol (Paris) 59(4 Suppl):463–464

    Google Scholar 

  77. Jouvet M (1999) Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21(2 Suppl):24S–27S

    CAS  PubMed  Google Scholar 

  78. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101(3):569–575

    Article  CAS  PubMed  Google Scholar 

  79. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163(1):135–150

    Article  CAS  PubMed  Google Scholar 

  80. Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci U S A 103(4):1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schweimer JV, Mallet N, Sharp T, Ungless MA (2011) Spike-timing relationship of neurochemically-identified dorsal raphe neurons during cortical slow oscillations. Neuroscience 24(196):115–123

    Article  CAS  Google Scholar 

  82. Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y et al (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain. 6:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wilkinson LO, Auerbach SB, Jacobs BL (1991) Extracellular serotonin levels change with behavioral state but not with pyrogen-induced hyperthermia. J Neurosci 11(9):2732–2741

    CAS  PubMed  Google Scholar 

  84. Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res 648(2):306–312

    Article  CAS  PubMed  Google Scholar 

  85. Cespuglio R, Faradji H, Jouvet M (1983) Voltammetric detection of extracellular 5-hydroxyindole compounds at the level of cell bodies and the terminals of the raphe system: variations during the wake-sleep cycle in the rat in chronic experiments. C R Seances Acad Sci III 296(13):611–616

    CAS  PubMed  Google Scholar 

  86. Portas CM, Bjorvatn B, Fagerland S, Gronli J, Mundal V, Sorensen E et al (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83(3):807–814

    Article  CAS  PubMed  Google Scholar 

  87. Bjorvatn B, Gronli J, Hamre F, Sorensen E, Fiske E, Bjorkum AA et al (2002) Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat. Neuroscience 113(2):323–330

    Article  CAS  PubMed  Google Scholar 

  88. Bergmann BM, Seiden LS, Landis CA, Gilliland MA, Rechtschaffen A (1994) Sleep deprivation in the rat: XVIII. Regional brain levels of monoamines and their metabolites. Sleep 17(7):583–589

    Article  CAS  PubMed  Google Scholar 

  89. Monti JM, Jantos H (1992) Dose-dependent effects of the 5-HT1A receptor agonist 8-OH-DPAT on sleep and wakefulness in the rat. J Sleep Res 1(3):169–175

    Article  CAS  PubMed  Google Scholar 

  90. Portas CM, Thakkar M, Rainnie D, McCarley RW (1996) Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 16(8):2820–2828

    CAS  PubMed  Google Scholar 

  91. Vertes RP, Kinney GG, Kocsis B, Fortin WJ (1994) Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 60(2):441–451

    Article  CAS  PubMed  Google Scholar 

  92. Kinney GG, Kocsis B, Vertes RP (1996) Medial septal unit firing characteristics following injections of 8-OH-DPAT into the median raphe nucleus. Brain Res 708(1–2):116–122

    Article  CAS  PubMed  Google Scholar 

  93. Popa D, Lena C, Alexandre C, Adrien J (2008) Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28(14):3546–3554

    Article  CAS  PubMed  Google Scholar 

  94. Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP et al (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12(7):2299–2310

    Article  CAS  PubMed  Google Scholar 

  95. Li Q, Wichems C, Heils A, Lesch KP, Murphy DL (2000) Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20(21):7888–7895

    CAS  PubMed  Google Scholar 

  96. Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54(10):953–959

    Article  CAS  PubMed  Google Scholar 

  97. Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, Uhl GR et al (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. NeuroReport 14(2):233–238

    Article  CAS  PubMed  Google Scholar 

  98. Alexandre C, Popa D, Fabre V, Bouali S, Venault P, Lesch KP et al (2006) Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci 26(20):5554–5564

    Article  CAS  PubMed  Google Scholar 

  99. Vogt BA, Hof PR, Friedman DP, Sikes RW, Vogt LJ (2008) Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct 212(6):465–479

    Article  PubMed  PubMed Central  Google Scholar 

  100. Grzanna R, Fritschy JM (1991) Efferent projections of different subpopulations of central noradrenaline neurons. Prog Brain Res 88:89–101

    Article  CAS  PubMed  Google Scholar 

  101. Jones BE, Halaris AE, McIlhany M, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Brain Res 127(1):1–21

    Article  CAS  PubMed  Google Scholar 

  102. Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289(1–2):109–119

    Article  CAS  PubMed  Google Scholar 

  103. Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22(20):8850–8859

    CAS  PubMed  Google Scholar 

  104. Fort P, Khateb A, Pegna A, Muhlethaler M, Jones BE (1995) Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur J Neurosci 7(7):1502–1511

    Article  CAS  PubMed  Google Scholar 

  105. McCormick DA, Pape HC (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol 431:319–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aghajanian GK, VanderMaelen CP (1982) alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215(4538):1394–1396

    Article  CAS  PubMed  Google Scholar 

  107. Williams JA, Reiner PB (1993) Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci 13(9):3878–3883

    CAS  PubMed  Google Scholar 

  108. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189(4196):55–58

    Article  CAS  PubMed  Google Scholar 

  109. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1(8):876–886

    CAS  PubMed  Google Scholar 

  110. Rasmussen K, Morilak DA, Jacobs BL (1986) Single unit activity of locus coeruleus neurons in the freely moving cat. I. During naturalistic behaviors and in response to simple and complex stimuli. Brain Res 371(2):324–334

    Article  CAS  PubMed  Google Scholar 

  111. Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) Effects of hypocretin2-saporin and antidopamine-beta-hydroxylase-saporin neurotoxic lesions of the dorsolateral pons on sleep and muscle tone. Eur J Neurosci 19(10):2741–2752

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cirelli C, Tononi G (2004) Locus ceruleus control of state-dependent gene expression. J Neurosci 24(23):5410–5419

    Article  CAS  PubMed  Google Scholar 

  113. Jones BE, Harper ST, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res 124(3):473–496

    Article  CAS  PubMed  Google Scholar 

  114. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594

    Article  CAS  PubMed  Google Scholar 

  115. Monti JM, D’Angelo L, Jantos H, Barbeito L, Abo V (1988) Effect of DSP-4, a noradrenergic neurotoxin, on sleep and wakefulness and sensitivity to drugs acting on adrenergic receptors in the rat. Sleep 11(4):370–377

    Article  CAS  PubMed  Google Scholar 

  116. Cano G, Mochizuki T, Saper CB (2008) Neural circuitry of stress-induced insomnia in rats. J Neurosci 28(40):10167–10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Saper CB, Cano G, Scammell TE (2005) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol. 493(1):92–98

    Article  CAS  PubMed  Google Scholar 

  118. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S et al (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13(12):1526–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A 111(10):3859–3864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9(1–6):321–353

    Google Scholar 

  121. Gaykema RP, Zaborszky L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374(4):555–577

    Article  CAS  PubMed  Google Scholar 

  122. Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133

    Article  PubMed  Google Scholar 

  123. Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1(4):304–309

    Article  CAS  PubMed  Google Scholar 

  124. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    CAS  PubMed  Google Scholar 

  125. Schultz W (1998) The phasic reward signal of primate dopamine neurons. Adv Pharmacol 42:686–690

    Article  CAS  PubMed  Google Scholar 

  126. Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71(1):155–234

    PubMed  Google Scholar 

  127. Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656

    Article  CAS  PubMed  Google Scholar 

  128. Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273(1):133–141

    Article  CAS  PubMed  Google Scholar 

  129. Bunney BS, Chiodo LA, Grace AA (1991) Midbrain dopamine system electrophysiological functioning: a review and new hypothesis. Synapse 9(2):79–94

    Article  CAS  PubMed  Google Scholar 

  130. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    Article  CAS  PubMed  Google Scholar 

  131. Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2):475–492

    Article  CAS  PubMed  Google Scholar 

  132. Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202

    Article  CAS  PubMed  Google Scholar 

  133. Mignot E, Nishino S (2005) Emerging therapies in narcolepsy-cataplexy. Sleep 28(6):754–763

    Article  PubMed  Google Scholar 

  134. Scammell TE, Winrow CJ (2011) Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 51:243–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672

    Article  CAS  PubMed  Google Scholar 

  136. Blandina P, Munari L, Provensi G, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci. 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  137. Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81(8):2572–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15(1):65–74

    Article  PubMed  Google Scholar 

  139. Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y et al (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295(1):13–25

    Article  CAS  PubMed  Google Scholar 

  140. Vanni-Mercier G, Sakai K, Jouvet M (1984) Specific neurons for wakefulness in the posterior hypothalamus in the cat. C R Acad Sci III 298(7):195–200

    CAS  PubMed  Google Scholar 

  141. Monti JM (1993) Involvement of histamine in the control of the waking state. Life Sci 53(17):1331–1338

    Article  CAS  PubMed  Google Scholar 

  142. John J, Wu MF, Boehmer LN, Siegel JM (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42(4):619–634

    Article  CAS  PubMed  Google Scholar 

  143. Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V et al (2002) Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 113(3):663–670

    Article  CAS  PubMed  Google Scholar 

  144. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27(2):111–122

    Article  CAS  PubMed  Google Scholar 

  145. Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Sei H et al (2013) Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS ONE 8(10):e78434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  147. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46(5):787–798

    Article  CAS  PubMed  Google Scholar 

  149. Kiyashchenko LI, Mileykovskiy BY, Maidment N, Lam HA, Wu MF, John J et al (2002) Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22(13):5282–5286

    CAS  PubMed  Google Scholar 

  150. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21(5):1656–1662

    CAS  PubMed  Google Scholar 

  151. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450(7168):7420–7424

    Article  CAS  Google Scholar 

  152. Carter ME, de Lecea L, Adamantidis A (2013) Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 6(5):e20360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  CAS  PubMed  Google Scholar 

  155. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  CAS  PubMed  Google Scholar 

  156. Gerashchenko D, Kohls MD, Greco M, Waleh NS, Salin-Pascual R, Kilduff TS et al (2001) Hypocretin-2-saporin lesions of the lateral hypothalamus produce narcoleptic-like sleep behavior in the rat. J Neurosci 21(18):7273–7283

    CAS  PubMed  Google Scholar 

  157. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116(1):223–235

    Article  CAS  PubMed  Google Scholar 

  158. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24(28):6291–6300

    Article  CAS  PubMed  Google Scholar 

  159. Chen L, Thakkar MM, Winston S, Bolortuya Y, Basheer R, McCarley RW (2006) REM sleep changes in rats induced by siRNA-mediated orexin knockdown. Eur J Neurosci 24(7):2039–2048

    Article  PubMed  PubMed Central  Google Scholar 

  160. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997

    Article  CAS  PubMed  Google Scholar 

  161. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474

    Article  CAS  PubMed  Google Scholar 

  162. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40

    Article  CAS  PubMed  Google Scholar 

  163. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S et al (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59(10):1553–1562

    Article  PubMed  Google Scholar 

  164. Arias-Carrion O, Drucker-Colin R, Murillo-Rodriguez E (2006) Survival rates through time of hypocretin grafted neurons within their projection site. Neurosci Lett 404(1–2):93–97

    Article  CAS  PubMed  Google Scholar 

  165. Arias-Carrion O, Murillo-Rodriguez E (2014) Effects of hypocretin/orexin cell transplantation on narcoleptic-like sleep behavior in rats. PLoS ONE 9(4):e95342

    Article  PubMed  PubMed Central  Google Scholar 

  166. Arias-Carrion O, Murillo-Rodriguez E, Xu M, Blanco-Centurion C, Drucker-Colin R, Shiromani PJ (2004) Transplantation of hypocretin neurons into the pontine reticular formation: preliminary results. Sleep 27(8):1465–1470

    Article  PubMed  PubMed Central  Google Scholar 

  167. Kiyashchenko LI, Mileykovskiy BY, Lai YY, Siegel JM (2001) Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol 85(5):2008–2016

    CAS  PubMed  Google Scholar 

  168. Liu M, Thankachan S, Kaur S, Begum S, Blanco-Centurion C, Sakurai T et al (2008) Orexin (hypocretin) gene transfer diminishes narcoleptic sleep behavior in mice. Eur J Neurosci 28(7):1382–1393

    Article  PubMed  PubMed Central  Google Scholar 

  169. Siegel JM (2003) Hypocretin administration as a treatment for human narcolepsy. Sleep 26(8):932–933

    CAS  PubMed  Google Scholar 

  170. Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27(52):14239–14247

    Article  CAS  PubMed  Google Scholar 

  171. Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S et al (2009) CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32(2):181–187

    Article  PubMed  PubMed Central  Google Scholar 

  172. Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K et al (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32(2):175–180

    Article  PubMed  PubMed Central  Google Scholar 

  173. John J, Thannickal TC, McGregor R, Ramanathan L, Ohtsu H, Nishino S et al (2013) Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol. 74(6):786–793

    Article  CAS  PubMed  Google Scholar 

  174. Brown RE (2003) Involvement of hypocretins/orexins in sleep disorders and narcolepsy. Drug News Perspect. 16(2):75–79

    Article  CAS  PubMed  Google Scholar 

  175. Mignot EJ (2012) A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics 9(4):739–752

    Article  PubMed  PubMed Central  Google Scholar 

  176. Brown MA, Guilleminault C (2011) A review of sodium oxybate and baclofen in the treatment of sleep disorders. Curr Pharm Des 17(15):1430–1435

    Article  CAS  PubMed  Google Scholar 

  177. Robinson DM, Keating GM (2007) Sodium oxybate: a review of its use in the management of narcolepsy. CNS Drugs. 21(4):337–354

    Article  CAS  PubMed  Google Scholar 

  178. Neubauer DN (2010) Almorexant, a dual orexin receptor antagonist for the treatment of insomnia. Curr Opin Investig Drugs 11(1):101–110

    CAS  PubMed  Google Scholar 

  179. Richey SM, Krystal AD (2011) Pharmacological advances in the treatment of insomnia. Curr Pharm Des 17(15):1471–1475

    Article  CAS  PubMed  Google Scholar 

  180. Winrow CJ, Renger JJ (2014) Discovery and development of orexin receptor antagonists as therapeutics for insomnia. Br J Pharmacol 171(2):283–293

    Article  CAS  PubMed  Google Scholar 

  181. Kim T, McKenna JT, McNally JM, Chen L, Kocsis B, Deisseroth K et al (2012) Parvalbumin-positive basal forebrain neurons entrain cortical gamma oscillations and promote wakefulness. Sleep 35:A78

    Article  Google Scholar 

  182. Herculano-Houzel S, Munk MH, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19(10):3992–4010

    CAS  PubMed  Google Scholar 

  183. Munk MH, Roelfsema PR, Konig P, Engel AK, Singer W (1996) Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259):271–274

    Article  CAS  PubMed  Google Scholar 

  184. Alonso A, Faure MP, Beaudet A (1994) Neurotensin promotes oscillatory bursting behavior and is internalized in basal forebrain cholinergic neurons. J Neurosci 14(10):5778–5792

    CAS  PubMed  Google Scholar 

  185. Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 20(22):8452–8461

    CAS  PubMed  Google Scholar 

  186. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE et al (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108(2):177–181

    Article  CAS  PubMed  Google Scholar 

  187. Khateb A, Fort P, Alonso A, Jones BE, Muhlethaler M (1993) Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur J Neurosci 5(5):541–547

    Article  CAS  PubMed  Google Scholar 

  188. Cape EG, Jones BE (1998) Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci 18(7):2653–2666

    CAS  PubMed  Google Scholar 

  189. Cape EG, Jones BE (2000) Effects of glutamate agonist versus procaine microinjections into the basal forebrain cholinergic cell area upon gamma and theta EEG activity and sleep-wake state. Eur J Neurosci 12(6):2166–2184

    Article  CAS  PubMed  Google Scholar 

  190. Steriade M, Dossi RC, Pare D, Oakson G (1991) Fast oscillations (20-40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A 88(10):4396–4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Berntson GG, Shafi R, Sarter M (2002) Specific contributions of the basal forebrain corticopetal cholinergic system to electroencephalographic activity and sleep/waking behaviour. Eur J Neurosci 16(12):2453–2461

    Article  CAS  PubMed  Google Scholar 

  192. Wenk GL (1997) The nucleus basalis magnocellularis cholinergic system: one hundred years of progress. Neurobiol Learn Mem 67(2):85–95

    Article  CAS  PubMed  Google Scholar 

  193. Wenk GL, Stoehr JD, Quintana G, Mobley S, Wiley RG (1994) Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. J Neurosci 14(10):5986–5995

    CAS  PubMed  Google Scholar 

  194. Burk JA, Sarter M (2001) Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience 105(4):899–909

    Article  CAS  PubMed  Google Scholar 

  195. Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci U S A 89(2):743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci 18(14):5490–5497

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system of sleep stages in human subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles, CA

    Google Scholar 

  198. Iber C, Ancoli-Israel S, Chesson A, Quan SF (2007) The AASM manual for scoring of sleep and associated events: rules, terminology, and technical specification, 1st edn. Amercian Academy of Sleep Medicine, Westchester, Il

    Google Scholar 

  199. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13(8):3266–3283

    CAS  PubMed  Google Scholar 

  200. Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725

    Article  PubMed  Google Scholar 

  201. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I et al (2011) Regional slow waves and spindles in human sleep. Neuron 70(1):153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Vyazovskiy VV, Achermann P, Borbely AA, Tobler I (2004) The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice. Arch Ital Biol 142(4):511–523

    CAS  PubMed  Google Scholar 

  203. Thankachan S, McNally JM, Strecker RE, McKenna JT, Brown RE, McCarley RW (2014) Role of thalamic reticular nucleus in sleep spindle generation: an optogenetic investigation in the mouse with implications for schizophrenia. Society for Neuroscience Abstracts; Washington, DC

    Google Scholar 

  204. Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI (2011) Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14(9):1118–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Morison RSB (1945) D.L. Electrical activity of the thalamus and basal ganglia in decorticate cats. J Neurophysiol 8(5):309–314

    Google Scholar 

  206. Hu B, Steriade M, Deschenes M (1989) The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves. Neuroscience 31(1):1–12

    Article  CAS  PubMed  Google Scholar 

  207. Kim A, Latchoumane C, Lee S, Kim GB, Cheong E, Augustine GJ et al (2012) Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci U S A 109(50):20673–20678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. J Comp Neurol. 463(4):360–371

    Article  CAS  PubMed  Google Scholar 

  209. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11):4007–4026

    CAS  PubMed  Google Scholar 

  210. Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM et al (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry 167(11):1339–1348

    Article  PubMed  PubMed Central  Google Scholar 

  211. Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV et al (2012) Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 71(2):154–161

    Article  PubMed  Google Scholar 

  212. Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV et al (2013) The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep 36(9):1369–1376

    Article  PubMed  PubMed Central  Google Scholar 

  213. Phillips KG, Bartsch U, McCarthy AP, Edgar DM, Tricklebank MD, Wafford KA et al (2012) Decoupling of sleep-dependent cortical and hippocampal interactions in a neurodevelopmental model of schizophrenia. Neuron 76(3):526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. David F, Schmiedt JT, Taylor HL, Orban G, Di Giovanni G, Uebele VN et al (2013) Essential thalamic contribution to slow waves of natural sleep. J Neurosci 33(50):19599–19610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Murphy M, Huber R, Esser S, Riedner BA, Massimini M, Ferrarelli F et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472(7344):443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Krueger JM, Huang YH, Rector DM, Buysse DJ (2013) Sleep: a synchrony of cell activity-driven small network states. Eur J Neurosci 38(2):2199–2209

    Article  PubMed  PubMed Central  Google Scholar 

  218. Valderrama M, Crepon B, Botella-Soler V, Martinerie J, Hasboun D, Alvarado-Rojas C et al (2012) Human gamma oscillations during slow wave sleep. PLoS ONE 7(4):e33477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderrama M, Fried I et al (2010) Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. J Neurosci 30(23):7770–7782

    Article  CAS  Google Scholar 

  220. Castro S, Falconi A, Chase MH, Torterolo P (2013) Coherent neocortical 40-Hz oscillations are not present during REM sleep. Eur J Neurosci 37(8):1330–1339

    Article  PubMed  Google Scholar 

  221. Hwang E, McNally JM, Choi JH (2013) Reduction in cortical gamma synchrony during depolarized state of slow wave activity in mice. Front Syst Neurosci 7:107

    Article  PubMed  PubMed Central  Google Scholar 

  222. Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV (2008) Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J Neurosci 28(51):13828–13844

    Article  CAS  PubMed  Google Scholar 

  223. Szymusiak R, McGinty D (2008) Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 1129:275–286

    Article  CAS  PubMed  Google Scholar 

  224. Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R (2014) Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 111(2):287–299

    Article  CAS  PubMed  Google Scholar 

  225. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    Article  CAS  PubMed  Google Scholar 

  226. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556(Pt 3):935–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990

    CAS  PubMed  Google Scholar 

  228. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    CAS  PubMed  Google Scholar 

  229. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11):4568–4576

    CAS  PubMed  Google Scholar 

  230. Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D (2002) Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 543(Pt 2):665–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Morairty SR, Dittrich L, Pasumarthi RK, Valladao D, Heiss JE, Gerashchenko D et al (2013) A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 110(50):20272–20277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cavas M, Navarro JF (2006) Effects of selective neuronal nitric oxide synthase inhibition on sleep and wakefulness in the rat. Prog Neuropsychopharmacol Biol Psychiatry 30(1):56–67

    Article  CAS  PubMed  Google Scholar 

  233. Zielinski MR, Kim Y, Karpova SA, Winston S, McCarley RW, Strecker RE et al (2013) Sleep active cortical neurons expressing neuronal nitric oxide synthase are active after both acute sleep deprivation and chronic sleep restriction. Neuroscience 5(247):35–42

    Article  CAS  Google Scholar 

  234. Wisor JP, Gerashchenko D, Kilduff TS (2011) Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep? Curr Top Med Chem 11(19):2483–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pasumarthi RK, Gerashchenko D, Kilduff TS (2010) Further characterization of sleep-active neuronal nitric oxide synthase neurons in the mouse brain. Neuroscience 169(1):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ, Sakurai T et al (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci U S A 105(29):10227–10232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. McGinty D, Szymusiak R (2000) The sleep-wake switch: a neuronal alarm clock. Nat Med 6(5):510–511

    Article  CAS  PubMed  Google Scholar 

  238. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    Article  CAS  PubMed  Google Scholar 

  239. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J et al (2000) Identification of sleep-promoting neurons in vitro. Nature 404(6781):992–995

    Article  CAS  PubMed  Google Scholar 

  240. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568

    CAS  PubMed  Google Scholar 

  241. Richardson GS, Carskadon MA, Orav EJ, Dement WC (1982) Circadian variation of sleep tendency in elderly and young adult subjects. Sleep 5(Suppl 2):S82–S94

    Article  PubMed  Google Scholar 

  242. Dijk DJ, Edgar DM (1999) Circadian and homeostatic control of wakefulness and sleep. In: Turek FW, Zee PC (eds) Regulation of sleep and circadian rhythms. Marcel Dekker, Inc., New York, NY, pp 111–147

    Google Scholar 

  243. Saper CB (2013) The central circadian timing system. Curr Opin Neurobiol 23(5):747–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hastings MH, Brancaccio M, Maywood ES (2014) Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol 26(1):2–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Moore RY (2013) The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci. 119:1–28

    Article  PubMed  Google Scholar 

  246. Morin LP (1994) The circadian visual system. Brain Res Brain Res Rev 19(1):102–127

    Article  CAS  PubMed  Google Scholar 

  247. Davis CJ, Clinton JM, Jewett KA, Zielinski MR, Krueger JM (2011) Delta wave power: an independent sleep phenotype or epiphenomenon? J Clin Sleep Med 7(5 Suppl):S16–S18

    PubMed  PubMed Central  Google Scholar 

  248. Deurveilher S, Rusak B, Semba K (2012) Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. Am J Physiol Regul Integr Comp Physiol 302(12):R1411–R1425

    Article  CAS  PubMed  Google Scholar 

  249. Kim Y, Bolortuya Y, Chen L, Basheer R, McCarley RW, Strecker RE (2012) Decoupling of sleepiness from sleep time and intensity during chronic sleep restriction: evidence for a role of the adenosine system. Sleep 35(6):861–869

    Article  PubMed  PubMed Central  Google Scholar 

  250. Kim Y, Laposky AD, Bergmann BM, Turek FW (2007) Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep. Proc Natl Acad Sci U S A 104(25):10697–10702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. McCoy JG, Christie MA, Kim Y, Brennan R, Poeta DL, McCarley RW et al (2013) Chronic sleep restriction impairs spatial memory in rats. NeuroReport 24(2):91–95

    Article  PubMed  PubMed Central  Google Scholar 

  252. Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45(4):347–360

    Article  CAS  PubMed  Google Scholar 

  253. Scharf MT, Naidoo N, Zimmerman JE, Pack AI (2008) The energy hypothesis of sleep revisited. Prog Neurobiol 86(3):264–280

    Article  PubMed  PubMed Central  Google Scholar 

  254. Krueger JM, Taishi P, De A, Davis CJ, Winters BD, Clinton J, et al (2010) ATP and the purine type 2 X7 receptor affect sleep. J Appl Physiol (1985) 109(5):1318–27

    Google Scholar 

  255. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73(6):379–396

    Article  CAS  PubMed  Google Scholar 

  256. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115(2):183–204

    Article  CAS  PubMed  Google Scholar 

  257. Zielinski MR, Taishi P, Clinton JM, Krueger JM (2012) 5’-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation. Eur J Neurosci 35(11):1789–1798

    Article  PubMed  PubMed Central  Google Scholar 

  258. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R (2010) Sleep and brain energy levels: ATP changes during sleep. J Neurosci 30(26):9007–9016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Radulovacki M (2005) Adenosine sleep theory: how I postulated it. Neurol Res 27(2):137–138

    Article  CAS  PubMed  Google Scholar 

  260. Radulovacki M (1985) Role of adenosine in sleep in rats. Rev Clin Basic Pharm 5(3–4):327–339

    Google Scholar 

  261. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517

    Article  CAS  PubMed  Google Scholar 

  262. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. McKenna JT, Dauphin LJ, Mulkern KJ, Stronge AM, McCarley RW, Strecker RE (2003) Nocturnal elevation of extracellular adenosine in the rat basal forebrain. Sleep Res Online. 5(4):155–160

    Google Scholar 

  264. Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience 123(2):361–370

    Article  CAS  PubMed  Google Scholar 

  265. Chagoya de Sanchez V, Hernandez Munoz R, Suarez J, Vidrio S, Yanez L, Diaz Munoz M (1993) Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat–possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res 612(1–2):115–121

    Google Scholar 

  266. Zeitzer JM, Morales-Villagran A, Maidment NT, Behnke EJ, Ackerson LC, Lopez-Rodriguez F et al (2006) Extracellular adenosine in the human brain during sleep and sleep deprivation: an in vivo microdialysis study. Sleep 29(4):455–461

    Article  PubMed  Google Scholar 

  267. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW (2009) Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci 29(5):1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  CAS  PubMed  Google Scholar 

  270. Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O et al (2005) The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 134(4):1377–1390

    Article  CAS  PubMed  Google Scholar 

  271. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA et al (2001) An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107(4):653–663

    Article  CAS  PubMed  Google Scholar 

  272. Satoh S, Matsumura H, Suzuki F, Hayaishi O (1996) Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci U S A 93(12):5980–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Hayaishi O (2000) Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. Philos Trans R Soc Lond B Biol Sci 355(1394):275–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Gautier-Sauvigne S, Colas D, Parmantier P, Clement P, Gharib A, Sarda N et al (2005) Nitric oxide and sleep. Sleep Med Rev 9(2):101–113

    Article  PubMed  Google Scholar 

  275. Kalinchuk AV, Stenberg D, Rosenberg PA, Porkka-Heiskanen T (2006) Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci 24(5):1443–1456

    Article  CAS  PubMed  Google Scholar 

  276. Fallahi N, Broad RM, Jin S, Fredholm BB (1996) Release of adenosine from rat hippocampal slices by nitric oxide donors. J Neurochem 67(1):186–193

    Article  CAS  PubMed  Google Scholar 

  277. Rosenberg PA, Li Y, Le M, Zhang Y (2000) Nitric oxide-stimulated increase in extracellular adenosine accumulation in rat forebrain neurons in culture is associated with ATP hydrolysis and inhibition of adenosine kinase activity. J Neurosci 20(16):6294–6301

    CAS  PubMed  Google Scholar 

  278. Kalinchuk AV, Lu Y, Stenberg D, Rosenberg PA, Porkka-Heiskanen T (2006) Nitric oxide production in the basal forebrain is required for recovery sleep. J Neurochem 99(2):483–498

    Article  CAS  PubMed  Google Scholar 

  279. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116(2):260–272

    Article  CAS  PubMed  Google Scholar 

  280. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2010) Sleep deprivation triggers inducible nitric oxide-dependent nitric oxide production in wake-active basal forebrain neurons. J Neurosci 30(40):13254–13264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Clinton JM, Davis CJ, Zielinski MR, Jewett KA, Krueger JM (2011) Biochemical regulation of sleep and sleep biomarkers. J Clin Sleep Med 7(5 Suppl):S38–S42

    PubMed  PubMed Central  Google Scholar 

  283. Krueger JM, Clinton JM, Winters BD, Zielinski MR, Taishi P, Jewett KA et al (2011) Involvement of cytokines in slow wave sleep. Prog Brain Res 193:39–47

    Article  PubMed  PubMed Central  Google Scholar 

  284. Zielinski MR, Krueger JM (2011) Sleep and innate immunity. Front Biosci (Schol Ed). 3:632–642

    PubMed  PubMed Central  Google Scholar 

  285. Bredow S, Guha-Thakurta N, Taishi P, Obal F, Jr, Krueger JM (1997) Diurnal variations of tumor necrosis factor alpha mRNA and alpha-tubulin mRNA in rat brain. Neuroimmunomodulation 4(2):84–90

    Google Scholar 

  286. Taishi P, Bredow S, Guha-Thakurta N, Obal F Jr, Krueger JM (1997) Diurnal variations of interleukin-1 beta mRNA and beta-actin mRNA in rat brain. J Neuroimmunol 75(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  287. Floyd RA, Krueger JM (1997) Diurnal variation of TNF alpha in the rat brain. NeuroReport 8(4):915–918

    Article  CAS  PubMed  Google Scholar 

  288. Obal F Jr, Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 1(8):d520–d550

    Google Scholar 

  289. Opp MR, Obal F Jr, Krueger JM (1991) Interleukin 1 alters rat sleep: temporal and dose-related effects. Am J Physiol 260(1 Pt 2):R52–R58

    CAS  PubMed  Google Scholar 

  290. Opp MR, Krueger JM (1991) Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am J Physiol 260(2 Pt 2):R453–R457

    CAS  PubMed  Google Scholar 

  291. Takahashi S, Kapas L, Fang J, Seyer JM, Wang Y, Krueger JM (1996) An interleukin-1 receptor fragment inhibits spontaneous sleep and muramyl dipeptide-induced sleep in rabbits. Am J Physiol 271(1 Pt 2):R101–R108

    CAS  PubMed  Google Scholar 

  292. Takahashi S, Kapas L, Krueger JM (1996) A tumor necrosis factor (TNF) receptor fragment attenuates TNF-alpha- and muramyl dipeptide-induced sleep and fever in rabbits. J Sleep Res 5(2):106–114

    Article  CAS  PubMed  Google Scholar 

  293. Vgontzas AN, Zoumakis E, Lin HM, Bixler EO, Trakada G, Chrousos GP (2004) Marked decrease in sleepiness in patients with sleep apnea by etanercept, a tumor necrosis factor-alpha antagonist. J Clin Endocrinol Metab 89(9):4409–4413

    Article  CAS  PubMed  Google Scholar 

  294. Taishi P, Davis CJ, Bayomy O, Zielinski MR, Liao F, Clinton JM, et al (2012) Brain-specific interleukin-1 receptor accessory protein in sleep regulation. J Appl Physiol (1985) 112(6):1015–1022

    Google Scholar 

  295. Kapas L, Bohnet SG, Traynor TR, Majde JA, Szentirmai E, Magrath P, et al (2008) Spontaneous and influenza virus-induced sleep are altered in TNF-alpha double-receptor deficient mice. J Appl Physiol (1985)105(4):1187–1198

    Google Scholar 

  296. Hanlon EC, Vyazovskiy VV, Faraguna U, Tononi G, Cirelli C (2011) Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies. Curr Top Med Chem 11(19):2472–2482

    Article  CAS  PubMed  Google Scholar 

  297. Tononi G, Cirelli C (2012) Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast 2012:415250

    Article  PubMed  PubMed Central  Google Scholar 

  298. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Tononi G, Cirelli C (2001) Modulation of brain gene expression during sleep and wakefulness: a review of recent findings. Neuropsychopharmacology 25(5 Suppl):S28–S35

    Article  CAS  PubMed  Google Scholar 

  300. Liu ZW, Faraguna U, Cirelli C, Tononi G, Gao XB (2010) Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci 30(25):8671–8675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332(6037):1576–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M et al (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30(12):1643–1657

    Article  PubMed  PubMed Central  Google Scholar 

  303. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30(12):1631–1642

    Article  PubMed  PubMed Central  Google Scholar 

  304. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81

    Article  CAS  PubMed  Google Scholar 

  305. Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plast. 2012:264378

    Article  PubMed  PubMed Central  Google Scholar 

  306. Holz J, Piosczyk H, Feige B, Spiegelhalder K, Baglioni C, Riemann D et al (2012) EEG Sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. J Sleep Res 21(6):612–619

    Article  PubMed  Google Scholar 

  307. Benington JH, Frank MG (2003) Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol 69(2):71–101

    Article  CAS  PubMed  Google Scholar 

  308. Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43

    Article  CAS  PubMed  Google Scholar 

  309. Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37(4):563–576

    Article  CAS  PubMed  Google Scholar 

  310. Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T et al (2009) Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61(3):454–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31(3):551–570

    Article  CAS  PubMed  Google Scholar 

  312. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679

    Article  CAS  PubMed  Google Scholar 

  313. Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344(6188):1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Massey PV, Bashir ZI (2007) Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30(4):176–184

    Article  CAS  PubMed  Google Scholar 

  315. Malleret G, Alarcon JM, Martel G, Takizawa S, Vronskaya S, Yin D et al (2010) Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J Neurosci 30(10):3813–3825

    Article  CAS  PubMed  Google Scholar 

  316. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118(3062):273–274

    Article  CAS  PubMed  Google Scholar 

  317. Dement WC (2003) Knocking on Kleitman’s door: the view from 50 years later. Sleep Med Rev 7(4):289–292

    Article  PubMed  Google Scholar 

  318. Sakai K, Petitjean F, Jouvet M (1976) Effects of ponto-mesencephalic lesions and electrical stimulation upon PGO waves and EMPs in unanesthetized cats. Electroencephalogr Clin Neurophysiol 41(1):49–63

    Article  CAS  PubMed  Google Scholar 

  319. McCarley RW, Nelson JP, Hobson JA (1978) Ponto-geniculo-occipital (PGO) burst neurons: correlative evidence for neuronal generators of PGO waves. Science 201(4352):269–272

    Article  CAS  PubMed  Google Scholar 

  320. Ito K, Yanagihara M, Imon H, Dauphin L, McCarley RW (2002) Intracellular recordings of pontine medial gigantocellular tegmental field neurons in the naturally sleeping cat: behavioral state-related activity and soma size difference in order of recruitment. Neuroscience 114(1):23–37

    Article  CAS  PubMed  Google Scholar 

  321. Peigneux P, Laureys S, Fuchs S, Delbeuck X, Degueldre C, Aerts J et al (2001) Generation of rapid eye movements during paradoxical sleep in humans. Neuroimage 14(3):701–708

    Article  CAS  PubMed  Google Scholar 

  322. Lim AS, Lozano AM, Moro E, Hamani C, Hutchison WD, Dostrovsky JO et al (2007) Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep 30(7):823–827

    Article  PubMed  PubMed Central  Google Scholar 

  323. Miyauchi S, Misaki M, Kan S, Fukunaga T, Koike T (2009) Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res 192(4):657–667

    Article  PubMed  Google Scholar 

  324. Bland BH (2004) The power of theta: providing insights into the role of the hippocampal formation in sensorimotor integration. Hippocampus 14(5):537–538

    Article  PubMed  Google Scholar 

  325. Vertes RP, McKenna JT (2000) Collateral projections from the supramammillary nucleus to the medial septum and hippocampus. Synapse 38(3):281–293

    Article  CAS  PubMed  Google Scholar 

  326. Jouvet M (1965) Paradoxical sleep–a study of its nature and mechanisms. Prog Brain Res 18:20–62

    Article  CAS  PubMed  Google Scholar 

  327. Jouvet M (1994) Paradoxical sleep mechanisms. Sleep 17(8 Suppl):S77–S83

    Article  CAS  PubMed  Google Scholar 

  328. Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40(3):637–656

    Article  CAS  PubMed  Google Scholar 

  329. Greco MA, McCarley RW, Shiromani PJ (1999) Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain. Neuroscience 93(4):1369–1374

    Article  CAS  PubMed  Google Scholar 

  330. McCarley RW (2004) Mechanisms and models of REM sleep control. Arch Ital Biol 142(4):429–467

    CAS  PubMed  Google Scholar 

  331. Deurveilher S, Hars B, Hennevin E (1997) Pontine microinjection of carbachol does not reliably enhance paradoxical sleep in rats. Sleep 20(8):593–607

    CAS  PubMed  Google Scholar 

  332. Bourgin P, Escourrou P, Gaultier C, Adrien J (1995) Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat. NeuroReport 6(3):532–536

    Article  CAS  PubMed  Google Scholar 

  333. Marks GA, Birabil CG (2007) Carbachol induction of REM sleep in the rat is more effective at lights-out than lights-on. Brain Res 20(1142):127–134

    Article  CAS  Google Scholar 

  334. Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res 458(2):285–302

    Article  CAS  PubMed  Google Scholar 

  335. Maloney KJ, Mainville L, Jones BE (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19(8):3057–3072

    CAS  PubMed  Google Scholar 

  336. Merchant-Nancy H, Vazquez J, Garcia F, Drucker-Colin R (1995) Brain distribution of c-fos expression as a result of prolonged rapid eye movement (REM) sleep period duration. Brain Res 681(1–2):15–22

    Article  CAS  PubMed  Google Scholar 

  337. Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P et al (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS ONE 4(1):e4272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  338. Bassant MH, Apartis E, Jazat-Poindessous FR, Wiley RG, Lamour YA (1995) Selective immunolesion of the basal forebrain cholinergic neurons: effects on hippocampal activity during sleep and wakefulness in the rat. Neurodegeneration. 4(1):61–70

    Article  CAS  PubMed  Google Scholar 

  339. Sastre JP, Jouvet M (1979) Oneiric behavior in cats. Physiol Behav 22(5):979–989

    Article  CAS  PubMed  Google Scholar 

  340. Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239(1):81–105

    Article  CAS  PubMed  Google Scholar 

  341. Xi MC, Morales FR, Chase MH (2004) Interactions between GABAergic and cholinergic processes in the nucleus pontis oralis: neuronal mechanisms controlling active (rapid eye movement) sleep and wakefulness. J Neurosci 24(47):10670–10678

    Article  CAS  PubMed  Google Scholar 

  342. Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, et al (2006) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100(5–6):271–283

    Google Scholar 

  343. Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM et al (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 27(2):352–363

    Article  PubMed  PubMed Central  Google Scholar 

  344. Magoun HW, Rhines R (1946) An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol 9:165–171

    CAS  PubMed  Google Scholar 

  345. Chase MH, Morales FR (1990) The atonia and myoclonia of active (REM) sleep. Annu Rev Psychol 41:557–584

    Article  CAS  PubMed  Google Scholar 

  346. Brooks PL, Peever JH (2011) Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci 31(19):7111–7121

    Article  CAS  PubMed  Google Scholar 

  347. Brooks PL, Peever JH (2012) Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci 32(29):9785–9795

    Article  CAS  PubMed  Google Scholar 

  348. Adamantidis A, de Lecea L (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19(10):362–370

    Article  CAS  PubMed  Google Scholar 

  349. Chung S, Parks GS, Lee C, Civelli O (2011) Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 43(1):115–121

    Article  CAS  PubMed  Google Scholar 

  350. Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17(4):293–298

    Article  PubMed  Google Scholar 

  351. Peyron C, Sapin E, Leger L, Luppi PH, Fort P (2009) Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 30(11):2052–2059

    Article  CAS  PubMed  Google Scholar 

  352. Fort P, Bassetti CL, Luppi PH (2009) Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 29(9):1741–1753

    Article  CAS  PubMed  Google Scholar 

  353. Pelluru D, Konadhode R, Shiromani PJ (2013) MCH neurons are the primary sleep-promoting group. Sleep 36(12):1779–1781

    Article  PubMed  PubMed Central  Google Scholar 

  354. Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 106(7):2418–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21(10):2807–2816

    Article  PubMed  Google Scholar 

  356. Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res 218(1):42–50

    Article  CAS  PubMed  Google Scholar 

  357. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM (2008) Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol 579(1–3):177–188

    Article  CAS  PubMed  Google Scholar 

  358. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156(4):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T et al (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci 27(7):1793–1800

    Article  PubMed  Google Scholar 

  360. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T et al (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R et al (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189(4196):58–60

    Article  CAS  PubMed  Google Scholar 

  363. McCarley RW, Massaquoi SG (1986) A limit cycle mathematical model of the REM sleep oscillator system. Am J Physiol 251(6 Pt 2):R1011–R1029

    CAS  PubMed  Google Scholar 

  364. Kayama Y, Ohta M, Jodo E (1992) Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569(2):210–220

    Article  CAS  PubMed  Google Scholar 

  365. Baghdoyan HA, Monaco AP, Rodrigo-Angulo ML, Assens F, McCarley RW, Hobson JA (1984) Microinjection of neostigmine into the pontine reticular formation of cats enhances desynchronized sleep signs. J Pharmacol Exp Ther 231(1):173–180

    CAS  PubMed  Google Scholar 

  366. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, Lamantia A-S, McNamara JO (1997) Neuroscience. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Veterans Affairs Medical Research Awards I01BX001356 (RWM) and IK2BX002823 (MRZ), NIH HL095491, NIH MH039683, and NIH MH016259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. McCarley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKenna, J.T., Zielinski, M.R., McCarley, R.W. (2017). Neurobiology of REM Sleep, NREM Sleep Homeostasis, and Gamma Band Oscillations. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6578-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6576-2

  • Online ISBN: 978-1-4939-6578-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics