Skip to main content

Fingerprinting by Design: Embedding and Authentication

  • Chapter
  • First Online:
Digital Fingerprinting

Abstract

In this chapter we consider the design of fingerprints for the purpose of authenticating a message. We begin with a background discussion of fingerprinting and related ideas, progressing to a communications point of view. Fingerprint embedding for message authentication is motivated by the desire to make an authentication tag less accessible to an eavesdropper. We consider metrics for good fingerprint design, and apply these to develop an embedding scheme for wireless communications. Wireless software defined radio experiments validate the theory and demonstrate the applicability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ettus Research—Product Detail (2013). https://www.ettus.com/product/details/USRP-PKG

  2. Chen, M., Fridrich, J., Goljan, M., Lukas, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

    Article  Google Scholar 

  3. Coldrey, M., Bohlin, P.: Training-based MIMO systems-part I: performance comparison. IEEE Trans. Signal Process. 55(11), 5464–5476 (2007). doi:10.1109/TSP.2007.896107

    Article  MathSciNet  Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory. Wiley-Interscience (1991)

    Google Scholar 

  5. Danev, B., Luecken, H., Čapkun, S., Defrawy, K.: Attacks on physical-layer identification. In: WiSec’10: Proceedings of the 3th ACM Conference on Wireless Network Security, pp. 89–98. ACM (2010)

    Google Scholar 

  6. Danev, B., ÄŒapkun, S.: Transient-based identification of wireless sensor nodes. In: Proceedings of ACM/IEEE IPSN (2009)

    Google Scholar 

  7. Gerdes, R., Mina, M., Russell, S., Daniels, T.: Physical-layer identification of wired ethernet devices. IEEE Trans. Inf. Forensics Secur. 7(4), 1339–1353 (2012)

    Article  Google Scholar 

  8. Giannakis, G., Tepedelenlioglu, C.: Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc. IEEE 86(10), 1969–1986 (1998). doi:10.1109/5.720248

    Article  Google Scholar 

  9. Grimaldi, R.: Discrete and Combinatorial Mathematics: An Applied Introduction. Addison-Wesley (2004). http://books.google.com/books?id=aQkgAQAAIAAJ

  10. Ivanov, V., Baras, J.: Authentication of fingerprint scanners. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1912–1915 (2011)

    Google Scholar 

  11. Jain, A.K., Ross, A.A., Nandakumar, K.: Introduction to Biometrics. Springer (2011)

    Google Scholar 

  12. Khanna, N., Mikkilineni, A.K., Delp, E.J.: Scanner identification using feature-based processing and analysis. IEEE Trans. Inf. Forensics Secur. 4(1), 123–139 (2009)

    Article  Google Scholar 

  13. Khanna, N., Mikkilineni, A.K., Delp, E.J.: Texture based attacks on intrinsic signature based printer identification. In: Proceedings of the SPIE/IS&T Conference on Media Forensics and Security XIIConference on Media Forensics and Security XII (2010)

    Google Scholar 

  14. Khanna, N., Mikkilineni, A.K., Martone, A.F., Ali, G.N., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: A survey of forensic characterization methods for physical devices. Digit. Invest. Int. J. Digit. Forensics Incident Response 3, 17–28 (2006). doi:10.1016/j.diin.2006.06.014

    Google Scholar 

  15. Lai, L., El Gamal, H., Poor, H.: Authentication over noisy channels. IEEE Trans. Inf. Theory 55(2), 906–916 (2009). doi:10.1109/TIT.2008.2009842

    Article  MathSciNet  Google Scholar 

  16. Li, X., Jin, S., Gao, X., Wong, K.K.: Near-optimal power allocation for MIMO channels with mean or covariance feedback. IEEE Trans. Commun. 58(1), 289–300 (2010). doi:10.1109/TCOMM.2010.01.070377

    Article  Google Scholar 

  17. Maurer, U.: Authentication theory and hypothesis testing. IEEE Trans. Inf. Theory 46(4), 1350–1356 (2000). doi:10.1109/18.850674

    Article  MathSciNet  MATH  Google Scholar 

  18. Maurer, U., Renner, R., Wolf, S.: Unbreakable keys from random noise. In: P. Tuyls, B. Skoric, T. Kevenaar (eds.) Security with Noisy Data. Springer (2007)

    Google Scholar 

  19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (2001). http://www.cacr.math.uwaterloo.ca/hac/

  20. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding—a survey. Proc. IEEE 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  21. Rasmussen, K., ÄŒapkun, S.: Implications of radio fingerprinting on the security of sensor networks. In: Proceedings of IEEE SecureComm (2007)

    Google Scholar 

  22. Ruhrmair, U., Devadas, S., Koushanfar, F.: Security based on physical unclonability and disorder. In: M. Tehranipoor, C. Wang (eds.) Introduction to Hardware Security and Trust. Springer (2011)

    Google Scholar 

  23. Telatar, E.: Capacity of multi-antenna Gaussian channels. Eur. Trans. Telecommun. 10(6), 585–596 (1999)

    Article  Google Scholar 

  24. Tuyls, P., Skoric, B., Kevenaar, T.: Security with Noisy Data; On Private Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer (2007)

    Google Scholar 

  25. Venkatesan, S., Simon, S., Valenzuela, R.: Capacity of a Gaussian MIMO channel with nonzero mean. In: Vehicular Technology Conference (VTC), vol. 3, pp. 1767–1771 (2003). doi:10.1109/VETECF.2003.1285329

  26. Verma, G., Yu, P.L.: A MATLAB Library for Rapid Prototyping of Wireless Communications Algorithms with the USRP radio family. Tech. rep., U.S. Army Research Laboratory (2013)

    Google Scholar 

  27. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, L., Greenstein, L., Mandayam, N., Trappe, W.: Using the physical layer for wireless authentication in time-variant channels. IEEE Trans. Wirel. Commun. 7(7), 2571–2579 (2008). doi:10.1109/TWC.2008.070194

    Article  Google Scholar 

  29. Yu, P., Baras, J., Sadler, B.: Multicarrier authentication at the physical layer. In: International Symposium on a World of Wireless, Mobile and Multimedia Networks WoWMoM, pp. 1–6 (2008). doi:10.1109/WOWMOM.2008.4594926

  30. Yu, P., Baras, J., Sadler, B.: Physical-layer authentication. IEEE Trans. Inf. Forensics Secur. 3(1), 38–51 (2008). doi:10.1109/TIFS.2007.916273

    Article  Google Scholar 

  31. Yu, P., Sadler, B.: MIMO Authentication via deliberate fingerprinting at the physical layer. IEEE Trans. Inf. Forensics Secur. 6(3), 606–615 (2011). doi:10.1109/TIFS.2011.2134850

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y., Fang, Y.: Scalable and deterministic key agreement for large scale networks. IEEE Trans. Wirel. Commun. 6(12), 4366–4373 (2007). doi:10.1109/TWC.2007.06088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Yu .

Editor information

Editors and Affiliations

Appendix: Precoding and Power-Allocation with CSI

Appendix: Precoding and Power-Allocation with CSI

Alice can improve the performance of the system by shaping her transmissions based on her available CSI. Generally, the frame can be decomposed as

$$\begin{aligned} \mathbf {X} = {{\mathbf {F}_\text {S}}}{{\mathbf {P}_\text {S}}}^{\frac{1}{2}} \mathbf {S} \end{aligned}$$
(30)

where \({{\mathbf {F}_\text {S}}}\) is an \(M \times M\) unitary matrix, \({{\mathbf {P}_\text {S}}}\) is an \(M \times M\) diagonal matrix that allocates power between the columns of \({{\mathbf {F}_\text {S}}}\), and \(\mathbf {S}\) is the modulated and possibly coded \(M \times L\) data matrix. In general, to achieve optimality as described below, Alice allocates energy among the eigenvectors of either the channel covariance or its expectation. That is, the columns of \({{\mathbf {F}_\text {S}}}\) are the channel eigenvectors, and the entries of \({{\mathbf {P}_\text {S}}}\) allocate the transmission energy between them. The total power budget is constrained by

$$\begin{aligned} \text {Tr}({{\mathbf {P}_\text {S}}}) = M \; . \end{aligned}$$
(31)

In the following we consider three cases where Alice has (1) no CSI, (2) perfect CSI, or (3) knowledge of the statistics of the channel. We briefly review the capacity-optimal precoding and power allocation strategies for each case.

1.1 No CSI

When the transmitter has no CSI, e.g., in the absence of feedback from the receiver, then there are no preferred transmission modes and transmission is isotropic, so that

$$\begin{aligned} {{\mathbf {F}_\text {S}}}= & {} \mathbf {I}\end{aligned}$$
(32)
$$\begin{aligned} {{\mathbf {P}_\text {S}}}= & {} \mathbf {I} \end{aligned}$$
(33)

resulting in \(\mathbf {\Phi } = \mathbf {I}\).

1.2 Perfect CSI

In this case the transmitter has knowledge of the realization of \(\mathbf H\), and the capacity-achieving channel input covariance \(\mathbf {\Phi }\) has eigenvectors equal to those of \(\mathbf {H}^\dagger \mathbf {H}\). Because the eigenvectors are orthogonal, the optimal power allocation is given by the water-filling solution [23]. That is, the transmissions are shaped using

$$\begin{aligned} {{\mathbf {F}_\text {S}}}= & {} \mathbf {V} \end{aligned}$$
(34)
$$\begin{aligned} P_\text {S}(i)= & {} (\nu - n(i))^+ \; ,\end{aligned}$$
(35)
$$\begin{aligned} \text {where } \mathbf {H}^\dagger \mathbf {H}= & {} \mathbf {V D V^\dagger } \; . \end{aligned}$$
(36)

Here \(P_\text {S}(i) \) (resp., D(i)) is the ith element on the diagonal of \({{\mathbf {P}_\text {S}}}\) (resp., \(\mathbf {D}\)), \(n(i) = \sigma _w^2/D(i)\) is the ith channel noise component, and \(\nu \) is chosen to satisfy the power constraint

$$\begin{aligned} \sum _{i=1}^{M} P_\text {S}(i) = M \; . \end{aligned}$$
(37)

In Rayleigh fading (\(K=0 \Rightarrow {\bar{\mathbf {H}} = 0}\)), we have \({{\mathbf {F}_\text {S}}}= \mathbf {U}_T\).

1.3 Statistical CSI

Although not as good as precise knowledge of the realization of \(\mathbf {H}\), when the transmitter has knowledge of the Gaussian channel statistics (mean and covariance), she is still able to improve beyond isotropic transmissions. Conditioned on the knowledge of the channel statistics, the capacity-achieving channel input has eigenvectors equal to those of \(E[\mathbf {H}^\dagger \mathbf {H}]\) [25]. That is, the transmissions are shaped using

$$\begin{aligned} {{\mathbf {F}_\text {S}}}= & {} \mathbf {V}\end{aligned}$$
(38)
$$\begin{aligned} \text {where } E[{\mathbf {H}}^\dagger \mathbf {H}]= & {} {\mathbf {VDV}}^\dagger \; . \end{aligned}$$
(39)

In Rayleigh fading (\(K=0\)), we have \({{\mathbf {F}_\text {S}}}= \mathbf {U}_T\).

We note that this power allocation does not correspond to a water-filling solution. When the transmitter does not know \(\mathbf {H}\), precoding the input with \({{\mathbf {F}_\text {S}}}\) does not yield orthogonal channels because energy spills across eigenmodes. Thus in the case of statistical CSI application of water-filling does not yield an optimal solution. An efficient iterative algorithm to determine the optimal \({{\mathbf {P}_\text {S}}}\) is given in [16].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, P.L., Sadler, B.M., Verma, G., Baras, J.S. (2016). Fingerprinting by Design: Embedding and Authentication. In: Wang, C., Gerdes, R., Guan, Y., Kasera, S. (eds) Digital Fingerprinting. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6601-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6601-1_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6599-1

  • Online ISBN: 978-1-4939-6601-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics