Skip to main content

Log-Concave Functions

  • Conference paper
  • First Online:
Convexity and Concentration

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 161))

Abstract

We attempt to provide a description of the geometric theory of log-concave functions. We present the main aspects of this theory: operations between log-concave functions; duality; inequalities including the Prékopa-Leindler inequality and the functional form of Blaschke-Santaló inequality and its converse; functional versions of area measure and mixed volumes; valuations on log-concave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For this reason the sum defined here is sometimes referred to as the Asplund product, see, for instance, [3].

  2. 2.

    In general the measurability of g and h does not imply that of f. See [34] for more information on this point.

References

  1. D. Alonso-Gutierrez, B. González, C. H. Jiménez, R. Villa, Rogers-Shephard inequality for log-concave functions, preprint (2015).

    MATH  Google Scholar 

  2. S. Artstein-Avidan, K. Einhorn, D.Y. Florentin, Y. Ostrover, On Godbersen’s conjecture, Geom. Dedicata 178 (2015), 337–350.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Artstein-Avidan, B. Klartag, V. Milman, The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika 51 (2004), 33–48.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Artstein-Avidan, B. Klartag, C. Shütt, E. Werner, Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality, J. Funct. Anal. 262 (2012), no. 9, 4181–4204.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Artstein-Avidan, V. Milman, A characterization of the concept of duality, Electron. Res. Announc. Math. Sci. 14 (2007), 42–59.

    MathSciNet  MATH  Google Scholar 

  6. S. Artstein-Avidan, V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform, Ann. of Math. 169 (2009), 661–674.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Artstein-Avidan, V. Milman, Hidden structures in the class of convex functions and a new duality transform, J. Eur. Math. Soc. 13 (2011), 975–1004.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Ball, PhD Thesis, University of Cambridge (1988).

    Google Scholar 

  9. F. Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bobkov, A. Colesanti, I. Fragalá, Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities, Manuscripta Math. (2013), 1–39 (electronic version).

    Google Scholar 

  11. S. Bobkov, M. Ledoux, From Brunn-Minkowski to sharp Sobolev inequalities, Ann. Mat. Pura Appl. 187 (2008), 369–384.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028–1052.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Bolley, I. Gentil, A. Guillin, Dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities, preprint.

    Google Scholar 

  14. C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239–252.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975), 111–136.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Bourgain, V. Milman, New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^{n}\), Invent. Math. 88 (1987), 319–340.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log-concave functions and with an application to the diffusion equation, J. Functional Analysis, 22 (4) (1976), 366–389.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Cavallina, A. Colesanti, Monotone valuations on the space of convex functions, Anal. Geom. Metr. Spaces 3 (2015), 167–211.

    MathSciNet  MATH  Google Scholar 

  19. U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schütt, E. Werner, Functional versions of the L p -affine surface area and entropy inequalities, to appear in Int. Math. Res. Not.

    Google Scholar 

  20. U. Caglar, E. Werner, Divergence for s-concave and log-concave functions, Adv. Math. 257 (2014), 219–247.

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Caglar, E. Werner, Mixed f-divergence and inequalities for log-concave functions, to appear on Proc. London Math. Soc.

    Google Scholar 

  22. U. Caglar, D. Ye, Orlicz affine isoperimetric inequalities for functions, preprint.

    Google Scholar 

  23. A. Colesanti, Functional inequalities related to the Rogers-Shephard inequality, Mathematika 53 (2006), 81–101.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré-type inequalities, Commun. Contemp. Math. 10 (2008), 765–772.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Colesanti and I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math. 244 (2013), 708–749.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Colesanti, N. Lombardi, Valuations on the space of quasi-concave functions, in B. Klartag, E. Milman (Eds.), Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics 2169, Springer, Berlin, 2017.

    Google Scholar 

  27. D. Cordero-Erausquin, B. Klartag, Moment measures, J. Functional Analysis 268 (2015), 3834–3866.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Dubuc, Critères de convexité et inégalités intégrales, Ann. Inst. Fourier (Grenoble) 27 (1977), 135–165.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Fradelizi, Y. Gordon, M. Meyer, S. Reisner, On the case of equality for an inverse Santaló functional inequality, Adv. Geom. 10 (2010), 621–630.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Fradelizi, M. Meyer, Some functional forms of Blaschke-Santaló inequality. Math. Z. 256 (2007), 379–395.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Fradelizi, M. Meyer, Increasing functions and inverse Santaló inequality for unconditional functions, Positivity 12 (2008), 407–420.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Fradelizi, M. Meyer, Some functional inverse Santaló inequalities. Adv. Math. 218 (2008), 1430–1452.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Fradelizi, M. Meyer, Functional inequalities related to Mahler’s conjecture, Monatsh. Math. 159 (2010), 13–25.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002), 355–405.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

    Book  MATH  Google Scholar 

  36. D. Klain, A short proof of Hadwiger’s characterization theorem, Mathematika 42 (1995), 329–339.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Klain, G. Rota, Introduction to geometric probability, Cambridge University Press, New York, 1997.

    MATH  Google Scholar 

  38. B. Klartag and V. D. Milman. Geometry of log-concave functions and measures, Geom. Dedicata 112 (2005), 169–182.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Ledoux, The concentration of measure phenomenon, Math. Surveys Monogr., vol. 89, Amer. Math. Soc., 2005.

    Google Scholar 

  40. J. Lehec, A direct proof of the functional Santaló inequality, C. R. Acad. Sci. Paris, Ser. 347 (2009), 55–58.

    Google Scholar 

  41. J. Lehec, Partitions and functional Santaló inequalities, Arch. Math. (Basel) 92 (2009), 89–94.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Leindler, On certain converse of Hölder’s inequality II, Acta Math. Sci. (Szeged) 33 (1972), 217–223.

    MathSciNet  MATH  Google Scholar 

  43. M. Ludwig, Valuations on function spaces, Adv. Geom. 11 (2011), 745–756.

    Article  MathSciNet  MATH  Google Scholar 

  44. P. McMullen, Valuations and Euler type relations on certain classes of convex polytopes, Proc. London Math. Soc. 35 (1977), 113–135.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Milman, Geometrization of probability. In: Geometry and Dynamics of Groups and Spaces, Progr. Math. 265, M. Kapranov et al. (eds.), Birkhäuser, 647–667 (2008).

    Google Scholar 

  46. V. Milman, L. Rotem, Mixed integrals and related inequalities, J. Funct. Analysis 264 (2013), 570–604.

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Milman, L. Rotem, α-concave functions and a functional extension of mixed volumes, Electr. Res. Announcements Math. Sci. 20 (2013), 1–11.

    Google Scholar 

  48. A. Prékopa, Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. (Szeged) 32 (1971), 301–315.

    MathSciNet  MATH  Google Scholar 

  49. A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1975), 335–343.

    MathSciNet  MATH  Google Scholar 

  50. C. A. Rogers, G. C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233.

    Article  MathSciNet  MATH  Google Scholar 

  51. R. T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.

    Book  MATH  Google Scholar 

  52. L. Rotem, PhD Thesis, University of Tel Aviv (2011).

    Google Scholar 

  53. L. Rotem, On the mean width of log-concave functions, in: B. Klartag, S. Mendelson, V. Milman (Eds.), Geometric Aspects of Functional Analysis, Vol. 2050, Springer, Berlin, 2012, 355–372.

    Chapter  Google Scholar 

  54. D. Ryabogin, A. Zvavitch, Analytic methods in convex geometry, IMPAN lecture notes, 2 (2014), 89–183.

    MathSciNet  MATH  Google Scholar 

  55. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Second expanded edition. Cambridge University Press, Cambridge, 2014.

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for the careful reading of the paper and his/her corrections and valuable suggestions.

This research was partially supported by G.N.A.M.P.A (INdAM) and by the FIR project 2013: Geometrical and qualitative aspects of PDE’s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Colesanti .

Editor information

Editors and Affiliations

Appendices

Appendix A. Basic Notions of Convex Geometry

This part of the paper contains some notions and constructions of convex geometry that are directly invoked throughout this paper. Our main reference text on the theory of convex bodies is the monograph [55].

A.1 Convex Bodies and Their Dimension

We denote by \(\mathcal{K}^{n}\) the class of convex bodies, i.e. compact convex subsets of \(\mathbb{R}^{n}\).

Given a convex body K its dimension is the largest integer k ∈ { 0, , n} such that there exists a k-dimensional hyperplane of \(\mathbb{R}^{n}\) containing K. In particular, if K has non-empty interior, then its dimension is n. The relative interior of K is the set of points x ∈ K such that there exists a k-dimensional ball centered at x included in K, where k is the dimension of K. If the dimension of K is n, then the relative interior coincides with usual interior.

A.2 Minkowski Addition

The Minkowski linear combination of \(K,L \in \mathcal{K}^{n}\) with coefficients α, β ≥ 0 is

$$\displaystyle{\alpha K +\beta L =\{\alpha x +\beta y\,:\, x \in K,\,y \in L\}.}$$

It is easy to check that this is still a convex body.

A.3 Support Function

The support function of a convex body K is defined as:

$$\displaystyle{h_{K}\,:\, \mathbb{R}^{n} \rightarrow \mathbb{R},\quad h_{ K}(x) =\sup _{y\in K}(x,y).}$$

This is a 1-homogeneous convex function in \(\mathbb{R}^{n}\). Vice versa, to each 1-homogeneous convex function h we may assign a unique convex body K such that h = h K . Support functions and Minkowski additions interact in a very simple way; indeed, for every K and L in \(\mathcal{K}^{n}\) and α, β ≥ 0 we have

$$\displaystyle{h_{\alpha K+\beta L} =\alpha h_{K} +\beta h_{L}.}$$

A.4 Hausdorff Metric

\(\mathcal{K}^{n}\) can be naturally equipped with a metric: the Hausdorff metric d H . One way to define d H is as the \(L^{\infty }(\mathbb{S}^{n-1})\) distance of support functions, restricted to the unit sphere:

$$\displaystyle{d_{H}(K,L) =\| h_{K} - h_{L}\|_{L^{\infty }(\mathbb{S}^{n-1})} =\max \{ \vert h_{K}(x) - h_{L}(x)\vert \,:\, x \in \mathbb{S}^{n-1}\}.}$$

Hausdorff metric has many useful properties; in particular, we note that \(\mathcal{K}^{n}\) is a locally compact space with respect to d H .

A.5 Intrinsic Volumes

An easy way to define intrinsic volumes of convex bodies is through the Steiner formula. Let K be a convex body and let B n denote the closed unit ball of \(\mathbb{R}^{n}\). For ε > 0 the set

$$\displaystyle{K +\epsilon B_{n} =\{ x +\epsilon y\,:\, x \in K,\,y \in B\} =\{ y \in \mathbb{R}^{n}\,:\,\mathrm{ dist}(x,K) \leq \epsilon \}}$$

is called the parallel set of K and denoted by K ε . The Steiner formula asserts that the volume of K ε is a polynomial in ε. The coefficients of this polynomial are, up to dimensional constants, the intrinsic volumes V 0(K), , V n (K) of K:

$$\displaystyle{V _{n}(K_{\epsilon }) =\sum _{ i=0}^{n}V _{ i}(K)\epsilon ^{n-i}\kappa _{ n-i}.}$$

Here κ j denotes the j-dimensional volume of the unit ball in \(\mathbb{R}^{j}\), for every \(j \in \mathbb{N}\). Among the very basic properties of intrinsic volumes, we mention that: V 0 is constantly 1 for every K; V n is the volume; V n−1 is (n − 1)-dimensional Hausdorff measure of the boundary (only for those bodies with non-empty interior). Moreover, intrinsic volumes are continuous with respect to Hausdorff metric, rigid motion invariant, monotone, and homogeneous with respect to dilations (V i is i-homogeneous). Finally, each intrinsic volume is a valuation

$$\displaystyle{ V _{i}(K \cup L) + V _{i}(K \cap L) = V _{i}(K) + V _{i}(L) }$$
(41)

for every K and L in \(\mathcal{K}^{n}\), such that \(K \cup L \in \mathcal{K}^{n}\). Hadwiger’s theorem claims that every rigid motion invariant and continuous valuation can be written as the linear combination of intrinsic volumes.

A.6 Mixed Volumes

The Steiner formula is just an example of the polynomiality of the volume of linear combinations of convex bodies. A more general version of it leads to the notions of mixed volumes. Let \(m \in \mathbb{N}\) and K 1, , K m be convex bodies; given λ 1, , λ m  ≥ 0, the volume of the convex body λ 1 K 1 + +λ m K m is a homogeneous polynomial of degree n in the variables λ i ’s, and its coefficients are the mixed volumes of the involved bodies. The following more precise statement is a part of Theorem 5.16 in [55]. There exists a function \(V \,:\, (\mathcal{K}^{n})^{n} \rightarrow \mathbb{R}_{+}\), the mixed volume, such that

$$\displaystyle{V _{n}(\lambda _{1}K_{1} +\ldots +\lambda _{m}K_{m}) =\sum _{ i_{1},\ldots,i_{n}=1}^{m}\lambda _{ i_{1}}\cdots \lambda _{i_{n}}V (K_{i_{1}},\ldots,K_{i_{n}})}$$

for every K 1, , K m  ∈ K n and λ 1, , λ m  ≥ 0. Hence a mixed volume is a function of n convex bodies. Mixed volumes have a number of interesting properties. In particular they are non-negative, symmetric, and continuous; moreover, they are linear and monotone with respect to each entry.

A.7 The Polar Body

The polar of a convex body K, having the origin as an interior point, is the set

$$\displaystyle{K^{\circ } =\{ y\,:\, (x,y) \leq 1\;\quad \forall x \in K\}.}$$

This is again a convex body, with the origin in its interior, and (K ) = K.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this paper

Cite this paper

Colesanti, A. (2017). Log-Concave Functions. In: Carlen, E., Madiman, M., Werner, E. (eds) Convexity and Concentration. The IMA Volumes in Mathematics and its Applications, vol 161. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7005-6_15

Download citation

Publish with us

Policies and ethics