Skip to main content

Effects of Man-Made Sound on Fishes

  • Chapter
  • First Online:
Effects of Anthropogenic Noise on Animals

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 66))

Abstract

Sound provides animals with a means of rapid, directional, and long-distance communication. It also provides animals with a “gestalt” view of their environment by giving an acoustic image of the world that often extends far beyond what is available from other senses. Thus, sound is highly relevant for fishes, and any interference with the ability to detect sound has potential consequences for the fitness and survival of individuals, populations, and species. There is a growing body of evidence that the addition of man-made sound in the aquatic environment has the potential to affect the ability of fishes to detect and use the biologically relevant sounds that are important for their survival. Moreover, there is also evidence that especially intense sounds not only affect sound detection and behavior but also have the potential to have physiological and physical effects on fish that could result in greatly reduced fitness and, in some cases, directly to death. This chapter examines the potential effects of man-made sound on fishes. It considers the sources of such sounds, the current data on potential effects and impacts, and implications for regulation of such sounds so that the potential impact is mitigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Physiological” effects are often used synonymously with “physical” effects. It is difficult to differentiate the two because changes in physiology (e.g., inability to produce blood cells, changes in nerve conduction) may be hard to determine, whereas it is not clear if physical effects (damage to tissues, hematoma) also result in physiological effects. This paper uses physiological to encompass all effects on the body, unless the results are clearly only one or the other.

References

  • Ainslie, M. (2010). Principles of Sonar Performance Modelling. Berlin Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Ainslie, M. (2011). Standard for Measurement and Monitoring of Underwater Noise, Part I: Physical Quantities and Their Units. Report TNO-DV 2011 C235, TNO, The Hague, The Netherlands.

    Google Scholar 

  • Ainslie, M. (2015). A century of sonar: Planetary oceanography, underwater noise monitoring, and the terminology of underwater sound. Acoustics Today, 11(1), 12-19.

    Google Scholar 

  • Amoser, S., Wysocki, L. E., & Ladich, F. (2004). Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. The Journal of the Acoustical Society of America, 116(6), 3789-3797.

    Article  PubMed  Google Scholar 

  • Andrew, R. K., Howe, B. M., & Mercer, J. A. (2002). Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online, 3, 65-70.

    Article  Google Scholar 

  • Bass, A. H., & Clark, C. W. (2003). The physical acoustics of underwater sound communication. In A. M. Simmons, A. N. Popper, & R. R. Fay (Eds.), Acoustic Communication (pp. 15-64). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Bass, A. H., & Ladich, F. (2008). Vocal-acoustic communication: From neurons to brain. In J. F. Webb, A. N. Popper, & R. R. Fay (Eds.), Fish Bioacoustics (pp. 253-278). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Bittencourt, L., Carvalho, R. R., Lailson-Brito, J., & Azevedo, A. F. (2014). Underwater noise pollution in a coastal tropical environment. Marine Pollution Bulletin, 83(1), 331-336.

    Article  CAS  PubMed  Google Scholar 

  • Boehlert, G. W., & Gill, A. B. (2010). Environmental and ecological effects of ocean renewable energy development: A current synthesis. Oceanography, 23(2), 68-81.

    Article  Google Scholar 

  • Bolle, L. J., de Jong, C. A., Bierman, S. M., van Beek, P. J., van Keeken, O. A., Wessels, P. W., van Damme, C. J., Winter, H. V., de Haan, D., & Dekeling, R. P. (2012). Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments. PLoS ONE, 7(3), e33052.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bolle, L. J., de Jong, C. A., Bierman, S. M., van Beek, P. J., Wessels, P. W., Blom, E., van Damme, C. J., Winter, H. V., & Dekeling, R. P. (2016). Effect of pile-driving sounds on the survival of larval fish. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 91-100). New York: Springer-Verlag.

    Google Scholar 

  • Booth, C., Donovan, C., King, S., & Schick, R. (2014). A Protocol for Implementing the Interim Population Consequences of Disturbance (PCoD) Approach: Quantifying and Assessing the Effects of UK Offshore Renewable Energy Developments on Marine Mammal Populations. Report Number SMRUL-TCE-2013-014, Scottish Marine and Freshwater Science, 5(2). Edinburgh: Scottish Government. Available at https://goo.gl/GKu9Ek.

  • Bregman, A. S. (1994). Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • California Department of Transportation. (2001). Pile Installation Demonstration Project, Fisheries Impact Assessment. Caltrans Contract 04A0148, San Francisco-Oakland Bay Bridge East Span Seismic Safety Project, California Department of Transportation, Sacramento.

    Google Scholar 

  • Carlson, T. J., Hastings, M. C., & Popper, A. N. (2007). Update on Recommendations for Revised Interim Sound Exposure Criteria for Fish During Pile Driving Activities. Available at https://goo.gl/KRzmLh.

  • Casaretto, L., Picciulin, M., Olsen, K., & Hawkins, A. D. (2014). Locating spawning haddock (Melanogrammus aeglefinus, Linnaeus, 1758) at sea by means of sound. Fisheries Research, 154, 127-134.

    Article  Google Scholar 

  • Casper, B. M., & Mann, D. A. (2009). Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae. Journal of Fish Biology, 75(10), 2768-2776.

    Article  CAS  PubMed  Google Scholar 

  • Casper, B. M., Halvorsen, M. B., & Popper, A. N. (2012a). Are sharks even bothered by a noisy environment? In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 93-97). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Casper, B. M., Popper, A. N., Matthews, F., Carlson, T. J., & Halvorsen, M. B. (2012b). Recovery of barotrauma injuries in Chinook salmon, Oncorhynchus tshawytscha, from exposure to pile driving sound. PLoS ONE, 7(6), e39593.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casper, B. M., Halvorsen, M. B., Matthews, F., Carlson, T. J., & Popper, A. N. (2013a). Recovery of barotrauma injuries resulting from exposure to pile driving sound in two sizes of hybrid striped bass. PLoS ONE, 8(9), e73844.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casper, B. M., Smith, M. E., Halvorsen, M. B., Sun, H., Carlson, T. J., & Popper, A. N. (2013b). Effects of exposure to pile driving sounds on fish inner ear tissues. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology, 166(2), 352-360.

    Article  CAS  Google Scholar 

  • Chapman, C. J., & Hawkins, A. (1973). A field study of hearing in the cod, Gadus morhua L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 85, 147-167.

    Article  Google Scholar 

  • Chapman, C. J., & Johnstone, A. D. (1974). Some auditory discrimination experiments on marine fish. Journal of Experimental Biology, 61(2), 521-528.

    CAS  PubMed  Google Scholar 

  • Chapman, C. J., & Sand, O. (1974). Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comparative Biochemistry and Physiology Part A: Physiology, 47(1), 371-385.

    Article  CAS  Google Scholar 

  • Cheesman, S. (2016). Measurements of operational wind turbine noise in UK waters. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 153-160). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Continental Shelf Associates. (2004). Explosive Removal of Offshore Structures - Information Synthesis Report. Outer Continental Shelf (OCS) Study MMS 2003-070 prepared by Continental Shelf Associates for the Minerals Management Service,, Gulf of Mexico OCS Region, US Department of the Interior, New Orleans, LA.

    Google Scholar 

  • Coombs, S., & Popper, A. N. (1979). Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132(2), 203-207.

    Article  Google Scholar 

  • Corwin, J. T. (1977). Morphology of the macula neglecta in sharks of the genus Carcharhinus. Journal of Morphology, 152(3), 341-362.

    Article  CAS  PubMed  Google Scholar 

  • Corwin, J. T. (1983). Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: Continual increases in hair cell number, neural convergence, and physiological sensitivity. Journal of Comparative Neurology, 217(3), 345-356.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, A. J. R. (2008). The “soundscape” of the sea, underwater navigation, and why we should be listening more. In A. Payne, J. Cotter and T. Potter (Eds.), Advances in Fisheries Science: 50 Years on from Beverton and Holt (pp. 451-471). Oxford, UK: Blackwell Publishing.

    Chapter  Google Scholar 

  • Dahl, P. H., de Jong, C. A. F., & Popper, A. N. (2015). The underwater sound field from impact pile driving and its potential effects on marine life. Acoustics Today, 11(2), 18-25.

    Google Scholar 

  • de Jong, C., Ainslie, M., & Blacquière, G. (2011). Standard for Measurement and Monitoring of Underwater Noise, Part II: Procedures for Measuring Underwater Noise in Connection with Offshore Wind Farm Licensing. Report TNO-DV 2011 C235, TNO, The Hague, The Nertherlands. Available at https://goo.gl/hzQrGV

  • Dooling, R. J., & Blumenrath, S. H. (2016). Masking experiments in humans and birds using anthropogenic noises. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 239-243). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Dooling, R. J., Leek, M. R., & Popper, A. N. (2015). Effects of noise on fishes: What we can learn from humans and birds. Integrative Zoology, 10(1), 29-37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellison, W. T., & Frankel, A. S. (2012). A common sense approach to source metrics. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 433-438). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ellison, W. T., Southall, B. L., Clark, C. W., & Frankel, A. S. (2012). A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conservation Biology, 26(1), 21-28.

    Article  PubMed  CAS  Google Scholar 

  • Engås, A., & Løkkeborg, S. (2002). Effects of seismic shooting and vessel-generated noise on fish behaviour and catch rates. Bioacoustics, 2(3), 313-316.

    Article  Google Scholar 

  • Engås, A., Løkkeborg, S., Ona, E., & Soldal, A. V. (1996). Effects of seismic shooting on local abundance and catch rates of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Canadian Journal of Fisheries and Aquatic Sciences, 53, 2238-2249.

    Article  Google Scholar 

  • Enger, P. S. (1981). Frequency discrimination in teleosts—Central or peripheral? In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and Sound Communication in Fishes (pp. 243-255). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Erbe, C., MacGillivray, A., & Williams, R. (2012). Mapping cumulative noise from shipping to inform marine spatial planning. The Journal of the Acoustical Society of America, 132(5), EL423-EL438.

    Article  PubMed  Google Scholar 

  • Erbe, C., Reichmuth, C., Cunningham, K., Lucke, K., & Dooling, R. (2016). Communication masking in marine mammals: A review and research strategy. Marine Pollution Bulletin, 103(1-2), 15-38.

    Article  PubMed  CAS  Google Scholar 

  • Fay, R. R. (1974). Masking of tones by noise for the goldfish (Carassius auratus). Journal of Comparative and Physiological Psychology, 87(4), 708-716.

    Article  CAS  PubMed  Google Scholar 

  • Fay, R. R. (2005). Sound source localization by fishes. In A. N. Popper & R. R. Fay (Eds.), Sound Source Localization (pp. 36-66). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Fay, R. R. (2009). Sound source segregation by goldfish: Two simultaneous tones. The Journal of the Acoustical Society of America, 125(6), 4053-4059.

    Article  PubMed Central  PubMed  Google Scholar 

  • Filiciotto, F., Cecchini, S., Buscaino, G., Maccarrone, V., Piccione, G., & Fazio, F. (2016). Impact of aquatic acoustic noise on oxidative status and some immune parameters in gilthead sea bream Sparus aurata (Linnaeus, 1758) juveniles. Aquaculture Research, 48, 1895-1903.

    Article  CAS  Google Scholar 

  • Fletcher, H. (1940). Auditory patterns. Reviews of Modern Physics, 12(1), 47.

    Article  Google Scholar 

  • Francis, C. D., & Barber, J. R. (2013). A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11(6), 305-313.

    Article  Google Scholar 

  • Gisiner, R. (2016). Sound and marine seismic surveys. Acoustics Today, 12(4), 10-18.

    Google Scholar 

  • Govoni, J. J., West, M. A., Settle, L., Lynch, R. T., & Greene, M. D. (2008). Effects of underwater explosions on larval fish: Implications for a coastal engineering project. Journal of Coastal Research, 24, 228-233.

    Article  Google Scholar 

  • Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J., & Popper, A. N. (2011). Hydroacoustic Impacts on Fish from Pile Installation. NCHRP Research Results Digest 363, Project 25-28, National Cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington, DC. Available at http://www.trb.org/Publications/Blurbs/166159.aspx.

  • Halvorsen, M. B., Casper, B. M., Woodley, C. M., Carlson, T. J., & Popper, A. N. (2012a). Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds. PLoS ONE, 7(6), e38968.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Halvorsen, M. B., Casper, B. M., Matthews, F., Carlson, T. J., & Popper, A. N. (2012b). Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4705-4714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halvorsen, M. B., Zeddies, D. G., Ellison, W. T., Chicoine, D. R., & Popper, A. N. (2012c). Effects of mid-frequency active sonar on hearing in fish. The Journal of the Acoustical Society of America, 131(1), 599-607.

    Article  PubMed  Google Scholar 

  • Halvorsen, M. B., Zeddies, D. G., Chicoine, D., & Popper, A. N. (2013). Effects of low-frequency naval sonar exposure on three species of fish. The Journal of the Acoustical Society of America, 134(2), EL205-EL210.

    Article  PubMed  Google Scholar 

  • Hastings, M. C. (2008). Coming to terms with the effects of ocean noise on marine animals. Acoustics Today, 4(2), 22-34.

    Article  Google Scholar 

  • Hastings, M. C., Popper, A. N., Finneran, J. J., & Lanford, P. J. (1996). Effects of low-frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus. The Journal of the Acoustical Society of America, 99(3), 1759-1766.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins, A. D., & Chapman, C. J. (1966). Underwater sounds of the haddock, Melanogrammus aeglifinus. Journal of the Marine Biological Association of the United Kingdom, 46, 241-247.

    Article  Google Scholar 

  • Hawkins, A. D., & Chapman, C. J. (1975). Masked auditory thresholds in the cod, Gadus morhua L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 103(2), 209-226.

    Article  Google Scholar 

  • Hawkins, A. D., & MacLennan, D. N. (1976). An acoustic tank for hearing studies on fish. In A. Schuijf & A. D. Hawkins (Eds.), Sound Reception in Fish (149-169). Amsterdam: Elsevier.

    Google Scholar 

  • Hawkins, A. D., & Sand, O. (1977). Directional hearing in the median vertical plane by the cod. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 122(1), 1-8.

    Article  Google Scholar 

  • Hawkins, A. D., & Johnstone, A. D. F. (1978). The hearing of the Atlantic salmon, Salmo salar. Journal of Fish Biology, 13, 655-673.

    Article  Google Scholar 

  • Hawkins, A. D., & Myrberg, A. A., Jr. (1983). Hearing and sound communication underwater. In B. Lewis (Ed.), Bioacoustics: A Comparative Approach (pp. 347-405). London: Academic Press.

    Google Scholar 

  • Hawkins, A. D., & Popper, A. N. (2014). Assessing the impacts of underwater sounds on fishes and other forms of marine life. Acoustics Today, 10(2), 30-41.

    Google Scholar 

  • Hawkins, A. D., & Popper, A. N. (2016). Developing sound exposure criteria for fishes. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 431-439). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Hawkins, A. D., MacLennan, D. N., Urquhart, G. G., & Robb, C. (1974). Tracking cod Gadus morhua L. in a Scottish sea loch. Journal of Fish Biology, 6(3), 225-236.

    Article  Google Scholar 

  • Hawkins, A. D., Roberts, L., & Cheesman, S. (2014). Responses of free-living coastal pelagic fish to impulsive sounds. The Journal of the Acoustical Society of America, 135(5), 3101-3116.

    Article  PubMed  Google Scholar 

  • Hawkins, A. D., Pembroke, A., & Popper, A. N. (2015). Information gaps in understanding the effects of noise on fishes and invertebrates. Reviews in Fish Biology and Fisheries, 25, 39-64.

    Article  Google Scholar 

  • Hazelwood, R. A. (2012). Ground roll waves as a potential influence on fish: Measurement and analysis techniques. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 449-452). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Henderson, D., & Hamernik, R. P. (2012). The use of kurtosis measurement in the assessment of potential noise trauma. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss: Scientific Advances (pp. 41-55). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 5-20.

    Article  Google Scholar 

  • Hobday, A., Smith, A., Stobutzki, I., Bulman, C., Daley, R., Dambacher, J., Deng, R., Dowdney, J., Fuller, M., & Furlani, D. (2011). Ecological risk assessment for the effects of fishing. Fisheries Research, 108(2), 372-384.

    Article  Google Scholar 

  • Holles, S., Simpson, S. D., Radford, A. N., Berten, L., & Lecchini, D. (2013). Boat noise disrupts orientation behaviour in a coral reef fish. Marine Ecology Progress Series, 485, 295-300.

    Article  Google Scholar 

  • Jacobs, D. W., & Tavolga, W. N. (1967). Acoustic intensity limens in the goldfish. Animal Behaviour, 15(2), 324-335.

    Article  CAS  PubMed  Google Scholar 

  • Kaatz, I. M. (2002). Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics, 12(2-3), 230-233.

    Article  Google Scholar 

  • Keevin, T. M., & Hempen, G. L. (1997). The Environmental Effects of Underwater Explosions with Methods to Mitigate Impacts. SDMS Doc ID 550560, US Army Corps of Engineers, St. Louis District, St. Louis, MO. Available at https://semspub.epa.gov/work/01/550560.pdf.

  • Kight, C. R., & Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters, 14(10), 1052-1061.

    Article  PubMed  Google Scholar 

  • Klages, M., Muyakshin, S., Soltwedel, T., & Arntz, W. E. (2002). Mechanoreception, a possible mechanism for food fall detection in deep-sea scavengers. Deep-Sea Research Part I: Oceanographic Research Papers, 49(1), 143-155.

    Article  Google Scholar 

  • Knudsen, F. R., Enger, P. S., & Sand, O. (1992). Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. Journal of Fish Biology, 40, 523-534.

    Article  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077-14085.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kunc, H. P., Lyons, G. N., Sigwart, J. D., McLaughlin, K. E., & Houghton, J. D. R. (2014). Anthropogenic noise affects behavior across sensory modalities. The American Naturalist, 184(4), E93-E100.

    Article  PubMed  Google Scholar 

  • Kunc, H. P., McLaughlin, K. E., & Schmidt, R. (2016). Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B: Biological Sciences, 283(1836), 20160839. doi:https://doi.org/10.1098/rspb.2016.0839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladich, F. (2013). Effects of noise on sound detection and acoustic communication in fishes. In H. Brumm (Ed.), Animal Communication and Noise (pp. 65-90). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Laughlin, J. (2006). Underwater Sound Levels Associated with Pile Driving at the Cape Disappointment Boat Launch Facility, Wave Barrier Project. Report prepared by the Washington State Department of Transportation, Seattle.

    Google Scholar 

  • Le Prell, C. G., Henderson, D., Fay, R. R., & Popper, A. N. (Eds.). (2012). Noise-Induced Hearing Loss: Scientific Advances. New York: Springer-Verlag.

    Google Scholar 

  • Lin, H., Furman, A., Kujawa, S., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. Journal of the Association for Research in Otolaryngology, 12(5), 605-616.

    Article  PubMed Central  PubMed  Google Scholar 

  • Løkkeborg, S., Ona, E., Vold, A., & Salthaug, A. (2012a). Effects of sounds from seismic air guns on fish behavior and catch rates. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 415-419). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Løkkeborg, S., Ona, E., Vold, A., Salthaug, A., & Jech, J. M. (2012b). Sounds from seismic air guns: Gear- and species-specific effects on catch rates and fish distribution. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 1278-1291.

    Article  Google Scholar 

  • Luczkovich, J. J., Pullinger, R. C., Johnson, S. E., & Sprague, M. W. (2008). Identifying sciaenid critical spawning habitats by the use of passive acoustics. Transactions of the American Fisheries Society, 137(2), 576-605.

    Article  Google Scholar 

  • Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K., & Tyack, P. (2006). Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs. Marine Ecology Progress Series, 309, 279-295.

    Article  Google Scholar 

  • Mann, D. A., Higgs, D. M., Tavolga, W. N., Souza, M. J., & Popper, A. N. (2001). Ultrasound detection by clupeiform fishes. The Journal of the Acoustical Society of America, 109(6), 3048-3054.

    Article  CAS  PubMed  Google Scholar 

  • Martin, B., Zeddies, D. G., Gaudet, B., & Richard, J. (2016). Evaluation of three sensor types for particle motion measurement. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 679-686). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Martin, S. B., & Popper, A. N. (2016). Short-and long-term monitoring of underwater sound levels in the Hudson River (New York, USA). The Journal of the Acoustical Society of America, 139(4), 1886-1897.

    Article  PubMed  Google Scholar 

  • Mattsson, A., Parkes, G., & Hedgeland, D. (2012). Svein Vaage broadband air gun study. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 469-471). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • McCauley, R. D., Fewtrell, J., & Popper, A. N. (2003). High intensity anthropogenic sound damages fish ears. The Journal of the Acoustical Society of America, 113(1), 638-642.

    Article  PubMed  Google Scholar 

  • McKenna, M. F., Ross, D., Wiggins, S. M., & Hildebrand, J. A. (2012). Underwater radiated noise from modern commercial ships. The Journal of the Acoustical Society of America, 131(1), 92-103.

    Article  PubMed  Google Scholar 

  • Morley, E. L., Jones, G., & Radford, A. N. (2014). The importance of invertebrates when considering the impacts of anthropogenic noise. Proceedings of the Royal Society B: Biological Sciences, 281(1776), 20132683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moulton, J. M. (1963). Acoustic behaviour of fishes. In R.-G. Busnel (Ed.), Acoustic Behaviour of Animals (pp. 655-693). Amsterdam: Elsevier.

    Google Scholar 

  • Mueller-Blenkle, C., McGregor, P. K., Gill, A. B., Andersson, M. H., Metcalfe, J., Bendall, V., Sigray, P., Wood, D. T., & Thomsen, F. (2010). Effects of Pile-Driving Noise on the Behaviour of Marine Fish. Cowrie Ref: Fish 06-08, Technical Report 31st March 2010. Available at https://goo.gl/YXDC8i.

  • Myrberg, A. A., Jr. (1981). Sound communication and interception in fishes. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and Sound Communication in Fishes (pp. 395-426). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Myrberg, A. A., Jr. (2001). The acoustical biology of elasmobranchs. Environmental Biology of Fishes, 60(1-3), 31-46.

    Google Scholar 

  • National Marine Fisheries Service (NMFS). (2016). Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing: Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts. NOAA Technical Memorandum NMFS-OPR-55, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce, Washington, DC. Available at https://goo.gl/F2VPU6.

  • National Research Council. (2005). Marine Mammal Populations and Ocean Noise: Determining When Noise Causes Biologically Significant Effects. Washington, DC: National Academies Press.

    Google Scholar 

  • Nedelec, S. L., Radford, A. N., Simpson, S. D., Nedelec, B., Lecchini, D., & Mills, S. C. (2014). Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate. Science Reports, 4, 5891. doi:https://doi.org/10.1038/srep05891.

    Article  CAS  Google Scholar 

  • Nedelec, S. L., Campbell, J., Radford, A. N., Simpson, S. D., & Merchant, N. D. (2016). Particle motion: The missing link in underwater acoustic ecology. Methods in Ecology and Evolution, 7, 836-842.

    Article  Google Scholar 

  • Nedwell, J. R., Turnpenny, A. W. H., Lovell, J. M., & Edwards, B. (2006). An investigation into the effects of underwater piling noise on salmonids. The Journal of the Acoustical Society of America, 120(5), 2550-2554.

    Article  PubMed  Google Scholar 

  • Nedwell, J. R., Parvin, S. J., Edwards, B., Workman, R., Brooker, A. G., & Kynoch, J. E. (2007). Measurement and Interpretation of Underwater Noise During Construction and Operation of Offshore Windfarms in UK Waters. Subacoustch Report No. 544R0738 for Cowrie Ltd., UK. Available at https://goo.gl/cCJyfK.

  • Neo, Y. Y., Seitz, J., Kastelein, R. A., Winter, H. V., ten Cate, C., & Slabbekoorn, H. (2014). Temporal structure of sound affects behavioural recovery from noise impact in European seabass. Biological Conservation, 178, 65-73.

    Article  Google Scholar 

  • Nieukirk, S. L., Stafford, K. M., Mellinger, D. K., Dziak, R. P., & Fox, C. G. (2004). Low-frequency whale and seismic airgun sounds recorded in the mid-Atlantic Ocean. The Journal of Acoustical Society of America, 115, 1832-1843.

    Article  Google Scholar 

  • Nieukirk, S. L., Klinck, H., Mellinger, D. K., Klinck, K., & Dziak, R. P. (2014). Seismic airgun surveys and vessel traffic in the Fram Strait and their contribution to the polar soundscape. The Journal of the Acoustical Society of America, 136(4), 2154.

    Article  Google Scholar 

  • Oestman, R., Buehler, D., Reyff, J., & Rodkin, R. (2009). Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish. Report by ICF International and Illingworth and Rodkin Inc. prepared for the California Department of Transportation, Sacramento.

    Google Scholar 

  • Parvulescu, A. (Ed.). (1964). Problems of Propagation and Processing. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Pine, M. K., Jeffs, A. G., Wang, D., & Radford, C. A. (2016). The potential for vessel noise to mask biologically important sounds within ecologically significant embayments. Ocean & Coastal Management, 127, 63-73.

    Article  Google Scholar 

  • Popper, A. N., & Clarke, N. L. (1979). Non-simultaneous auditory masking in the goldfish, Carassius auratus. Journal of Experimental Biology, 83, 145-158.

    CAS  PubMed  Google Scholar 

  • Popper, A. N., & Hastings, M. C. (2009). The effects of anthropogenic sources of sound on fishes. Journal of Fish Biology, 75(3), 455-489.

    Article  CAS  PubMed  Google Scholar 

  • Popper, A. N., & Fay, R. R. (2011). Rethinking sound detection by fishes. Hearing Research, 273(1), 25-36.

    Article  PubMed  Google Scholar 

  • Popper, A. N., & Hawkins, A. (Eds.). (2012). The Effects of Noise on Aquatic Life. New York: Springer-Verlag.

    Google Scholar 

  • Popper, A. N., & Hawkins, A. (Eds.). (2016). The Effects of Noise on Aquatic Life II. New York: Springer-Verlag.

    Google Scholar 

  • Popper, A. N., Salmon, M., & Horch, K. W. (2001). Acoustic detection and communication by decapod crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187(2), 83-89.

    Article  CAS  Google Scholar 

  • Popper, A. N., Fay, R. R., Platt, C., & Sand, O. (2003). Sound detection mechanisms and capabilities of teleost fishes. In S. P. Collin & N. J. Marshall (Eds.), Sensory Processing in Aquatic Environments (pp. 3-38). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Popper, A. N., Smith, M. E., Cott, P. A., Hanna, B. W., MacGillivray, A. O., Austin, M. E., & Mann, D. A. (2005). Effects of exposure to seismic airgun use on hearing of three fish species. The Journal of the Acoustical Society of America, 117(6), 3958-3971.

    Article  PubMed  Google Scholar 

  • Popper, A. N., Halvorsen, M. B., Kane, A. S., Miller, D. L., Smith, M. E., Song, J., Stein, P., & Wysocki, L. E. (2007). The effects of high-intensity, low-frequency active sonar on rainbow trout. The Journal of the Acoustical Society of America, 122(1), 623-635.

    Article  PubMed  Google Scholar 

  • Popper, A. N., Hawkins, A. D., Fay, R. R., Mann, D. A., Bartol, S., Carlson, T. J., Coombs, S., Ellison, W. T., Gentry, R. L., Halvorsen, M. B., Lokkeborg, S., Rogers, P., Southall, B. L., Zeddies, D. G., & Tavolga, W. N. (2014). Sound exposure guidelines. In ASA S3/SC1. 4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles. A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI (pp. 33–51). New York: Springer International Publishing.

    Google Scholar 

  • Popper, A. N., Gross, J. A., Carlson, T. J., Skalski, J., Young, J. V., Hawkins, A. D., & Zeddies, D. (2016). Effects of exposure to the sound from seismic airguns on pallid sturgeon and paddlefish. PLoS ONE, 11(8), e0159486.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rabinowitz, P. M. (2012). The public health significance of noise-induced hearing loss. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss: Scientific Advances (pp. 13-26). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Radford, A. N., Kerridge, E., & Simpson, S. D. (2014). Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behavioral Ecology, 25, 1022-1030.

    Article  Google Scholar 

  • Ramcharitar, J., Gannon, D. P., & Popper, A. N. (2006). Bioacoustics of the family Sciaenidae (croakers and drumfishes). Transactions of the American Fisheries Society, 135, 1409-1431.

    Article  Google Scholar 

  • Remage-Healey, L., Nowacek, D. P., & Bass, A. H. (2006). Dolphin foraging sounds suppress calling and elevate stress hormone levels in a prey species, the Gulf toadfish. Journal of Experimental Biology, 209, 4444-4451.

    Article  CAS  PubMed  Google Scholar 

  • Reyff, J. A. (2016). Underwater sound propagation from marine pile driving. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 909-915). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Richardson, W. J., Greene, C. R., Jr., Malme, C. I., & Thomson, D. H. (1995). Marine Mammals and Noise. New York: Academic Press.

    Google Scholar 

  • Robinson, S. P., Theobald, P. D., Lepper, P. A., Hayman, G., Humphrey, V. F., Wang, L.-S., & Mumford, S. (2012). Measurement of underwater noise arising from marine aggregate operations. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 465-468). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rodkin, R. B., & Reyff, J. A. (2008). Underwater sound from marine pile driving. Bioacoustics, 17(1-3), 138-140.

    Article  Google Scholar 

  • Rogers, P. H., Hawkins, A. D., Popper, A. N., Fay, R. R., & Gray, M. D. (2016). Parvulescu revisited: Small tank acoustics for bioacousticians. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 933-941). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ross, D. (1987). Mechanics of Underwater Noise. Los Altos, CA: Peninsula Publishing.

    Google Scholar 

  • Ross, D. (1993). On ocean underwater ambient noise. Acoustics Bulletin, 18, 5-8.

    Google Scholar 

  • Rossi, E., Licitra, G., Iacoponi, A., & Taburni, D. (2016). Assessing the underwater ship noise levels in the North Tyrrhenian Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 943-949). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Rossington, K., Benson, T., Lepper, P., & Jones, D. (2013). Eco-hydro-acoustic modeling and its use as an EIA tool. Marine Pollution Bulletin, 75(1-2), 235-243.

    Article  CAS  PubMed  Google Scholar 

  • Sand, O., & Enger, P. S. (1973). Function of the swimbladder in fish hearing. In A. Moller (Ed.), Basic Mechanisms of Hearing (pp. 893-908). New York: Academic Press.

    Chapter  Google Scholar 

  • Sand, O., & Hawkins, A. D. (1973). Acoustic properties of the cod swim bladder. Journal of Experimental Biology, 58, 797-820.

    Google Scholar 

  • Sand, O., & Bleckmann, H. (2008). Orientation to auditory and lateral line stimuli. In J. F. Webb, R. R. Fay, & A. N. Popper (Eds.), Fish Bioacoustics (pp. 183-222). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Sarà, G., Dean, J. M., D’Amato, D., Buscaino, G., Oliveri, A., Genovese, S., Ferro, S., Buffa, G., Lo Martire, M., & Mazzola, S. (2007). Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Marine Ecology Progress Series, 33, 243-253.

    Article  Google Scholar 

  • Schuijf, A., & Buwalda, R. (1975). On the mechanism of directional hearing in cod (Gadus morhua L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 98(4), 333-343.

    Article  Google Scholar 

  • Schuijf, A., & Hawkins, A. (1983). Acoustic distance discrimination by the cod. Nature. 302, 143-144.

    Article  Google Scholar 

  • Schulz-Mirbach, T., Hess, M., Metscher, B. D., & Ladich, F. (2013). A unique swim bladder-inner ear connection in a teleost fish revealed by a combined high-resolution microtomographic and three-dimensional histological study. BMC Biology, 11, 1-13.

    Article  Google Scholar 

  • Sertlek, H. Ö., Aarts, G., Brasseur, S., Slabbekoorn, H., ten Cate, C., von Benda-Beckmann, A. M., & Ainslie, M. A. (2016). Mapping underwater sound in the Dutch part of the North Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1001-1006). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Sigray, P., & Andersson, M. H. (2011). Particle motion measured at an operational wind turbine in relation to hearing sensitivity in fish. The Journal of the Acoustical Society of America, 130(1), 200-207.

    Article  PubMed  Google Scholar 

  • Sigray, P., & Andersson, M. H. (2012). Underwater particle acceleration induced by a wind turbine in the Baltic Sea. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life (pp. 489-492). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Simpson, S., Meekan, M., McCauley, R., & Jeffs, A. (2004). Attraction of settlement-stage coral reef fishes to reef noise. Marine Ecology Progress Series, 276(1), 263-268.

    Article  Google Scholar 

  • Simpson, S. D., Meekan, M., Montgomery, J., McCauley, R., & Jeffs, A. (2005). Homeward sound. Science, 308(5719), 221.

    Article  CAS  PubMed  Google Scholar 

  • Skalski, J. R., Pearson, W. H., & Malme, C. I. (1992). Effects of sounds from a geophysical survey device on catch-per-unit-effort in a hook-and-line fishery for rockfish (Sebastes spp.). Canadian Journal of Fisheries and Aquatic Sciences, 49, 1357-1365.

    Article  Google Scholar 

  • Slabbekoorn, H. (2016). Aiming for progress in understanding underwater noise impact on fish: Complementary need for indoor and outdoor studies. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1057-1065). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Slabbekoorn, H., & Bouton, N. (2008). Soundscape orientation: A new field in need of sound investigation. Animal Behaviour, 76, e5-e8.

    Article  Google Scholar 

  • Slabbekoorn, H., Bouton, N., van Opzeeland, I., Coers, A., ten Cate, C., & Popper, A. N. (2010). A noisy spring: the impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 25(7), 419-427.

    Article  PubMed  Google Scholar 

  • Slotte, A., Hansen, K., Dalen, J., & Ona, E. (2004). Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast. Fisheries Research, 67(2), 143-150.

    Article  Google Scholar 

  • Smith, A., Fulton, E., Hobday, A., Smith, D., & Shoulder, P. (2007). Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES Journal of Marine Science, 64(4), 633-639.

    Article  Google Scholar 

  • Smith, M. E., Kane, A. S., & Popper, A. N. (2004). Acoustical stress and hearing sensitivity in fishes: Does the linear threshold shift hypothesis hold water? Journal of Experimental Biology, 207, 3591-3602.

    Article  PubMed  Google Scholar 

  • Smith, M. E., Coffin, A. B., Miller, D. L., & Popper, A. N. (2006). Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. Journal of Experimental Biology, 209, 4193-4202.

    Article  PubMed  Google Scholar 

  • Song, J., Mann, D. A., Cott, P. A., Hanna, B. W., & Popper, A. N. (2008). The inner ears of Northern Canadian freshwater fishes following exposure to seismic air gun sounds. The Journal of the Acoustical Society of America, 124(2), 1360-1366.

    Article  PubMed Central  PubMed  Google Scholar 

  • Southall, B. L. (2005). Shipping Noise and Marine Mammals: A Forum for Science, Technology, and Management. Final Report of the National Oceanic and Atmospheric Administration (NOAA) International Symposium, Arlington, VA, May 18–19, 2004.

    Google Scholar 

  • Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., Jr., Kastak, D., Ketten, D. R., Miller, J. H., Nachtigall, P. E., Richardson, W. J., Thomas, J. A., & Tyack, P. L. (2007). Marine mammal noise exposure criteria: Initial scientific recommendations. Aquatic Mammals, 33, 411–521.

    Google Scholar 

  • Stadler, J. H., & Woodbury, D. P. (2009). Assessing the effects to fishes from pile driving: Application of new hydroacoustic criteria. Proceedings of the 38th International Congress and Exposition on Noise Control Engineering 2009 (Inter-Noise 2009), Ottawa, ON, Canada, August 23–25, 2009.

    Google Scholar 

  • Stanley, J. A., Radford, C. A., & Jeffs, A. G. (2012). Location, location, location: Finding a suitable home among the noise. Proceedings of the Royal Society of London B: Biological Sciences, 279(1742), 3622-3631.

    Article  Google Scholar 

  • Tavolga, W. N. (1964). Marine Bio-Acoustics. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Tavolga, W. N. (1967). Marine Bio-Acoustics II. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Tavolga, W. N., Popper, A. N., & Fay, R. R. (1981). Hearing and Sound Communication in Fishes. New York: Springer-Verlag.

    Book  Google Scholar 

  • Tennessen, J. B., Parks, S. E., & Langkilde, T. L. (2016). Anthropogenic noise and physiological stress in wildlife. In A. N. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II (pp. 1145-1148). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Tester, A. L., Kendall, J. I., & Milisen, W. B. (1972). Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pacific Science, 26, 264-274.

    Google Scholar 

  • Thomsen, F., Gill, A., Kosecka, M., Andersson, M., Andre, M., Degraer, S., Folegot, T., Gabriel, J., Judd, A., Neumann, N., Norro, A., Risch, D., Sigray, P., Wood, D., & Wilson, B. (2016). MaRVEN—Environmental Impacts of Noise, Vibrations and Electromagnetic Emissions from Marine Renewable Energy. Final Study Report, Directorate General for Research and Innovation, European Commission, Brussels. Available at https://goo.gl/wzQSyc.

  • Urick, R. J. (1983). Principles of Underwater Sound, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Voellmy, I. K., Purser, J., Flynn, D., Kennedy, P., Simpson, S. D., & Radford, A. N. (2014). Acoustic noise reduces foraging success in two sympatric fish species via different mechanisms. Animal Behaviour, 89, 191-198.

    Article  Google Scholar 

  • Wahlberg, M., & Westerberg, H. (2005). Hearing in fish and their reactions to sound from offshore wind farms. Marine Ecology Progress Series, 288, 298-309.

    Article  Google Scholar 

  • Wardle, C. S., Carter, T. J., Urquhart, G. G., Johnstone, A. D. F., Ziolkowski, A. M., Hampson, G., & Mackie, D. (2001). Effects of seismic air guns on marine fish. Continental Shelf Research, 21, 1005-1027.

    Article  Google Scholar 

  • Webb, J. F., Fay, R. R., & Popper, A. N. (Eds.). (2008). Fish Bioacoustics. New York: Springer-Verlag.

    Google Scholar 

  • Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34, 1936-1956.

    Article  Google Scholar 

  • Weston, D. E. (1960). Underwater explosions as acoustic sources. Proceedings of the Physical Society, 76, 233-249.

    Article  Google Scholar 

  • Woodbury, D., & Stadler, J. (2008). A proposed method to assess physical Injury to fishes from underwater sound produced during pile driving. Bioacoustics, 17, 289-297.

    Article  Google Scholar 

  • Wysocki, L. E., Dittami, J. P., & Ladich, F. (2006). Ship noise and cortisol secretion in European freshwater fishes. Biological Conservation, 128(4), 501-508.

    Article  Google Scholar 

  • Wysocki, L. E., Davidson, J. W., III, Smith, M. E., Frankel, A. S., Ellison, W. T., Mazik, P. M., Popper, A. N., & Bebak, J. (2007). Effects of aquaculture production noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss. Aquaculture, 272(1-4), 687-697.

    Article  Google Scholar 

  • Yelverton, J. T., Richmond, D. R., Hicks, W., Saunders, H., & Fletcher, E. R. (1975). The Relationship Between Fish Size and Their Response to Underwater Blast. Report DNA 3677T prepared for the Defense Nuclear Agency by the Lovelace Foundation For Medical Education and Research, Albuquerque, NM. Available at http://www.dtic.mil/dtic/tr/fulltext/u2/a015970.pdf.

Download references

Compliance with Ethics Requirements

Anthony D. Hawkins declares that he has no conflict of interest.

Arthur N. Popper declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hawkins, A.D., Popper, A.N. (2018). Effects of Man-Made Sound on Fishes. In: Slabbekoorn, H., Dooling, R., Popper, A., Fay, R. (eds) Effects of Anthropogenic Noise on Animals. Springer Handbook of Auditory Research, vol 66. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8574-6_6

Download citation

Publish with us

Policies and ethics