Skip to main content

Drug Dosing in Acute Kidney Injury

  • Chapter
  • First Online:
Core Concepts in Acute Kidney Injury

Abstract

It is clear that alterations in renal function will alter medication excretion. However, the type of renal dysfunction may affect other parameters of drug handling. Chronic kidney disease (CKD) influences drug disposition through changes in several pharmacokinetic characteristics. Common pharmacokinetic abnormalities seen in patients with CKD include reduced oral absorption and glomerular filtration, altered tubular secretion and reabsorption, and changes in intestinal and hepatic clearance. Conversely, patients with acute kidney injury (AKI) without preexisting renal dysfunction may handle drugs differently than those patients with CKD or end-stage renal disease. Thus, dosing stratagems extrapolated from patients with CKD may result in subtherapeutic drug concentrations and ineffective treatment. Achieving a balance between under- and overdosing requires rigorous monitoring and individualized dosing. Several published reviews have discussed in great detail drug dosing strategies in CKD and/or patients with AKI receiving renal replacement therapies. This review will focus on key concepts surrounding the dosing of medications in patients with AKI not receiving renal replacement therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xue JL, Daniels F, Star RA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42.

    Article  PubMed  Google Scholar 

  2. Bagshaw SM, George C, Bellomo R. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11:R68.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.

    Article  CAS  PubMed  Google Scholar 

  5. Yong K, Dogra G, Boudville N, Pinder M, Lim W. Acute kidney injury: controversies revisited. Int J Nephrol. 2011;2011:762634.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol. 2011;7:539–43.

    Article  CAS  PubMed  Google Scholar 

  7. Robert S, Zarowitz BJ, Peterson EL, Dumler F. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med. 1993;21:1487–95.

    Article  CAS  PubMed  Google Scholar 

  8. Bragadottir G, Redfors B, Ricksten SE. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury—true GFR versus urinary creatinine clearance and estimating equations. Crit Care. 2013;17:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27:928–37.

    Article  CAS  PubMed  Google Scholar 

  10. Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24:192–8.

    Article  CAS  PubMed  Google Scholar 

  11. Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66:1613–21.

    Article  PubMed  Google Scholar 

  12. Mehta RL, Pascual MT, Gruta CG, Zhuang S, Chertow GM. Refining predictive models in critically ill patients with acute renal failure. J Am Soc Nephrol. 2002;13:1350–7.

    Article  PubMed  Google Scholar 

  13. Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–63.

    Article  CAS  PubMed  Google Scholar 

  14. Eyler RF, Mueller BA. Antibiotic dosing in critically ill patients with acute kidney injury. Nat Rev Nephrol. 2011;7:226–35.

    Article  CAS  PubMed  Google Scholar 

  15. Daemen T, Veninga A, Regts J, Scherphof GL. Maintenance of tumoricidal activity and susceptibility to reactivation of subpopulations of rat liver macrophages. J Immunother. 1991;10:200–6.

    Article  CAS  PubMed  Google Scholar 

  16. Macias WL, Mueller BA, Scarim SK. Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance. Clin Pharmacol Ther. 1991;50:688–94.

    Article  CAS  PubMed  Google Scholar 

  17. Winter M. Basic clinical pharmacokinetics. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 1994.

    Google Scholar 

  18. Wilkinson G. Pharmacokinetics: the dynamics of drug absorption, distribution and elimination. In: Hardman JG, Limbird LE, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. New York: McGraw-Hill; 2001. p. 9–23.

    Google Scholar 

  19. Lam YW, Banerji S, Hatfield C, Talbert RL. Principles of drug administration in renal insufficiency. Clin Pharmacokinet. 1997;32:30–57.

    Article  CAS  PubMed  Google Scholar 

  20. Etemad B. Gastrointestinal complications of renal failure. Gastroenterol Clin N Am. 1998;27:875–92.

    Article  CAS  Google Scholar 

  21. Boucher BA, Wood GC, Swanson JM. Pharmacokinetic changes in critical illness. Crit Care Clin. 2006;22:255–71. vi

    Article  CAS  PubMed  Google Scholar 

  22. Tarling MM, Toner CC, Withington PS, Baxter MK, Whelpton R, Goodhill DR. A model of gastric emptying using paracetamol absorption in intensive care patients. Intensive Care Med. 1997;23:256–60.

    Article  CAS  PubMed  Google Scholar 

  23. Ariano RE, Sitar DS, Zelenitsky SA, et al. Enteric absorption and pharmacokinetics of oseltamivir in critically ill patients with pandemic (H1N1) influenza. CMAJ. 2010;182:357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brown-Cartwright D, Smith HJ, Feldman M. Gastric emptying of an indigestible solid in patients with end-stage renal disease on continuous ambulatory peritoneal dialysis. Gastroenterology. 1988;95:49–51.

    Article  CAS  PubMed  Google Scholar 

  25. Wright RA, Clemente R, Wathen R. Gastric emptying in patients with chronic renal failure receiving hemodialysis. Arch Intern Med. 1984;144:495–6.

    Article  CAS  PubMed  Google Scholar 

  26. Soffer EE, Geva B, Helman C, Avni Y, Bar-Meir S. Gastric emptying in chronic renal failure patients on hemodialysis. J Clin Gastroenterol. 1987;9:651–3.

    Article  CAS  PubMed  Google Scholar 

  27. McNamee PT, Moore GW, McGeown MG, Doherty CC, Collins BJ. Gastric emptying in chronic renal failure. Br Med J (Clin Res Ed). 1985;291:310–1.

    Article  CAS  Google Scholar 

  28. Freeman JG, Cobden I, Heaton A, Keir M. Gastric emptying in chronic renal failure. Br Med J (Clin Res Ed). 1985;291:1048.

    Article  CAS  Google Scholar 

  29. St Peter WL, Redic-Kill KA, Halstenson CE. Clinical pharmacokinetics of antibiotics in patients with impaired renal function. Clin Pharmacokinet. 1992;22:169–210.

    Article  CAS  PubMed  Google Scholar 

  30. Gugler R, Allgayer H. Effects of antacids on the clinical pharmacokinetics of drugs. An update. Clin Pharmacokinet. 1990;18:210–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet. 2001;40:159–68.

    Article  CAS  PubMed  Google Scholar 

  32. Doucet J, Fresel J, Hue G, Moore N. Protein binding of digitoxin, valproate and phenytoin in sera from diabetics. Eur J Clin Pharmacol. 1993;45:577–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gabardi S, Abramson S. Drug dosing in chronic kidney disease. Med Clin North Am. 2005;89:649–87.

    Article  CAS  PubMed  Google Scholar 

  34. MacKichan J. Influence of protein binding and the use of unbound (free) drug concentrations. In: Evans W, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics. 3rd ed. Applied Therapeutics: Vancouver; 1992. p. 1–48.

    Google Scholar 

  35. Klotz U. Pathophysiological and disease-induced changes in drug distribution volume: pharmacokinetic implications. Clin Pharmacokinet. 1976;1:204–18.

    Article  CAS  PubMed  Google Scholar 

  36. Reidenberg MM. The binding of drugs to plasma proteins and the interpretation of measurements of plasma concentrations of drugs in patients with poor renal function. Am J Med. 1977;62:466–70.

    Article  CAS  PubMed  Google Scholar 

  37. Torbic H, Forni A, Anger KE, DeGrado JR, Greenwood BC. Use of antiepileptics for seizure prophylaxis after traumatic brain injury. Am J Health Syst Pharm. 2013;70:759–66.

    Article  CAS  PubMed  Google Scholar 

  38. Power BM, Forbes AM, van Heerden PV, Ilett KF. Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34:25–56.

    Article  CAS  PubMed  Google Scholar 

  39. Brezis M, Rosen S, Epstein FH. Acute renal failure. In: Brenner B, Rector WG, editors. The kidney. 5th ed. Philadelphia: WB Saunders; 1996. p. 735–79.

    Google Scholar 

  40. Reed WE Jr, Sabatini S. The use of drugs in renal failure. Semin Nephrol. 1986;6:259–95.

    CAS  PubMed  Google Scholar 

  41. Nissenson AR. Acute renal failure: definition and pathogenesis. Kidney Int Suppl. 1998;66:S7–10.

    CAS  PubMed  Google Scholar 

  42. Gibson TP. Renal disease and drug metabolism: an overview. Am J Kidney Dis. 1986;8:7–17.

    Article  CAS  PubMed  Google Scholar 

  43. Swan SK, Bennett WM. Drug dosing guidelines in patients with renal failure. West J Med. 1992;156:633–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nolin TD, Frye RF, Matzke GR. Hepatic drug metabolism and transport in patients with kidney disease. Am J Kidney Dis. 2003;42:906–25.

    Article  CAS  PubMed  Google Scholar 

  45. Aronoff G, Berns J, Brier M. Drug prescribing in renal failure: dosing guidelines for adults. 4th ed. Philadelphia: American College of Physicians; 1999.

    Google Scholar 

  46. Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58:492–7.

    Article  CAS  PubMed  Google Scholar 

  47. Dreisbach AW, Lertora JJ. The effect of chronic renal failure on hepatic drug metabolism and drug disposition. Semin Dial. 2003;16:45–50.

    Article  PubMed  Google Scholar 

  48. Yuan R, Venitz J. Effect of chronic renal failure on the disposition of highly hepatically metabolized drugs. Int J Clin Pharmacol Ther. 2000;38:245–53.

    Article  CAS  PubMed  Google Scholar 

  49. Leblond FA, Giroux L, Villeneuve JP, Pichette V. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos. 2000;28:1317–20.

    CAS  PubMed  Google Scholar 

  50. Pichette V, Leblond FA. Drug metabolism in chronic renal failure. Curr Drug Metab. 2003;4:91–103.

    Article  CAS  PubMed  Google Scholar 

  51. Vilay AM, Churchwell MD, Mueller BA. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit Care. 2008;12:235.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993;21:172–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lee YH, Lee MH, Shim CK. Decreased systemic clearance of diltiazem with increased hepatic metabolism in rats with uranyl nitrate-induced acute renal failure. Pharm Res. 1992;9:1599–606.

    Article  CAS  PubMed  Google Scholar 

  54. Leakey TE, Elias-Jones AC, Coates PE, Smith KJ. Pharmacokinetics of theophylline and its metabolites during acute renal failure. A case report. Clin Pharmacokinet. 1991;21:400–8.

    Article  CAS  PubMed  Google Scholar 

  55. Nielson C. Pharmacologic considerations in critical care of the elderly. Clin Geriatr Med. 1994;10:71–89.

    Article  CAS  PubMed  Google Scholar 

  56. Westphal JF, Brogard JM. Drug administration in chronic liver disease. Drug Saf. 1997;17:47–73.

    Article  CAS  PubMed  Google Scholar 

  57. Horl WH, Druml W, Stevens PE. Pathophysiology of ARF in the ICU. Int J Artif Organs. 1996;19:84–6.

    Article  CAS  PubMed  Google Scholar 

  58. Anders MW. Metabolism of drugs by the kidney. Kidney Int. 1980;18:636–47.

    Article  CAS  PubMed  Google Scholar 

  59. Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol. 1996;23:986–9.

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt C, Hocherl K, Schweda F, Bucher M. Proinflammatory cytokines cause down-regulation of renal chloride entry pathways during sepsis. Crit Care Med. 2007;35(9):2110.

    Article  CAS  PubMed  Google Scholar 

  61. Blot S, Lipman J, Roberts DM, Roberts JA. The influence of acute kidney injury on antimicrobial dosing in critically ill patients: are dose reductions always necessary? Diagn Microbiol Infect Dis. 2014;79:77–84.

    Article  CAS  PubMed  Google Scholar 

  62. Himmelfarb J, Evanson J, Hakim RM, Freedman S, Shyr Y, Ikizler TA. Urea volume of distribution exceeds total body water in patients with acute renal failure. Kidney Int. 2002;61:317–23.

    Article  CAS  PubMed  Google Scholar 

  63. Gilmore JF, Kim M, LaSalvia MT, Mahoney MV. Treatment of enterococcal peritonitis with intraperitoneal daptomycin in a vancomycin-allergic patient and a review of the literature. Perit Dial Int. 2013;33:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perazella M. Drug use and nephrotoxicity in the intensive care unit. Kidney Int. 2012;81:1172–8.

    Article  CAS  PubMed  Google Scholar 

  65. Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol. 2000;20:4–19.

    CAS  PubMed  Google Scholar 

  66. Piazza G, Nguyen TN, Cios D, et al. Anticoagulation-associated adverse drug events. Am J Med. 2011;124:1136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bennett WM, Aronoff GR, Morrison G, et al. Drug prescribing in renal failure: dosing guidelines for adults. Am J Kidney Dis. 1983;3:155–93.

    Article  CAS  PubMed  Google Scholar 

  68. Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost. 2004;30:579–89.

    Article  CAS  PubMed  Google Scholar 

  69. Levine MN, Raskob G, Landefeld S, Kearon C. Hemorrhagic complications of anticoagulant treatment. Chest. 2001;119:108S–21S.

    Article  CAS  PubMed  Google Scholar 

  70. Brinkman WT, Williams WH, Guyton RA, Jones EL, Craver JM. Valve replacement in patients on chronic renal dialysis: implications for valve prosthesis selection. Ann Thorac Surg. 2002;74:37–42; discussion.

    Article  PubMed  Google Scholar 

  71. Howard PA. Low molecular weight heparins in special populations. J Infus Nurs. 2003;26:304–10.

    Article  PubMed  Google Scholar 

  72. Wong GC, Giugliano RP, Antman EM. Use of low-molecular-weight heparins in the management of acute coronary artery syndromes and percutaneous coronary intervention. JAMA. 2003;289:331–42.

    Article  CAS  PubMed  Google Scholar 

  73. Hull RD, Pineo GF, Stein PD, et al. Extended out-of-hospital low-molecular-weight heparin prophylaxis against deep venous thrombosis in patients after elective hip arthroplasty: a systematic review. Ann Intern Med. 2001;135:858–69.

    Article  CAS  PubMed  Google Scholar 

  74. De Lorenzo F, Noorani A, Kakkar VV. Current trends in the management of thromboembolic events. QJM. 2001;94:179–85.

    Article  PubMed  Google Scholar 

  75. Polkinghorne KR, McMahon LP, Becker GJ. Pharmacokinetic studies of dalteparin (Fragmin), enoxaparin (Clexane), and danaparoid sodium (Orgaran) in stable chronic hemodialysis patients. Am J Kidney Dis. 2002;40(5):990.

    Article  CAS  PubMed  Google Scholar 

  76. Sanderink GJ, Guimart CG, Ozoux ML, Jariwala NU, Shukla UA, Boutouyrie BX. Pharmacokinetics and pharmacodynamics of the prophylactic dose of enoxaparin once daily over 4 days in patients with renal impairment. Thromb Res. 2002;105:225–31.

    Article  CAS  PubMed  Google Scholar 

  77. Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 2001;119:64S–94S.

    Article  CAS  PubMed  Google Scholar 

  78. Gerlach AT, Pickworth KK, Seth SK, Tanna SB, Barnes JF. Enoxaparin and bleeding complications: a review in patients with and without renal insufficiency. Pharmacotherapy. 2000;20:771–5.

    Article  CAS  PubMed  Google Scholar 

  79. Spinler SA, Inverso SM, Cohen M, Goodman SG, Stringer KA, Antman EM. Safety and efficacy of unfractionated heparin versus enoxaparin in patients who are obese and patients with severe renal impairment: analysis from the ESSENCE and TIMI 11B studies. Am Heart J. 2003;146:33–41.

    Article  CAS  PubMed  Google Scholar 

  80. Fischer KG. Hirudin in renal insufficiency. Semin Thromb Hemost. 2002;28:467–82.

    Article  CAS  PubMed  Google Scholar 

  81. Poschel KA, Bucha E, Esslinger HU, et al. Pharmacodynamics and pharmacokinetics of polyethylene glycol-hirudin in patients with chronic renal failure. Kidney Int. 2000;58:2478–84.

    Article  CAS  PubMed  Google Scholar 

  82. Swan SK, Hursting MJ. The pharmacokinetics and pharmacodynamics of argatroban: effects of age, gender, and hepatic or renal dysfunction. Pharmacotherapy. 2000;20:318–29.

    Article  CAS  PubMed  Google Scholar 

  83. Arpino PA, Hallisey RK. Effect of renal function on the pharmacodynamics of argatroban. Ann Pharmacother. 2004;38:25–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kubiak DW, Szumita PM, Fanikos JR. Extensive prolongation of aPTT with argatroban in an elderly patient with improving renal function, normal hepatic enzymes, and metastatic lung cancer. Ann Pharmacother. 2005;39:1119–23.

    Article  PubMed  Google Scholar 

  85. Gilmore JF, Adams CD, Blum RM, Fanikos J, Hirning BA, Matta L. Evaluation of a multi-target direct thrombin inhibitor dosing and titration guideline for patients with suspected heparin-induced thrombocytopenia. Am J Hematol. 2015;90:E143–5.

    Article  PubMed  Google Scholar 

  86. Harenberg J, Kramer S, Du S, et al. Measurement of rivaroxaban and apixaban in serum samples of patients. Eur J Clin Investig. 2014;44:743–52.

    Article  CAS  Google Scholar 

  87. Dinkelaar J, Patiwael S, Harenberg J, Leyte A, Brinkman HJM. Global coagulation tests: their applicability for measuring direct factor Xa- and thrombin inhibition and reversal of anticoagulation by prothrombin complex concentrate. Clin Chem Lab Med. 2014;52:1615–23.

    CAS  PubMed  Google Scholar 

  88. Wynckel A, Ebikili B, Melin JP, Randoux C, Lavaud S, Chanard J. Long-term follow-up of acute renal failure caused by angiotensin converting enzyme inhibitors. Am J Hypertens. 1998;11:1080–6.

    Article  CAS  PubMed  Google Scholar 

  89. Shilliday IR, Quinn KJ, Allison ME. Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant. 1997;12:2592–6.

    Article  CAS  PubMed  Google Scholar 

  90. Kellum JA. Use of diuretics in the acute care setting. Kidney Int Suppl. 1998;66:S67–70.

    CAS  PubMed  Google Scholar 

  91. Nigwekar S, Walkar S. Diuretics in acute kidney injury. Semin Nephrol. 2011;31:523–34.

    Article  CAS  PubMed  Google Scholar 

  92. Agarwal R, Sinha A. Thiazide diuretics in advanced chronic kidney disease. J Am Soc Hypertens. 2012;6:299–308.

    Article  CAS  PubMed  Google Scholar 

  93. Segar JL, Chemtob S, Bell EF. Changes in body water compartments with diuretic therapy in infants with chronic lung disease. Early Hum Dev. 1997;48:99–107.

    Article  CAS  PubMed  Google Scholar 

  94. Ellison DH. Diuretic resistance: physiology and therapeutics. Semin Nephrol. 1999;19:581–97.

    CAS  PubMed  Google Scholar 

  95. Paton RR, Kane RE. Long-term diuretic therapy with metolazone of renal failure and the nephrotic syndrome. J Clin Pharmacol. 1977;17:243–51.

    Article  CAS  PubMed  Google Scholar 

  96. Whelton A. Renal aspects of treatment with conventional nonsteroidal anti-inflammatory drugs versus cyclooxygenase-2-specific inhibitors. Am J Med. 2001;110(Suppl 3A):33S–42S.

    Article  CAS  PubMed  Google Scholar 

  97. Ungprasert P, Cheungpasitporn W, Crowson C, Matteson E. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies. Eur J Intern Med. 2015;26:285–91.

    Article  CAS  PubMed  Google Scholar 

  98. DeMaria AN, Weir MR. Coxibs—beyond the GI tract: renal and cardiovascular issues. J Pain Symptom Manag. 2003;25:S41–9.

    Article  CAS  Google Scholar 

  99. Wen SF. Nephrotoxicities of nonsteroidal anti-inflammatory drugs. J Formos Med Assoc. 1997;96:157–71.

    CAS  PubMed  Google Scholar 

  100. Nderitu P, Doos L, Jones PW, Davies SJ, Kadam UT. Non-steroidal anti-inflammatory drugs and chronic kidney disease progression: a systematic review. Fam Pract. 2013;30:247–55.

    Article  PubMed  Google Scholar 

  101. Phan O, Meier P, Burnier M. Are cyclooxygenase-2-selective inhibitors safe for the kidneys? Joint Bone Spine. 2003;70:237–41.

    Article  PubMed  Google Scholar 

  102. Hall LG, Oyen LJ, Murray MJ. Analgesic agents. Pharmacology and application in critical care. Crit Care Clin. 2001;17:899–923. viii

    Article  CAS  PubMed  Google Scholar 

  103. Drayer DE. Pharmacologically active metabolites of drugs and other foreign compounds. Clinical, pharmacological, therapeutic and toxicological considerations. Drugs. 1982;24:519–42.

    Article  CAS  PubMed  Google Scholar 

  104. Szeto HH, Inturrisi CE, Houde R, Saal S, Cheigh J, Reidenberg MM. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure of cancer. Ann Intern Med. 1977;86:738–41.

    Article  CAS  PubMed  Google Scholar 

  105. Hassan H, Bastani B, Gellens M. Successful treatment of normeperidine neurotoxicity by hemodialysis. Am J Kidney Dis. 2000;35:146–9.

    Article  CAS  PubMed  Google Scholar 

  106. Osborne R, Joel S, Grebenik K, Trew D, Slevin M. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther. 1993;54:158–67.

    Article  CAS  PubMed  Google Scholar 

  107. Chauvin M, Sandouk P, Scherrmann JM, Farinotti R, Strumza P, Duvaldestin P. Morphine pharmacokinetics in renal failure. Anesthesiology. 1987;66:327–31.

    Article  CAS  PubMed  Google Scholar 

  108. Morphine. Micromedex Solutions. Truven Health Analytics, Inc. Ann Arbor, MI. Available at: http://www.micromedexsolutions.com. Accessed May 1, 2016.

  109. Bailie GR, Johnson CA. Safety of propoxyphene in dialysis patients. Semin Dial. 2002;15:375.

    Article  PubMed  Google Scholar 

  110. Almirall J, Montoliu J, Torras A, Revert L. Propoxyphene-induced hypoglycemia in a patient with chronic renal failure. Nephron. 1989;53:273–5.

    Article  CAS  PubMed  Google Scholar 

  111. Roberts SM, Levy G. Pharmacokinetic studies of propoxyphene IV: effect of renal failure on systemic clearance in rats. J Pharm Sci. 1980;69:363–4.

    Article  CAS  PubMed  Google Scholar 

  112. Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manag. 2004;28:497–504.

    Article  CAS  Google Scholar 

  113. Salomon L, Levu S, Deray G, Launay-Vacher V, Brucker G, Ravaud P. Assessing residents’ prescribing behavior in renal impairment. Int J Qual Health Care. 2003;15:235–40.

    Article  CAS  PubMed  Google Scholar 

  114. Pillans PI, Landsberg PG, Fleming AM, Fanning M, Sturtevant JM. Evaluation of dosage adjustment in patients with renal impairment. Intern Med J. 2003;33:10–3.

    Article  CAS  PubMed  Google Scholar 

  115. Papaioannou A, Clarke JA, Campbell G, Bedard M. Assessment of adherence to renal dosing guidelines in long-term care facilities. J Am Geriatr Soc. 2000;48:1470–3.

    Article  CAS  PubMed  Google Scholar 

  116. Gilbert DN, Bennett WM. Use of antimicrobial agents in renal failure. Infect Dis Clin N Am. 1989;3:517–31.

    CAS  Google Scholar 

  117. Fissell W. Laboratory assays in renal failure: therapeutic drug monitoring. Semin Dial. 2014;27:614–7.

    Article  PubMed  Google Scholar 

  118. Craig W. Pharmacodynamics of antimicrobial agents as a basis for determining dosage regimens. Eur J Clin Microbiol Infect Dis. 1993;12(Suppl 1):S6–8.

    Article  CAS  PubMed  Google Scholar 

  119. Aronoff GR. Antimicrobial therapy in patients with impaired renal function. Am J Kidney Dis. 1983;3:106–10.

    Article  CAS  PubMed  Google Scholar 

  120. Hewitt WL, McHenry MC. Blood level determinations of antimicrobial drugs. Some clinical considerations. Med Clin North Am. 1978;62:1119–40.

    Article  CAS  PubMed  Google Scholar 

  121. Lacy MK, Nicolau DP, Nightingale CH, Quintiliani R. The pharmacodynamics of aminoglycosides. Clin Infect Dis. 1998;27:23–7.

    Article  CAS  PubMed  Google Scholar 

  122. Tulkens PM. Efficacy and safety of aminoglycosides once-a-day: experimental and clinical data. Scand J Infect Dis Suppl. 1990;74:249–57.

    CAS  PubMed  Google Scholar 

  123. Humes HD. Insights into ototoxicity. Analogies to nephrotoxicity. Ann N Y Acad Sci. 1999;884:15–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kirkpatrick CM, Duffull SB, Begg EJ. Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol. 1999;47:637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Swan SK. Aminoglycoside nephrotoxicity. Semin Nephrol. 1997;17:27–33.

    CAS  PubMed  Google Scholar 

  126. Townsend PL, Fink MP, Stein KL, Murphy SG. Aminoglycoside pharmacokinetics: dosage requirements and nephrotoxicity in trauma patients. Crit Care Med. 1989;17:154–7.

    Article  CAS  PubMed  Google Scholar 

  127. Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:R165–R74.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Freeman CD, Nicolau DP, Belliveau PP, Nightingale CH. Once-daily dosing of aminoglycosides: review and recommendations for clinical practice. J Antimicrob Chemother. 1997;39:677–86.

    Article  CAS  PubMed  Google Scholar 

  129. Anaizi N. Once-daily dosing of aminoglycosides. A consensus document. Int J Clin Pharmacol Ther. 1997;35:223–6.

    CAS  PubMed  Google Scholar 

  130. Ali MZ, Goetz MB. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:796–809.

    Article  CAS  PubMed  Google Scholar 

  131. Boyer A, Gruson D, Bouchet S, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36:217–30.

    Article  CAS  PubMed  Google Scholar 

  132. DeGrado JR, Cios D, Greenwood BC, Kubiak DW, Szumita PM. Pharmacodynamic target attainment with high-dose extended-interval tobramycin therapy in patients with cystic fibrosis. J Chemother. 2014;26:101–4.

    Article  CAS  PubMed  Google Scholar 

  133. Barclay ML, Kirkpatrick CM, Begg EJ. Once daily aminoglycoside therapy. Is it less toxic than multiple daily doses and how should it be monitored? Clin Pharmacokinet. 1999;36:89–98.

    Article  CAS  PubMed  Google Scholar 

  134. Baddour LM, Wilson WR, Bayer AS, On behalf of the American Heart Association Committee on Rheumatic Fever E, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132.

    Google Scholar 

  135. Habib G, Lacellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis. The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 36(44):2015, 3075–3128.

    Google Scholar 

  136. Fernandez-Hidalgo N, Almirante B, Gavalda J, et al. Ampicillin plus Ceftriaxone is as effective as Ampicillin plus Gentamicin for treating enterococcus faecalis infective endocarditis. CID. 2013;56:1261–8.

    Article  CAS  Google Scholar 

  137. Bernstein JM, Erk SD. Choice of antibiotics, pharmacokinetics, and dose adjustments in acute and chronic renal failure. Med Clin North Am. 1990;74:1059–76.

    Article  CAS  PubMed  Google Scholar 

  138. Verbist L, Verpooten GA, Giuliano RA, et al. Pharmacokinetics and tolerance after repeated doses of imipenem/cilastatin in patients with severe renal failure. J Antimicrob Chemother. 1986;18 Suppl E:115–20.

    Article  CAS  PubMed  Google Scholar 

  139. Cunha GM, Moraes RA, Moraes GA, Franca MC Jr, Moraes MO, Viana GS. Nerve growth factor, ganglioside and vitamin E reverse glutamate cytotoxicity in hippocampal cells. Eur J Pharmacol. 1999;367:107–12.

    Article  CAS  PubMed  Google Scholar 

  140. Manian FA, Stone WJ, Alford RH. Adverse antibiotic effects associated with renal insufficiency. Rev Infect Dis. 1990;12:236–49.

    Article  CAS  PubMed  Google Scholar 

  141. Giles LJ, Jennings AC, Thomson AH, Creed G, Beale RJ, McLuckie A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous hemofiltration or hemodiafiltration. Crit Care Med. 2000;28:632–7.

    Article  CAS  PubMed  Google Scholar 

  142. Ververs TF, van Dijk A, Vinks SA, et al. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit Care Med. 2000;28:3412–6.

    Article  CAS  PubMed  Google Scholar 

  143. Kirby WM, De Maine JB, Serrill WS. Pharmacokinetics of the cephalosporins in healthy volunteers and uremic patients. Postgrad Med J. 1971;47(Suppl):41–6.

    CAS  Google Scholar 

  144. Wright N, Wise R, Hegarty T. Cefotetan elimination in patients with varying degrees of renal dysfunction. J Antimicrob Chemother. 1983;11(Suppl):213–6.

    Article  PubMed  Google Scholar 

  145. Tam VH, McKinnon PS, Akins RL, Drusano GL, Rybak MJ. Pharmacokinetics and pharmacodynamics of cefepime in patients with various degrees of renal function. Antimicrob Agents Chemother. 2003;47:1853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Harding I, Sorgel F. Comparative pharmacokinetics of teicoplanin and vancomycin. J Chemother. 2000;12(Suppl 5):15–20.

    Article  PubMed  Google Scholar 

  147. Linden PK. Amphotericin B lipid complex for the treatment of invasive fungal infections. Expert Opin Pharmacother. 2003;4:2099–110.

    Article  CAS  PubMed  Google Scholar 

  148. Pinder M, Bellomo R, Lipman J. Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care. 2002;30:134–44.

    CAS  PubMed  Google Scholar 

  149. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82.

    Article  CAS  PubMed  Google Scholar 

  150. Hohlfelder B, Kubiak DW, DeGrado JR, Reardon DP, Szumita PM. Implementation of a prolonged infusion guideline for time dependent antimicrobial agents at a tertiary academic medical center. Am J Ther. 2015;Accepted ahead of publication.

    Google Scholar 

  151. Nightingale CH. Pharmacokinetic considerations in quinolone therapy. Pharmacotherapy. 1993;13:34S–8S.

    CAS  PubMed  Google Scholar 

  152. Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy. 2001;21:233S–52S.

    Article  CAS  PubMed  Google Scholar 

  153. Boelaert J, Valcke Y, Schurgers M, et al. The pharmacokinetics of ciprofloxacin in patients with impaired renal function. J Antimicrob Chemother. 1985;16:87–93.

    Article  CAS  PubMed  Google Scholar 

  154. Garaud JJ, Regnier B, Inglebert F, Faurisson F, Bauchet J, Vachon F. Vancomycin pharmacokinetics in critically ill patients. J Antimicrob Chemother. 1984;14(Suppl D):53–7.

    Article  PubMed  Google Scholar 

  155. Gonzalez-Martin G, Acuna V, Perez C, Labarca J, Guevara A, Tagle R. Pharmacokinetics of vancomycin in patients with severely impaired renal function. Int J Clin Pharmacol Ther. 1996;34:71–5.

    CAS  PubMed  Google Scholar 

  156. Whelton A. Antibiotic pharmacokinetics and clinical application in renal insufficiency. Med Clin North Am. 1982;66:267–81.

    Article  CAS  PubMed  Google Scholar 

  157. Marquis KA, DeGrado JR, Labonville S, Kubiak DW, Szumita PM. Evaluation of a pharmacist-directed vancomycin dosing and monitoring pilot program at a tertiary academic medical center. Ann Pharmacother. 2015;49:1009–14.

    Article  CAS  PubMed  Google Scholar 

  158. Sinha Ray A, Haikal A, Hammoud KA, Yu AS. Vancomycin and the risk of AKI: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2016;11:2132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Gupta K, Gupta A. Mucormycosis and acute kidney injury. J Nephropathol. 2012;1:155–9.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Harbarth S, Pestotnik SL, Lloyd JF, Burke JP, Samore MH. The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med. 2001;111:528–34.

    Article  CAS  PubMed  Google Scholar 

  161. Safdar A, Ma J, Saliba F, et al. Drug-induced nephrotoxicity caused by amphotericin B lipid complex and liposomal amphotericin B: a review and meta-analysis. Medicine. 2010;89:236–44.

    Article  CAS  PubMed  Google Scholar 

  162. Costa S, Nucci M. Can we decrease amphotericin nephrotoxicity? Curr Opin Crit Care. 2001;7:379–83.

    Article  CAS  PubMed  Google Scholar 

  163. Ullmann AJ. Review of the safety, tolerability, and drug interactions of the new antifungal agents caspofungin and voriconazole. Curr Med Res Opin. 2003;19:263–71.

    Article  CAS  PubMed  Google Scholar 

  164. Burkhardt O, Thon S, Burhenne J, Welte T, Kielstein J. Sulphobutylether-B-cyclodextrin accumulation in critically ill patients with acute kidney injury treated with intravenous voriconazole under extended daily dialysis. Int J Antimicrob Agents. 2010;36:93–4.

    Article  CAS  PubMed  Google Scholar 

  165. Lilly C, Welch V, Mayer T, Ranauro P, Meisner J, Luke D. Evaluation of intravenous voriconazole in patients with compromised renal function. BMC Infect Dis. 2013;13:14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arredondo G, Martinez-Jorda R, Calvo R, Aguirre C, Suarez E. Protein binding of itraconazole and fluconazole in patients with chronic renal failure. Int J Clin Pharmacol Ther. 1994;32:361–4.

    CAS  PubMed  Google Scholar 

  167. Grant SM, Clissold SP. Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs. 1989;37:310–44.

    Article  CAS  PubMed  Google Scholar 

  168. Cresemba prescribing information. Astellas, 2015. https://www.astellas.us/docs/cresemba.pdf. Accessed 24 Oct 2015.

  169. Cornely OA, Bohme A, Schmitt-Hoffmann A, Ullmann AJ. Safety and pharmacokinetics of isavuconazole as antifungal prophylaxis in acute myeloid leukemia patients with neutropenia: results of a phase 2, dose escalation study. Antimicrob Agents Chemother. 2015;59:2078–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Gabardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeGrado, J.R., Gilmore, J.F., Hohlfelder, B., Stevens, C.A., Gabardi, S. (2018). Drug Dosing in Acute Kidney Injury. In: Waikar, S., Murray, P., Singh, A. (eds) Core Concepts in Acute Kidney Injury. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8628-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8628-6_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8626-2

  • Online ISBN: 978-1-4939-8628-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics