Skip to main content

Yeast 2.0 – Synthetic Genome Engineering Pioneers New Possibilities for Wine Yeast Research

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

Yeast research represents an important nexus between fundamental and applied research. Just as fundamental yeast research transitioned from classical, reductionist strategies to systems approaches, genetic engineering studies are advancing to the next level of biological research, referred to as synthetic genome engineering. Industries that rely on high-performing yeast, such as the wine industry, are therefore poised to reap the many benefits that synthetic biology can provide. This includes the promise of strain development by using DNA editing techniques and de novo genome synthesis studies. This chapter reviews the current international Synthetic Yeast Genome project (known as the Yeast 2.0 or Sc2.0 project) and concurrent advancements in biodesign tools and smart data-intensive technologies. As the Sc2.0 jigsaw puzzles are starting to fall into place, a clearer picture of a laboratory strain of Saccharomyces cerevisiae yeast with 16 man-made chromosomes is emerging. By building the world’s first eukaryotic genome, the findings and learnings of the Sc2.0 project inspired the construction of other industrially-important yeasts, including a wine yeast capable of producing raspberry-flavoured Chardonnay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. L. (2016). The next generation of synthetic biology chassis: Moving synthetic biology from the laboratory to the field. ACS Synthetic Biology, 5, 1328–1330.

    Article  CAS  Google Scholar 

  • Annaluru, N., Muller, H., Mitchell, L. A., Ramalingam, S., Stracquadanio, G., Richardson, S. M., et al. (2014). Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–58.

    Article  CAS  Google Scholar 

  • Brochado, A. R., & Patil, K. R. (2013). Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast only when complemented with model-guided network engineering. Biotechnology and Bioengineering, 110, 656–659.

    Article  CAS  Google Scholar 

  • Brochado, A. R., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., & Patil, K. R. (2010). Improved vanillin production in baker’s yeast through in silico design. Microbial Cell Factories, 9, 1–15.

    Article  Google Scholar 

  • Cambon, B., Monteil, V., Remize, F., Camarasa, C., & Dequin, S. (2006). Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Applied and Environmental Microbiology, 72, 4688–4694.

    Article  CAS  Google Scholar 

  • Chambers, P. J., & Pretorius, I. S. (2010). Fermenting knowledge: The history of winemaking, science and yeast research. EMBO Reports, 11, 1–7.

    Article  Google Scholar 

  • Cordente, A. G., Heinrich, A. J., Pretorius, I. S., & Swiegers, J. H. (2009). Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Research, 9, 446–459.

    Article  CAS  Google Scholar 

  • Cordente, A. G., Cordero-Bueso, G., Pretorius, I. S., & Curtin, C. D. (2013). Novel wine yeast with mutations in YAP1 that produce less acetate during fermentation. FEMS Yeast Research, 13, 62–73.

    Article  CAS  Google Scholar 

  • Coulon, J., Husnik, J. I., Inglis, D. L., Van der Merwe, G. K., Lonvaud, A., Erasmus, D. J., et al. (2006). Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. American Journal of Enology and Viticulture, 57, 113–124.

    CAS  Google Scholar 

  • De Barros Lopes, M., Rehman, A., Gockowiak, H., Heinrich, A. J., Langridge, P., & Henschke, P. A. (2000). Fermentation properties of a wine yeast over-expressing the Saccharomyces cerevisiae glycerol-3-phosphate dehydrogenase gene (GPD2). Australian Journal of Grape and Wine Research, 6, 208–215.

    Article  Google Scholar 

  • Dymond, J., & Boeke, J. (2012). The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioengineered, 3, 170–173.

    Article  Google Scholar 

  • Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller, H., Annaluru, N., et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477, 471–476.

    Article  CAS  Google Scholar 

  • Eglinton, J. M., Heinrich, A. J., Pollnitz, A. P., Langridge, P., Henschke, P. A., & de Barros Lopes, M. A. (2002). Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehrydrogenase gene. Yeast, 19, 295–301.

    Article  CAS  Google Scholar 

  • Gibson, D. G., & Venter, J. G. (2014). Construction of a yeast chromosome. Nature, 509, 168–169.

    Article  CAS  Google Scholar 

  • Goffeau, A., Barrell, B. G., & Bussey, H. (1996). Life with 6000 genes. Science, 274, 546–567.

    Article  CAS  Google Scholar 

  • Goold, H. D., Kroukamp, H., Williams, T. C., Paulsen, I. T., Varela, C., & Pretorius, I. S. (2017). Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microbial Biotechnology, 10, 264–278.

    Article  CAS  Google Scholar 

  • Husnik, J. I., Volschenk, H., Bauer, J., Colavizza, D., Luo, Z., & Van Vuuren, H. J. J. (2006). Metabolic engineering of malolactic wine yeast. Metabolic Engineering, 8, 315–323.

    Article  CAS  Google Scholar 

  • Jagtap, U. B., Jadhav, J. P., Bapat, V. A., & Pretorius, I. S. (2017). Synthetic biology stretching the realms of possibility in wine yeast research. International Journal of Food Microbiology, 252, 24–34.

    Article  CAS  Google Scholar 

  • Kelly, N. J., Whelan, D. J., Kerr, E., Apel, A., Beliveau, R., & Scanlon, R. (2014). Engineering biology to address global problems: Synthetic biology markets, needs, and applications. Industrial Biotechnology, 10, 140–149.

    Article  Google Scholar 

  • Lee, D., Lloyd, N., Pretorius, I. S., & Borneman, A. R. (2016). Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories, 15, 49–55.

    Article  Google Scholar 

  • Li, M., Kildegaard, K. R., Chen, Y., Rodriguez, A., Borodina, I., & Nielsen, J. (2015). De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering, 32, 1–11.

    Article  Google Scholar 

  • Lilly, M., Bauer, F. F., Lambrechts, M. G., Swiegers, J. H., Cozzolino, D., & Pretorius, I. S. (2006a). The effect of increased alcohol acetyl transferase and esterase activity on flavour profiles of wine and distillates. Yeast, 23, 641–659.

    Article  CAS  Google Scholar 

  • Lilly, M., Styger, G., Bauer, F. F., Lambrechts, M. G., & Pretorius, I. S. (2006b). The effect of increased yeast branched-chain amino acid transaminase activity and the production of higher alcohols on the flavour profiles of wine and distillates. FEMS Yeast Research, 6, 726–743.

    Article  CAS  Google Scholar 

  • Mercy, G., Mozziconacci, J., Scolari, V. F., Yang, K., Zhao, G., Thierry, A., et al. (2017). 3D organization of synthetic and scrambled chromosomes. Science, 355, 1050–eaaf4597.

    Article  CAS  Google Scholar 

  • Michnick, S., Roustan, J. L., Remize, F., Barre, P., & Dequin, S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 13, 783–793.

    Article  CAS  Google Scholar 

  • Mitchell, L. A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Yang, K., et al. (2017). Synthesis, debugging, and effects of synthetic chromosome consolidation: SynVI and beyond. Science, 355, 1045–eaaf4831.

    Article  CAS  Google Scholar 

  • Nevoigt, E., & Stahl, U. (1996). Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast, 12, 1331–1337.

    Article  CAS  Google Scholar 

  • Oliver, S. G. (1996). From DNA sequence to biological function. Nature, 379, 597–600.

    Article  CAS  Google Scholar 

  • Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., et al. (2013). High-level semisynthetic production of the potent antimalarial artemisinin. Nature, 496, 528–532.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2016). Conducting wine symphonics with the aid of yeast genomics. Beverages, 2. https://doi.org/10.3390/beverages2040036.

    Article  Google Scholar 

  • Pretorius, I. S. (2017a). Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology, 37, 112–136.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2017b). Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research. EMBO Reports, 18, 1875–1884.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2018). Yeast 2.0 – connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Research (in press), 18.

    Google Scholar 

  • Pretorius, I. S., & Bauer, F. F. (2002). Meeting the consumer challenge through genetically customised wine yeast strains. Trends in Biotechnology, 20, 426–432.

    Article  CAS  Google Scholar 

  • Pretorius, I. S., Curtin, C. D., & Chambers, P. J. (2012). The winemaker’s bug: From ancient wisdom to opening new vistas with frontier yeast science. Bioengineered, 3, 149–158.

    Article  Google Scholar 

  • Remize, F., Roustan, J., Sablayrolles, J., Barre, P., & Dequin, S. (1999). Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Applied and Environmental Microbiology, 65, 143–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, S. M., Mitchell, L. A., Stracquadanio, G., Yang, K., Dymond, J. S., DiCarlo, J. E., et al. (2017). Design of a synthetic yeast genome. Science, 355, 1040–1044.

    Article  CAS  Google Scholar 

  • Roncoroni, M., Santiago, M., Hooks, D. O., Moroney, S., Harsch, M. J., Lee, S. A., et al. (2011). The yeast IRC7 gene encodes a β-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiology, 28, 926–935.

    Article  CAS  Google Scholar 

  • Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., et al. (2017). Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science, 355, 1047–eaaf4791.

    Article  CAS  Google Scholar 

  • Sliva, A., Yang, H., Boeke, J. D., & Mathews, D. J. (2015). Freedom and responsibility in synthetic genomics: The synthetic yeast project. Genetics, 200, 1021–1028.

    Article  Google Scholar 

  • Strucko, T., Magnesko, O., & Mortensen, U. H. (2015). Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production. Metabolic Engineering Communications, 2, 99–108.

    Article  Google Scholar 

  • Swiegers, J. H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., et al. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.

    Article  CAS  Google Scholar 

  • Tilloy, V., Cadiere, A., Ehsani, M., & Dequin, S. (1996). Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. International Journal of Food Microbiology, 213, 49–58.

    Article  Google Scholar 

  • Van der Westhuizen, T. J., & Pretorius, I. S. (1992). The value of electrophoretic fingerprinting and karyotyping in wine yeast breeding programmes. Antonie van Leeuwenhoek, 61, 249–257.

    Article  Google Scholar 

  • Varela, C., Kutyna, D. R., Solomon, M. R., Black, C. A., Borneman, A. R., Henschke, P. A., et al. (2012). Evaluation of gene modification strategies to develop low-alcohol wine yeasts. Applied and Environmental Microbiology, 78(17), 6068–6077.

    Article  CAS  Google Scholar 

  • Volschenk, H., Viljoen-Bloom, M., Van Staden, J., Husnik, J., & Van Vuuren, H. J. J. (2004). Genetic engineering of an industrial strain of Saccharomyces cerevisiae for l-malic acid degradation via an efficient malo-ethanolic pathway. South African Journal of Enology and Viticulture, 25, 63–73.

    Article  CAS  Google Scholar 

  • Wu, Y., Li, B. Z., Zhao, M., Mitchell, L. A., Xie, Z. X., Lin, Q. H., et al. (2017). Bug mapping and fitness testing of chemically synthesized chromosome X. Science, 355, 1048–eaaf4706.

    CAS  Google Scholar 

  • Xie, Z. X., Li, B. Z., Mitchell, L. A., Wu, Y., Qi, X., Jin, Z., et al. (2017). Perfect designer chromosome V and behavior of a ring derivative. Science, 355, 1046–eaaf4704.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., et al. (2017). Engineering the ribosomal DNA in a megabase synthetic chromosome. Science, 355, 1049–eaaf3981.

    CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Macquarie University, Bioplatforms Australia, the New South Wales (NSW) Chief Scientist and Engineer, and the NSW Government’s Department of Primary Industries for providing the start-up funds for the Synthetic Biology initiative at Macquarie University. I acknowledge the ongoing support from all members of the international Synthetic Yeast Genome Project (Sc2.0) consortium, and the research contributions of my team at Macquarie University: Drs Thomas Williams, Heinrich Kroukamp, Hugh Goold, Niël van Wyk, Natalie Curach and Ian Paulsen, and my collaborators at The Australian Wine Research Institute: Drs Anthony Borneman, Dariusz Kutyna and Daniel Johnson. Rae Blair and Tori Hocking are gratefully acknowledged for their editorial assistance, and Bronte Turner for the artwork. This chapter is a slightly re-worked version of an article published in 2017 in EMBO Reports 18 (11):1875-1884. Information is reproduced here with kind permission of the publisher, EMBO Press.

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak S. Pretorius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pretorius, I.S. (2019). Yeast 2.0 – Synthetic Genome Engineering Pioneers New Possibilities for Wine Yeast Research. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_6

Download citation

Publish with us

Policies and ethics