Skip to main content

Abstract

Huntington’s disease (HD), with its writhing dancelike movements (chorea) and cardinal loss of neurons in the striatum (1), is the result of an unstable expanded CAG trinucleotide repeat that lengthens a variable glutamine tract in a novel protein called huntingtin (HD) (2). HD shares elements of a common pathogenic mechanism with at least seven other inherited neurodegenerative diseases, including spinobulbar muscular atrophy (SBMA) (3), dentatorubral-pallidoluysian atrophy (DRPLA/Haw River syndrome) (4–6), and several spinocerebellar ataxias (SCA1, SCA2, SCA3/MJD, SCA6 and SCA7) (7–14) (Fig. 1). Expanded glutamine segments in otherwise unrelated proteins cause specific neuronal cell loss in each case, suggesting unique protein context-dependent modulation of some intrinsic toxic property of polyglutamine (15–17). In this view, some feature of huntingtin produces HD pathology by presenting the embedded toxic glutamine tract to cells in a manner that culminates in a graded loss of striatal neurons. One molecular possibility is a glutamine-induced conformational change that alters huntingtin’s association with its normal or abnormal protein partners (18,19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folstein, S. (1989) Huntington’s Disease: A Disorder of Families. The Johns Hopkins Press, Baltimore, pp. 13–64.

    Google Scholar 

  2. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983.

    Google Scholar 

  3. LaSpada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fishbeck, H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  CAS  Google Scholar 

  4. Koide, R., Ikeuchi, T., Onodera, O., Tanaka, H., Igarashi, S., Endo, K., et al. (1994) Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA). Nat. Genet. 6, 9–13.

    Article  PubMed  CAS  Google Scholar 

  5. Nagafuchi, S., Yanagisawa, H., Sato, K., Shirayama, T., Ohsaki, E., Bundo, M., et al. (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat. Genet. 6, 14–18.

    Article  PubMed  CAS  Google Scholar 

  6. Burke, J. R., Wingfield, M. S., Lewis, K. E., Roses, A. D., Lee, J. E., Hulette, C., et al. (1994) The Haw River Syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat. Genet. 7, 521–524.

    Article  PubMed  CAS  Google Scholar 

  7. Zoghbi, H. Y. and Orr, H. T. (1995) Spinocerebellar ataxia type 1. Semin Cell Biol. 6, 29–35.

    Article  PubMed  CAS  Google Scholar 

  8. Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Gamier, J. M., et al. (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14, 285–291.

    Article  PubMed  CAS  Google Scholar 

  9. Pulst, S. M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X. N., LopesCendes, I., et al. (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14, 269–276.

    Article  PubMed  CAS  Google Scholar 

  10. Sanpei, K., Takano, H., Igarashi, S., Sato, T., Oyake, M., Sasaki, H., et al. (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat. Genet. 14, 277–284.

    Article  PubMed  CAS  Google Scholar 

  11. Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., et al. (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8, 221–228.

    Article  PubMed  CAS  Google Scholar 

  12. Haberhausen, G., Damian, M. S., Leweke, F., and Muller, U. (1995) Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD). J. Neurol. Sci. 132, 71–75.

    Article  PubMed  CAS  Google Scholar 

  13. Zhuchenko, O., Bailey, J., Bonnen, P., Ashizawa, T., Stockton, D. W., Amos, C., et al. (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alphalA-voltage-dependent calcium channel. Nat. Genet. 15, 62–68.

    Article  PubMed  CAS  Google Scholar 

  14. Lindblad, K., Savontaus, M. L., Stevanin, G., Holmberg, M., Digre, K., Zander, C., et al. (1996) An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res. 6, 965–971.

    Article  PubMed  CAS  Google Scholar 

  15. Ross, C. A. (1995) When more is less, pathogenesis of glutamine repeat neurodegenerative diseases. Neuron 15, 493–496.

    Article  PubMed  CAS  Google Scholar 

  16. Ross, C. A. (1997) Intranuclear neuronal inclusions, a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  17. Gusella, J. F., Persichetti, F., and MacDonald, M. E. (1997) The genetic defect causing Huntington’s disease, repeated in other contexts? Mol. Med. 3, 238–246.

    PubMed  CAS  Google Scholar 

  18. Ross, C. A., Becher, M. W., Colomer, V., Engelender, S., Wood, J. D., and Sharp, A. H. (1997) Huntington’s disease and dentatorubral-pallidoluysian atrophy, proteins, pathogenesis and pathology. Brain Pathol. 7, 1003–1016.

    Article  PubMed  CAS  Google Scholar 

  19. Gusella, J. F. and MacDonald, M. E. (1998) Huntingtin, A single bait hooks many species. Curr. Opin. Neurobiol. 8, 425–430.

    Article  PubMed  CAS  Google Scholar 

  20. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  21. Albin, R. L. and Greenamyre, J. T. (1992) Alternative excitotoxic hypotheses. Neurology 42, 733–738.

    Article  PubMed  CAS  Google Scholar 

  22. Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  23. Beal, M. F. (1994) Huntington’s disease, energy and excitotoxicity. Neurobiol. Aging 15, 275–276.

    Article  PubMed  CAS  Google Scholar 

  24. Shulz, J. B., Matthews, R. T., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., Kowall, N. W., et al. (1995) Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64, 2239–2247.

    Article  Google Scholar 

  25. Nasir, J., Floresco, S. B., O’Kuskey, J. R., Diewert, V. M., Richman, J. M., Zeisler, J., et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823.

    Article  PubMed  CAS  Google Scholar 

  26. Duyao, M. P., Auerbach, A. B., Ryan, A., Persichetti, F., Barnes, G. T., McNeil, S. M., et al. (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269, 407–410.

    Article  PubMed  CAS  Google Scholar 

  27. Zeitlin, S., Liu, J. P., Chapman, D. L., Papaioannou, V. E., and Efstratiadis, A. (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat. Genet. 11, 155–163.

    Article  PubMed  CAS  Google Scholar 

  28. White, J. K., Auerbach, W., Duyao, M. P., Vonsattel, J. P., Gusella, J. F., Joyner, A. L. et al. (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat. Genet. 17, 404–410.

    Article  PubMed  CAS  Google Scholar 

  29. Gusella, J. F., McNeil, S., Persichetti, F., Srinidhi, J., Novelletto, A., Bird, E., et al. (1996) Huntington’s Disease. Cold Spring Harbor Sympos. Quant. Biol. 61, 615–625.

    Article  CAS  Google Scholar 

  30. Albin, R. L. (1995) Selective neurodegeneration in Huntington’s disease. Ann. Neurol. 38, 835–836.

    Article  PubMed  CAS  Google Scholar 

  31. Vonsattel, J. P. and DiFiglia, M. (1998) Huntington disease. J. Neuropathol. Exp. Neurol. 57, 369–384.

    Article  PubMed  CAS  Google Scholar 

  32. McNeil, S. M., Novelletto, A., Srinidhi, J., Barnes, G., Kornbluth, I., Altherr, M. R., et al. (1997) Reduced penetrance of the Huntington’s disease mutation. Hum. Mol. Genet. 6, 775–779.

    Article  PubMed  CAS  Google Scholar 

  33. Rubinsztein, D. C., Leggo, J., Coles, R., Almqvist, E., Biancalana, V., Cassiman, J. J., et al. (1996) Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. 9, 16–22.

    Google Scholar 

  34. MacDonald, M. E., Barnes, G., Srinidhi, J., Duyao, M. P., Ambrose, C. M., Myers, R. H., et al. (1993) Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J. Med. Genet. 30, 982–986.

    Article  PubMed  CAS  Google Scholar 

  35. Penney, J. B., Jr., Vonsattel, J. P., MacDonald, M. E., Gusella, J. F., and Myers, R. H. (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann. Neurol. 41, 689–692.

    Article  PubMed  Google Scholar 

  36. Persichetti, F., Srinidhi, J., Kanaley, L., Ge, P., Myers, R. H., D’Arrigo, K., et al. (1994) Huntington’s disease CAG trinucleotide repeats in pathologically confirmed post—mortem brains. Neurobiol. Dis. 1, 159–166.

    Article  PubMed  CAS  Google Scholar 

  37. Ambrose, C. M., Duyao, M. P., Barnes, G., Bates, G. P., Lin, C. S., Srinidhi, J., et al. (1994) Structure and expression of the Huntington’s disease gene, evidence against simple inactivation due to an expanded CAG repeat. Somat. Cell. Mol. Genet. 20, 27–38.

    Article  PubMed  CAS  Google Scholar 

  38. Wexler, N. S., Young, A. B., Tanzi, R. E., Travers, H., Starosta-Rubenstein, S., Penney, J. B., et al. (1987) Homozygotes for Huntington’s disease. Nature 326, 194–197.

    Article  PubMed  CAS  Google Scholar 

  39. Myers, R. H., Leavitt, J., Farrer, L. A., Jagadeesh, J., McFarlane, H., Mark, R. J., et al. (1989) Homozygote for Huntington’s disease. Am. J. Hum. Genet. 45, 615–618.

    PubMed  CAS  Google Scholar 

  40. MacDonald, M. E. and Gusella, J. F. (1996) Huntington’s disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638–643.

    Article  PubMed  CAS  Google Scholar 

  41. Jou Y-S. and Myers, R. M. (1995) Evidence from antibody studies that the CAG repeat in the Huntington’s disease gene is expressed in the protein. Hum. Mol. Genet. 4, 465–469.

    Article  PubMed  CAS  Google Scholar 

  42. Ide, K., Nukina, N., Masuda, N., Goto, J., and Kanazawa, I. (1995) Abnormal gene product identified in Huntington’s disease lymphocytes and brain. Biochem. Biophys. Res. Commun. 209, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  43. Baxendale, S., Abdulla, S., Elgar, G., Buck, D., Berks, M., Micklem, G., et al. (1995) Comparative sequence analysis of the human and pufferfish Huntington’s disease genes. Nat. Genet, 10, 67–76.

    Article  PubMed  CAS  Google Scholar 

  44. Karlovich, C. A., John, R. M., Ramirez, L., Stainier, D. Y. R., and Myers, R. M. (1998) Characterization of the Huntington’s disease (HD) gene homolog in the zebrafish Danio rerio Gene 217, 117–125.

    Article  CAS  Google Scholar 

  45. Lin, B., Nasir, J., MacDonald, H., Hutchinson, G., Graham, R. K., Rommens, J. M., et al. (1994) Sequence of the murine Huntington disease gene, evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat. Hum. Mol. Genet. 3, 85–92; erratum: Hum. Mol. Genet. 3, 530 (1994).

    Google Scholar 

  46. Barnes, G. T., Duyao, M. P., Ambrose, C. M., McNeil, S., Persichetti, F., Srinidhi, J., et al. (1994) Mouse Huntington’s disease gene homolog (Hdh) Somat.Cell. Mol. Genet. 20, 87–97.

    Article  PubMed  CAS  Google Scholar 

  47. Schmitt, I., Baechner, D., Megow, D., Henklein, P., Boulter, J., Hameister, H., et al. (1995) Expression of the Huntington disease gene in rodents: cloning the rat homologue and evidence for down regulation in non—neuronal tissues during development. Hum. Mol. Genet. 4, 1173–1182.

    Article  PubMed  CAS  Google Scholar 

  48. Andrade, M. A. and Bork, P. (1995) HEAT repeats in the Huntington’s disease protein. Nat. Genet. 11, 115–116.

    Article  PubMed  CAS  Google Scholar 

  49. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A., and Barford, D. (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110.

    Article  PubMed  CAS  Google Scholar 

  50. Cingolani, G., Petosa, C., Weis, K., and Muller, C. W. (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221–229.

    Article  PubMed  CAS  Google Scholar 

  51. Landschulz, W. H., Johnson, K. S., and McKnight, S. L. (1988) The leucine zipper. A hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  52. Sharp, A. H. and Ross, C. A. (1996) Neurobiology of Huntington’s disease. Neurobiol. Dis. 3, 3–15.

    Article  PubMed  CAS  Google Scholar 

  53. Sharp, A. H., Loev, S. J., Schilling, G., Li, S-H., Li, X-J, Bao, J. et al. (1995) Widespread expression of the Huntington’s disease gene (IT-15) protein product. Neuron 14, 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  54. DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., Young, C., et al. (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  55. Gutekunst C.-A, Levey AI, Heilman CJ, Whaley WL, Hong Y, Nash NR, et al. (1995) Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92, 8710–8714

    Article  PubMed  CAS  Google Scholar 

  56. Persichetti, F., Carlee, L., Faber, P. W., McNeil, S. M., Ambrose, C. M., Srinidhi, J., et al. (1996). Differential expression of normal and mutant Huntington’s disease gene alleles. Neurobiol. Dis. 3, 183–190.

    Article  PubMed  CAS  Google Scholar 

  57. Ferrante, R. J., Gutekunst, C. A., Persichetti, F., McNeil, S. M., Kowall, N. W., Gusella, J. F., et al. (1997) Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J. Neurosci. 17, 3052–3063

    PubMed  CAS  Google Scholar 

  58. Velier, J., Kim, M., Schwarz, C., Kim, T. W., Sapp, E., Chase, K., et al. (1998) Wild—type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  59. Hoogeveen, A. T., Willemsen, R., Meyer, N., de Rooij, K. E., Roos, R. A., van Ommen, G. J., et al. (1993) Characterization and localization of the Huntington disease gene product. Hum. Mol. Genet. 2, 2069–2073.

    Article  PubMed  CAS  Google Scholar 

  60. De Rooij, K. E., Dorsman, J. C., Smoor, M. A., Den Dunnen, J. T., and Van Ommen, G. J. (1996) Subcellular localization of the Huntington’s disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum. Mol. Genet. 5, 1093–1099.

    Article  PubMed  Google Scholar 

  61. Dragatsis, I., Efstratiadis, A., and Zeitlin, A. (1998). Mouse mutant embryos lacking huntingtin are rescued from lethality by wild-type extraembryonic tissues. Development 125, 1529–1539.

    PubMed  CAS  Google Scholar 

  62. Metzler, M., Chen, N., Helgason, C. D., Graham, R. K., Nichol, K., McCutcheon, K., et al. (1999) Life without huntingtin, normal differentiation into functional neurons. J. Neurochem. 72, 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  63. Bao, J., Sharp, A. H., Wagster, M. V., Becher, M., Schilling, G., Ross, C. A., et al. (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA 93, 5037–5042.

    Article  PubMed  CAS  Google Scholar 

  64. Beckingham, K., Lu, A. Q., and Andruss, B. F. (1998) Calcium-binding proteins and development. Biometals 11, 359–73.

    Article  PubMed  CAS  Google Scholar 

  65. Burke, J. R., Enghild, J. J., Martin, M. E., Jou, Y. S., Myers, R. M., Roses, A. D., et al. (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat. Med. 2, 347–350.

    Article  PubMed  CAS  Google Scholar 

  66. Sirover, M. A. (1996) Emerging new funcitons of the glycolytic protein, glyceraldehyde-3-phosphatate dehydrogenase, in mammalian cells. Life Sci. 58, 2271–2277.

    Article  PubMed  CAS  Google Scholar 

  67. Tukamoto, T., Nukina, N., Ide, K., and Kanazawa, I. (1997) Huntington’s disease gene product, huntingtin, associates with microtubules in vitro. Brain Res. Mol. Brain Res. 51, 8–14.

    Article  CAS  Google Scholar 

  68. Liu, Y. F., Deth, R. C., and Devys, D. (1997) SH3 domain—dependent association of huntingtin with epidermal growth factor receptor signaling complexes. J. Biol. Chem. 272, 8121–8124.

    Article  PubMed  CAS  Google Scholar 

  69. Wang, Z. and Moran, M. F. (1996) Requirement for the adapter protein GRB2 in EGF receptor endocytosis. Science 272, 1935–1939.

    Article  PubMed  CAS  Google Scholar 

  70. Li, X. J., Li, S. H., Sharp, A. H., Nucifora, F. C., Jr., Schilling, G., Lanahan, A., et al. (1995) A huntingtin—associated protein enriched in brain with implications for pathology. Nature 378, 398–402.

    Article  PubMed  CAS  Google Scholar 

  71. Bertaux, F., Sharp, A., Ross, C. A., Lehrach, H., Bates, G. P., and Wanker, E. (1998) HAP1-huntingtin interactions do not contribute to the molecular pathology in Huntington’s disease transgenic mice. FEBS Letters 426, 229–232.

    Article  PubMed  CAS  Google Scholar 

  72. Li, S. H., Hossein, S. H., Gutekunst, C. A., Hersch, S. M., Ferrante, R. J., and Li, X. J. (1998) A human HAP1 homologue. J. Biol. Chem. 273, 19220–19227.

    Article  PubMed  CAS  Google Scholar 

  73. Engelender, S., Sharp, A. H., Colomer, V., Tokito, M. K., Lanahan, A., Worley, P., et al. (1997) Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum. Mol. Genet. 6, 2205–2212.

    Article  PubMed  CAS  Google Scholar 

  74. Li, S. H., Gutekunst, C. A., Hersch, S. M., and Li, X. J. (1998) Interaction of huntingtin-associated protein with dynactin P150. J. Neurosci. 18, 1261–1269.

    PubMed  CAS  Google Scholar 

  75. Karki, S. and Holzbaur, E. L. (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex. J. Biol. Chem. 270, 28806–28811.

    Article  PubMed  CAS  Google Scholar 

  76. Vaughan, K. T. and Vallee, R. B. (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J. Cell Biol. 131, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  77. Kalchman, M. A., Koide, H. B., McCutcheon, K., Graham, R. K., Nichol, K., Nishiyama, K., et al. (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane—associated huntingtin in the brain. Nat. Genet. 16, 44–53.

    Article  PubMed  CAS  Google Scholar 

  78. Wanker, E. E., Rovira, C., Scherzinger, E., Hasenbank, R., Walter, S., Tait, D., et al. (1997) HIP-I, a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495.

    Article  PubMed  CAS  Google Scholar 

  79. Holtzman, D. A., Yang, S., and Drubin, D. G. (1993) Synthetic—lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122, 635–644.

    Article  CAS  Google Scholar 

  80. Li, R., Zheng, Y., and Drubin, D. G. (1995) Regulation of cortical actin cytoskeleton assembly during polarized cell growth in budding yeast. J. Cell Biol. 128, 599–615.

    Article  PubMed  CAS  Google Scholar 

  81. Na, S., Hincapie, M., McCusker, J. H., and Haber, J. E. (1995) MOP2 (SLA2) affects the abundance of the plasma membrane H(+)—ATPase of Saccharomyces cerevisiae. J. Biol. Chem. 270, 6815–6823.

    CAS  Google Scholar 

  82. Wesp, A., Hicke, L., Palecek, J., Lombardi, R., Aust, T., Munn, A. L., et al. (1997) End4p/S1a2p interacts with actin—associated proteins for endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell. 8, 2291–2306.

    CAS  Google Scholar 

  83. Kalchman, M. A., Graham, R. K., Xia, G., Koide, H. B., Hodgson, J. G., Graham, K. C., et al. (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 271, 19385–19394.

    Article  PubMed  CAS  Google Scholar 

  84. Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439.

    Article  PubMed  CAS  Google Scholar 

  85. Hicke, L. and Riezman, H. (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287.

    Article  PubMed  CAS  Google Scholar 

  86. Sittler, A., Walter, S., Wedemeyer, N., Hasenbank, R., Scherzinger, E., Eickhoff, H., et al. (1998) SH3GL3 associates with the huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggegates. Mol. Cell 2, 427–436.

    Article  PubMed  CAS  Google Scholar 

  87. Ringstad, N., Nemoto, Y., and De Camilli, P. (1997). the SH3p4/Sh3p8/SH3p13 protein family, binding partners for synaptojanin and dynamin via a Grb2—like Src homology 3 domain. Proc. Natl. Acad. Sci. USA 94, 8569–8574.

    Google Scholar 

  88. Zechner, U., Scheel, S., Hemberger, M., Hopp, M., Haaf, T., Fundele, R, et al. (1998) Characterization of the mouse Src homology 3 domain gene Sh3d2c on Chr 7 demonstrates coexpression with huntingtin in the brain and identifies the processed pseudogene Sh3d2c-psl on Chr 2. Genomics 54, 505–510.

    Article  PubMed  CAS  Google Scholar 

  89. Faber, P. W., Barnes, G. T., Srinidhi, J., Gusella, J. F., and MacDonald, M. E. (1998) Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7, 1463–1474.

    Article  PubMed  CAS  Google Scholar 

  90. Bedford, M. T., Chan, D. C., and Leder, P. (1997) FBP WW domains and the Abl SH3 domain bind to a specific class of proline—rich ligands. EMBO J. 16, 2376–2383.

    Article  PubMed  CAS  Google Scholar 

  91. Bedford, M. T., Reed, R., and Leder, P. (1998) WW domain-mediated interactions reveal a spliceosome-assocated protein that binds a third class of proline-rich motif, The proline glycine and methionine-rich motif. Proc. Natl. Acad. Sci. USA 95, 10602–10607.

    Article  PubMed  CAS  Google Scholar 

  92. Kao, H. Y. and Siliciano, P. G. (1996) Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 16, 960–967.

    PubMed  CAS  Google Scholar 

  93. Passani, L. A., Bedford, M. T., Faber, P. W., McGinnis, K. M., Gusella, J. F., Vonsattel, J.-P., and MacDonald, M. E. (2000) Huntingtin’s WW domain partners in HD post-mortem brain fulfill genetic criteria for direct involvement in HD pathogenesis. Hum. Mol. Genet.,in press.

    Google Scholar 

  94. Chan, D. C., Bedford, M. T., and Leder P. (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054.

    PubMed  CAS  Google Scholar 

  95. Gaugler, B., Van den Eynde, B., van der Bruggen, P., Romero, P., Gaforio, J. J., De Plaen, E., et al. (1994) Human MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes J. Exp. Med. 179, 921–930.

    Article  PubMed  CAS  Google Scholar 

  96. Tahara, K., Mori, M., Sadanaga, N., Sakamoto, Y., Kitano, S., and Makuuchi, M. (1999) Expression of MAGE gene family in human hepatocellular carcinoma. Cancer 15, 1234–1240.

    Article  Google Scholar 

  97. Kominami, K., DeMartino, G. N., Moomaw, C. R., Slaughter, C. A., Shimbara, N., Fujimuro, M., et al. (1995) Ninlp, a regulatory subunit of the 26S proteasome, is necessary for activation of Cdc28p kinase of Saccharomyces cerevisiae. EMBO J. 14, 3105–3115.

    CAS  Google Scholar 

  98. Robinson, M. S. (1989) Cloning of cDNAs encoding two related 100-kD coated vesicle proteins (alpha-adaptins). J Cell Biol. 108, 833–842.

    Article  PubMed  CAS  Google Scholar 

  99. Ball, C. L., Hunt, S. P., and Robinson, M. S. (1995) Expression and localization of alpha-adaptin isoforms. J. Cell Sci. 108, 2865–2875.

    PubMed  CAS  Google Scholar 

  100. Dornan, S., Jackson, A. P., and Gay, N. J. (1997) Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development. Mol. Biol.Cell 8, 1391–1403.

    PubMed  CAS  Google Scholar 

  101. Keon, B. H., Schafer, S., Kuhn, C., Grund, C., and Franke, W. W. (1996) Symplekin, a novel type of tight junction plaque protein. J. Cell Biol. 134, 1003–1018.

    Article  PubMed  CAS  Google Scholar 

  102. Yongan, L., Kang, J., and Horwitz, M. S. (1998) Interaction of an adenovirus E3 14.7 kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol. Cell. Biol. 18, 1601–1610.

    Google Scholar 

  103. Wold, W. S. M., Hermiston, T. W., and Tollefson, A. E. (1994) Adenovirus proteins that subvert host defenses. Trends Microbiol. 2, 437–443.

    Article  PubMed  CAS  Google Scholar 

  104. Boutell, J. M., Wood, J. D., Harper, P. S., and Jones, A. L. (1998) Huntingtin interacts with cystathionine beta-synthase. Hum. Mol. Genet. 7, 371–378.

    Article  PubMed  CAS  Google Scholar 

  105. Bao, L., Vlcek, C., Paces, V., and Kraus, J. P. (1998) Identification and tissue distribution of human cystathionine beta-synthase mRNA isoforms. Arch Biochem. Biophys. 350, 95–103.

    Article  PubMed  CAS  Google Scholar 

  106. Fields, S. and Sternglanz, R. (1994) The two-hybrid system, an assay for protein-protein interactions. Trends Genet. 10, 286–292.

    Article  PubMed  CAS  Google Scholar 

  107. Pawson, T. (1995) Protein modules and signaling networks. Nature 373, 573–578.

    Article  PubMed  CAS  Google Scholar 

  108. Ren, R., Mayer, B. J., Cicchetti, P., and Baltimore, D. (1993) Identification of a ten-amino acid proline rich SH3 binding site. Science 259, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  109. Colomer, V., Engelender, S., Sharp, A. H., Duan, K., Cooper, J. K., Lanahan, A., et al. (1997) Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac 1 guanine nucleotide exchange factor domain. Hum. Mol. Genet. 6, 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  110. Ross, T. S., Bernard, O. A., Berger, R., and Gilliland, D. G. (1998) Fusion of huntingtin interacting protein 1 to platelet-derived growth factor beta receptro (PDGFbetaR) in chronic myelomonocytic leukemia with t(5;7)(g33;g11. 2). Blood 91, 4419–4426.

    PubMed  CAS  Google Scholar 

  111. Bedford, M. and Leder, P. (1998) The FF domain, a novel motif that often accompanies WW domains. Trends Biochem. Sci. 24, 264, 265.

    Google Scholar 

  112. Barth, A. I., Nathke, I. S., and Nelson, J. (1997) Cadherins, catenins and APC protein, interplay between cytoskeletal complexes and signalling pathways. Curr. Opin. Cell Biol. 9, 683–690.

    Article  PubMed  CAS  Google Scholar 

  113. Persichetti, F., Trettel, F., Huang, C. C., Fraefel, C., Timmers, H. T. M., Gusella, J. F., et al. (1999) Mutant huntingtin forms in vivo complexes with distinct context—dependent conformations of the polyglutamine segment. Neurobiol. Dis. 6, 364–375.

    Article  PubMed  CAS  Google Scholar 

  114. Trottier, Y., Lutz, Y., Stevanin, G., Imbert, G., Devys, D., Cancel, G., et al. (1995). Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378, 403–406.

    Article  PubMed  CAS  Google Scholar 

  115. Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J-P., MacDonald, M. E., et al. (1998) Amyloid formation by mutant huntingtin, threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. in press.

    Google Scholar 

  116. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., et al. (1997) Huntingtin—encoded polyglutamine expansions form amyloid—like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  CAS  Google Scholar 

  117. DiFiglia, M., Sapp, E., Chase, K. O., Davies, S. W., Bates, G. P., Vonsattel, J. P., et al. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    Article  PubMed  CAS  Google Scholar 

  118. Sapp, E., Penney, B. A. J., Young, A., Aronin, N., Vonsattel, J-P., and DiFiglia, M. (1999) Axonal transport of N-terminal huntingtin suggests early pathology of corticostriatal projections in Huntington’s disease. J. Neuropathol. Exp. Neurol. 58, 165–173.

    Article  PubMed  CAS  Google Scholar 

  119. Sieradzan, K. A., Mechan, A. O., Jones, L., Wanker, E. E., Nukina, N., and Mann, D. M. (1999) Huntington’s disease intranuclear inclusions contain truncated ubiquintated huntingtin protein. Exp. Neurol. 156, 92–99.

    Article  PubMed  CAS  Google Scholar 

  120. Maat-Schieman, M. L., Dorsman, J. C., Smoor, M. A., Siesling, S., Van Duinen, S. G., Verschuuren, J. J., et al. (1999) Distribution of inclusions in neuronal nuclei and dystrophic neurites in Huntington’s disease brain. J. Neuropathol. Exp. Neurol. 58, 129–137.

    Article  PubMed  CAS  Google Scholar 

  121. Gutekunst, C.-A., Li, S-H., Yi, H., Mulroy, J. S., Kuemmerle, S., Jones, R., et al. (1999) Nuclear and neuropil aggregates in Huntington’s disease, relationship to neuropathology. J. Neurosci. 19, 2522–2534.

    PubMed  CAS  Google Scholar 

  122. Goldberg, Y. P., Nicholson, D. W., Rasper, D. M., Kalchman, M. A., Koide, H. B., Graham, R. K., et al. (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13, 442–449.

    Article  PubMed  CAS  Google Scholar 

  123. Lunkes, A. and Mandel, J. L. (1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum. Mol. Genet. 7, 1355–1361.

    Article  PubMed  CAS  Google Scholar 

  124. Reddy, P. H., Williams, M., Charles, V., Garrett, L., Pike-Buchanan, L., Whetsell, W. O. Jr., et al. (1998) Behavioral abnormalities and selective neuronal loss in HD transgenic mice expressing full-length HD cDNA. Nature Genet. 20, 198–202.

    Article  PubMed  CAS  Google Scholar 

  125. Hodgson, J. G., Agopyan, N., Gutekunst, C-A., Leavitt, B. R., LePiane, F., Singaraja, R., et al. (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192.

    Article  PubMed  CAS  Google Scholar 

  126. Shelbourne, P. F., Killeen, N., Hevner, R. F., Johnston, H. M., Tecott, L., Lewandoski, M., et al. (1999) A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum. Mol. Genet. 8, 763–774.

    Article  PubMed  CAS  Google Scholar 

  127. Levine, M. S., Klaptein, G. J., Koppel, A., Gruen, E., Cepeda, C., Vargas, M. E., et al. (1999) Enhanced sensitivity to N-methyl-D-asparate receptor activation in transgenic and knockin mice models to Huntington’s disease. J. Neurosci. Res. 58, 515–532.

    Article  PubMed  CAS  Google Scholar 

  128. Wheeler, V. C., White, J. K., Gutekunst, C. A., Vrbanac, V., Weaver, M., Li, X. J., Li, S. H., Yi, H., Vonsattel, J. P., Gusella, J. F., Hersch, S., Auerbach, W., Joyner, A. L., and MacDonald, M. E. (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum. Mol. Genet. 9, 503–513.

    Article  PubMed  CAS  Google Scholar 

  129. Feng, Y. and Davis, N. G. (2000) Akrlp and the Type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akrlp is required for kinase localization to the plasma membrane. Mol. Cell Biol. 20, 5350–5359.

    Article  PubMed  CAS  Google Scholar 

  130. Takagaki, Y. and Manley, J. L. (2000) Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell Biol. 20, 1515–1525.

    Article  PubMed  CAS  Google Scholar 

  131. Boutell, J. M., Thomas, P., Neal, J. W., Weston, V. J., Duce, J., Harper, P. S., and Jones, A. L. (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647–1655.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacDonald, M.E., Passani, L., Hilditch-Maguire, P. (2001). Huntingtin-Associated Proteins. In: Molecular Mechanisms of Neurodegenerative Diseases. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-006-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-006-3_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-197-4

  • Online ISBN: 978-1-59259-006-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics