Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 235 Accesses

Abstract

The cell wall of Gram-negative bacteria has a very distinctive layered look under the electron microscope and is dramatically different from the Gram-positive cell wall. The inner layer consists of a thin peptidoglycan layer; the outer layer or outer membrane is a protein containing bilayer. The inner component of the outer membrane consists of lipids and the outer layer is composed of macromolecules known as lipopolysaccharide (LPS) or endotoxin. The LPS layer serves as a lipid barrier to water-soluble molecules, preventing their passage into the periplasmic space. Water-filled channels known as “porin channels” are located at regular intervals in the outer membrane. These porin channels allow certain ions and molecules, including antimicrobial agents, to pass through the outer membrane. One of the major mechanisms of resistance in Gram-negative bacteria is the inability of an antibiotic to pass through either the LPS layer or via the porin channels. If antimicrobial agents cannot gain entrance into the Gram-negative cell then the target sites for these agents cannot be accessed and resistance is seen. Based on the chemical structure of the molecule, some antimicrobial agents can pass via the porin channels and some cannot. For example, the chemical structure and ionic charge on penicillin G allows the drug to pass through the porin channels of Neisseria species but it cannot pass through the porin channels of most other Gram-negative bacteria, thus limiting its Gram-negative spectrum. Adding an amino group to the penicillin molecule creates ampicillin, which dramatically expands the spectrum of activity to include many Gram-negative bacteria by virtue of better porin channel penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gold HS, Mollering RC. Antimicrobial drug resistance. N Engl J Med 1996; 355: 1444–1453.

    Google Scholar 

  2. Neu HC. The crisis in antibiotic resistance. Science 1992; 257: 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  3. Fish DN, Piscitelli SC, Danziger LH. Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy 1995; 15: 279–291.

    PubMed  CAS  Google Scholar 

  4. Jones RN. The current and future impact of antimicrobial resistance among nosocomial bacterial pathogens. Diagn Microbiol Infect Dis 1992; 15: 3S - 10S.

    PubMed  CAS  Google Scholar 

  5. Nikaidò H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1998; 1: 516–523.

    Article  PubMed  Google Scholar 

  6. Mallea M, Chevalier J, Bornet C, et al. Potin alterations and active efflux: two in-vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 1998; 144: 3003–3009.

    Article  PubMed  CAS  Google Scholar 

  7. Bonacorsi S, Bingen E. Multiresistant bacteria in pediatrics. Pathol Biol 1998; 46: 261–267.

    PubMed  CAS  Google Scholar 

  8. Ziha-Zaarifi I, Lianes C, Kohler T, et al. In-vivo emergence of multidrug-resistant mutanats of Pseudomonas aeruginosa overexpressing the active efflux system MexA—MexB—OprM. Antimicrob Agents Chemother 1999; 43: 287–291.

    Google Scholar 

  9. Bouze E, Garcia-Garrote E, Cercenada M, et al. Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain. Antimicrob Agents Chemother 1999; 43: 981–982.

    Google Scholar 

  10. Nakae T, Nakajima A, Ono T, Saito K, Yoneyama H Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase. Antimicrob Agents Chemother 1999; 43: 1301–1303.

    PubMed  CAS  Google Scholar 

  11. Levin AS, Barone AA, Penco J, et al. Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Clin Infect Dis 1999; 28: 1008–1011.

    Article  PubMed  CAS  Google Scholar 

  12. Medeiros AA. Beta-lactamazses. Br Med Bull 1984; 40: 18–27.

    PubMed  CAS  Google Scholar 

  13. Richmond MH, Sykes RB. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Phys 1973; 9: 31–88.

    Article  CAS  Google Scholar 

  14. Dash LM, Calmon J, Johnson CC. Newer penisilline and beta lactamases [???]inhibitors[???]. Infect Dis Clin North Am 1989; 3: 771–794.

    Google Scholar 

  15. Datta N, Richmond MH. The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem J 1966; 98: 204–209.

    PubMed  CAS  Google Scholar 

  16. Data N, Kontomichalou R Penicillinase synthesis controlled by infectious R factors in[???]

    Google Scholar 

  17. Lodge JM, Piddock LJV. The control of class I beta-lactamase expression in Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother 1991; 28: 167–172.

    Article  PubMed  CAS  Google Scholar 

  18. Sanders CC, Sanders WE. Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. J Infect Dis 1985; 151: 399–406.

    Article  PubMed  CAS  Google Scholar 

  19. Sanders CC, Sanders WE. Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. J Infect Dis 1986; 154: 782–800.

    Article  Google Scholar 

  20. Pena C, Pujol M, Abdanuy C, et al. Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 1998; 42: 53–58.

    PubMed  CAS  Google Scholar 

  21. Knox JR. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995; 39: 2593–2601.

    Article  PubMed  CAS  Google Scholar 

  22. Rotschafer JC, Ostergaard BE. Combination beta-lactam and beta-lactamase-inhibitor products: antimicrobial activity and efficiency of enzyme inhibition. Am J Health Syst Pharmacists 1995; 52: S15 - S22.

    CAS  Google Scholar 

  23. Decre D, Gachot B, Lucet JC, et al. Clinical and bacteriologic epidemiology of extended-spectrum beta-lactamase-producing strains of Klebsiella pneumoniae in a medical intensive care unit. Clin Infect Dis 1998; 27: 834–844.

    Article  PubMed  CAS  Google Scholar 

  24. Itokazu GS, Quinn JP, Bell-Dixon C, et al. Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive care units: evaluation of a national postmarketing surveillance program. Clin Infect Dis 1996; 23: 779–784.

    Article  PubMed  CAS  Google Scholar 

  25. Shannon K, Fung K, Stapleton P, et al. A hospital outbreak of extended-spectrum beta-lactamaseproducing Klebsiella pneumoniae investigated by RAPD typing and analysis of the genetics and mechanisms of resistance. J Hosp Infect 1998; 39: 291–300.

    Article  PubMed  CAS  Google Scholar 

  26. Pornuss KJ, Goransson E, Tytting AS, et al. Extended-spectrum beta-lactamases in Escherichia coli and Klebsiella spp. in European septicaemia isolates. J Antimicrob Chemother 1993; 32: 559–570.

    Article  Google Scholar 

  27. Rice LB, Eckstein EC, Devente J, et al. Ceftazidime-resistant Klebsiella pneumoniae isolates recovered at the Cleveland Department of Veterans Affairs Medical Center. Clin Infect Dis 1996; 23: 118–124.

    Article  PubMed  CAS  Google Scholar 

  28. Rahal JJ, Urban C, Horn D, et al. Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella pneumoniae. JAMA 1998; 280: 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  29. Anonymous. National Committee on Clinical Laboratory Standards-Standards for Antimcirobial Susceptibility Testing-Ninth Information 1999 Supplement. MIC Interpretative Standards for Enterobacteriaceae-Screening and confirmation tests for ESBLs in Klebsiellapneumoniae, K. oxytoca, and Escherichia coli. M100–S9, p. 75.

    Google Scholar 

  30. Gootz TD, Brighty KE. Chemistry and mechanism of action. In: Andriole VT (ed). The Quinolones, 2nd edit. San Diego: Academic Press, 1998, pp. 29–80.

    Google Scholar 

  31. Drlica K, Zhao X.. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 1997; 61: 377–392.

    PubMed  CAS  Google Scholar 

  32. Bagel S, Hullen V, Wiedemann B, et al. Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degrees of Escherichia coli. Antimicrob Agents Chemother 1999; 43: 868–875.

    PubMed  CAS  Google Scholar 

  33. Jorgensen JH, Weigel LM, Ferraro MJ, et al. Activities of newer fluoroquinolones against Streptococcus pneumoniae clinical isolates including those with mutations in the gyrA, parC, and parE, loci. Antimicrob Agents Chemother 1999; 43: 329–334.

    PubMed  CAS  Google Scholar 

  34. Markham PN. Inhibition of the emergence of ciprofloxacin resistance in Streptococcus pneumoniae-by the multidrug efflux inhibitor reserpine. Antimicrob Agents Chemother 1999; 43: 988–989.

    PubMed  CAS  Google Scholar 

  35. Bryan LE, Kawan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother 1983; 23: 835–845.

    Article  PubMed  CAS  Google Scholar 

  36. Taber HW, Muller JP, Arrow AS. Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev 1987; 51: 439–457.

    PubMed  CAS  Google Scholar 

  37. Hancock RE, Bellido F. Antibiotic uptake: unusual results from unusual molecules. J Antimicrob Chemother 1992; 29: 235–239.

    Article  PubMed  CAS  Google Scholar 

  38. Sanders CC, Sanders WE. Resistance to antimicrobial agents. In: Junkind DL (ed). Antimicrobial Resistance: A Crisis in Health Care. New York: Plenum Press, 1995, pp. 15–23.

    Google Scholar 

  39. Bryan LE. Aminoglycoside resistance. In: Bryan LE (ed). Antimicrobial Drug Resistance. Orlando, FL: Academic Press, 1995, pp. 241–277.

    Google Scholar 

  40. Nicas TI, Hancock REW. Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylendiamine tetraacetate, polymyxin B and gentamicin. J Bacteriol 1980; 143: 872–878.

    PubMed  CAS  Google Scholar 

  41. Ozaki M, Mizushima S, Nomura M. Identification and functional characterization of the proteins controlled by the streptomycin resistance locus in Escherichia coli. Nature 1969; 222: 333–339.

    Article  PubMed  CAS  Google Scholar 

  42. Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–655.

    Article  PubMed  CAS  Google Scholar 

  43. Gilbert DN. Once daily aminoglycoside therapy. Antimicrob Agents Chemother 1991; 35: 339–405.

    Google Scholar 

  44. Doern GV, Jones FN, Pfaller MA, et al. Haemophilus influenzae and Moraxella catarrhalis from patients with community-acquired respiratory tract infections: antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob Agents Chemother 1999; 43: 385–389.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rapp, R.P., Record, K.E. (2001). Gram-Negative Bacteria. In: Mainous, A.G., Pomeroy, C. (eds) Management of Antimicrobials in Infectious Diseases. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-036-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-036-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5708-8

  • Online ISBN: 978-1-59259-036-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics