Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

Lactation is a vital aspect of the human reproductive process. Humans are among the over 4000 species of mammals who are distinguished from all other animals by the female possessing mammary glands capable of furnishing milk as the sole source of nutrition for their developing young immediately following birth (1). Knowledge of human milk mineral contents and quantity transferred to the infant are essential to our understanding of maternal and infant nutritional requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morris D. The Naked Ape. Corgi, London,1968.

    Google Scholar 

  2. Neville MC, Keller R, Seacat J, LutesV, Neifert M, Casey C, Allen JA Archer P. Studies in human lactation: Milk volumes in lactating women during the onset of lactation. Am J Clin Nutr 1988; 48: 1375–1386.

    Google Scholar 

  3. Butte NF, Villalp,o S, Wong WW, Flores-Huerta S, de Hernadez—Beltran M, O’Brian Smith E, Garza C. Human milk intake and growth faltering of rural Mesoameridian infant. Am J Clin Nutr 1992; 55: 1109–1116.

    PubMed  CAS  Google Scholar 

  4. Macy IG, Huncher HA, Donelson E, Nemo B. Human milk flow. Am J Dis Child 1930; 6: 492–515.

    Google Scholar 

  5. Saint L, Smith M, Hartmann PE. The yield nutrient content of milk in eight women breast-feeding twins and one woman breast-feeding triplets. Br J Nutr 1986; 56: 49–58.

    Article  PubMed  CAS  Google Scholar 

  6. Buck, DR Bales J. Maternal dietary magnesium effects on lactation success and on milk yield composition in the rat. J Nutr 1983; 113: 2421–2431.

    PubMed  CAS  Google Scholar 

  7. Blanc B. Biochemical aspects of human milk: Comparison with bovine milk. World Revof Nutr Dietetics 1981; 36: 1–89.

    CAS  Google Scholar 

  8. Fransson GB, Lonnerdal B. Distribution of trace elements and minerals in human cow’s milk. Ped Res 1983; 17: 912–915.

    Article  CAS  Google Scholar 

  9. Boass A, Toverud SU. Enhanced nonsaturable calcium transport in the jejunum of rats during lactation, but not during pregnancy. J Bone Miner Res 1997; 12: 1577–1583.

    Article  PubMed  CAS  Google Scholar 

  10. Fairweather-Tait S, Prentice A, Huemann KG, Jarjou LMA, Stirling DM, Wharf SG, Turnlund JR. Effect of calcium supplements and stage of lactation on the calcium absorption efficiency of lactating women accustomed to low calcium intakes. Amer J ClinNutr 1995; 62: 1188–1192.

    CAS  Google Scholar 

  11. Kalkwarf HJ, Specker BL, Ho M. Effects of calcium supplementation on calcium homeostasis and bone turnover in lactating women. J Clin Endocrinol Metab 1999; 84: 464–470.

    Article  PubMed  CAS  Google Scholar 

  12. Bates C, Prentice A. Vitamins, minerals, and essential trace elements. In: PN Bennett ed. Drugs in Human Lactation. Elsevier, Amsterdam, 1988,pp. 433–494.

    Google Scholar 

  13. Allen JC, Neville MC. Ionized calcium in human milk determined with a calcium-selective electrode. Clin Chem 1983; 29: 858–861.

    PubMed  CAS  Google Scholar 

  14. Butte NF, Garza C, Smith EO, Wills C, Nichols BL. Macro-and trace-mineral intakes of exclusively breast-fed infants. The Amer J Clin Nutr 1987; 45: 42–48.

    CAS  Google Scholar 

  15. Dewey KG, Lonnerdal B. Milk nutrient intake of breast-fed infants from 1 to 6 months: Relation to growth fatness. J Pediatr Gastroenterol Nutr 1983; 3: 713–720.

    Article  Google Scholar 

  16. Greer FR, Tsang RC, Levin RS, Searcy JE, Wu R, Steichen JJ. Increasing serum calcium and magnesium concentrations in breast-fed infants: Longitudinal studies of minerals in human milk and in sera of nursing mothers and their infants. J Ped 1982; 100: 59–64.

    Article  CAS  Google Scholar 

  17. Flynn A. Minerals and trace elements in milk. Adv Food Nutr Res 1992; 36: 209–252.

    Article  PubMed  CAS  Google Scholar 

  18. Gross SJ, David RJ, Bauman L, Tomarelli RM. Nutritional composition of milk produced by mothers delevering preterm. J Pediatr 1980; 96: 641–644.

    Article  PubMed  CAS  Google Scholar 

  19. Allen JC, Keller RP, Archer P, Neville MC. Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr 1991; 54: 69–80.

    PubMed  CAS  Google Scholar 

  20. Lonnerdal B. Effects of milk and milk components on calcium magnesium, and trace element absorption during infancy. Physiol Rev 1997; 77: 643–669.

    PubMed  CAS  Google Scholar 

  21. Gunshin H, Yoshikawa M, Doudou T, Kato N. Trace elements in human milk, cow’s milk, and infant formula. Agric Biol Chem 1985; 49: 21–26.

    Article  CAS  Google Scholar 

  22. Murray MJ, Murray AB, Murray NJ, Murray MB. The effect of iron status of Nigerian mothers on that of their infants at birth and 6 months, and on the concentration of Fe in breast milk. Br J Nutr 1978; 39: 627–630.

    Article  PubMed  CAS  Google Scholar 

  23. Anaokar SG, Garry PJ. Effects of maternal iron nutrition during lactation on milk iron and rat neonatal iron status. Amer J Clin Nutr 1981; 35: 1505–1512.

    Google Scholar 

  24. Burguera M, Burguera JL Garaboto AM, Alarcon OM. Iron and copper content of human milk at early state of lactation in Venezuela women. Trace Elem Med 1988; 5: 60–63.

    CAS  Google Scholar 

  25. Haschke F, Vanura H, Male C, Owen G, Pietschnig B, Schuster E, Krobath E, Huemer C. Iron nutrition and growth of breast-and formula-fed infants during the first 9 months of life. J Pediatr Gastroenterol Nutr 1993; 16: 151–156.

    Article  PubMed  CAS  Google Scholar 

  26. Bates CJ, Prentice A. Breast milk as a source of vitamins, essential minerals, and trace elements. Pharmacol Ther 1994; 62: 193–220.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson RR. Comparison of trace elements in milk of four species. J Dairy Sci 1992; 75: 3050–3055.

    Article  PubMed  CAS  Google Scholar 

  28. Ziegler EE, Fomon SJ, Nelson SE, Rebouche CJ, Edwards BB, Rogers RR, Lehman LJ. Cow milk feeding in infancy: further observations on blood loss from the gastrointestinal tract. J Pediatr 1990; 116: 11–18.

    Article  PubMed  CAS  Google Scholar 

  29. Saarinen UM, Siimes MA, Dallman PR. Iron absorption in infants: high bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J Pediatr 1979; 91: 36–39.

    Google Scholar 

  30. McMillan JA, Oski F, Lourie G, Romarelli RM, L,aw SA. Iron absorption from human milk, simulated human milk, and proprietary formulas. Pediatrics 1977; 60: 896–900.

    PubMed  CAS  Google Scholar 

  31. Fransson GB, Lonnerdal B. Iron in human milk. J Ped 1980; 96: 380–384.

    Article  CAS  Google Scholar 

  32. Villalpando S, Hamosh M. Early and late effects of breast-feeding: does breast-feeding really matter? Biol Neonate 1998; 74: 177–191.

    Article  PubMed  CAS  Google Scholar 

  33. Xanthou M. Immune protection of human milk Biol Neonate 1998; 74: 121–133.

    Article  CAS  Google Scholar 

  34. Craig WL, Balbach L, Harris S, Vyhmeister N. Plasma zinc and copper levels of infants fed different milk formulas. J Amer Col Nutr 1984; 3: 183–186.

    CAS  Google Scholar 

  35. Arnaud J, Favier A. Copper, iron, manganese and zinc contents in human colostrum and transitory milk of French women. Seien Total Environ 1995; 159: 9–15.

    Article  CAS  Google Scholar 

  36. Bates CJ, Tsuchiya H. Zinc in breast milk during prolonged lactation: Comparison between the UK and Gambia. Eur J Clin Nutr 1990; 44: 61–69.

    PubMed  CAS  Google Scholar 

  37. Michaelson KF, Samuelson G, Granham TW, Lonnerdal B. Zinc intake, zinc status, and growth in a longitudinal study of healthy Danish infants. Acta Paediatrica 1994; 83: 1115–1121.

    Article  Google Scholar 

  38. Vuori E, Makinen SM, Kara R, Duitunen P. The effects of the dietary intakes of copper, iron, manganese, and zinc on the trace element content of human milk. Amer J Clin Nutr 1980; 33: 227–231.

    PubMed  CAS  Google Scholar 

  39. Karra MV, Kirksey A, Galal O, Bassily NS, Harrison GG, Jerome NW. Zinc, calcium, and magnesium concentrations in milk from American and Egyptian women throughout the first 6 months of lactation. Amer J Clin Nutr 1988; 47: 642–648.

    PubMed  CAS  Google Scholar 

  40. Bedwal RS, Bahuguna A. Zinc, copper and selenium in reproduction. Experientia 1994; 50: 626–640.

    Article  PubMed  CAS  Google Scholar 

  41. Blakeborough P, Salter DN, Guff MI. Zinc binding in cow’s milk and human milk. Biochem J 1983; 209: 505–512.

    PubMed  CAS  Google Scholar 

  42. Casey CE, Walravens PA, Hambidge KM. Availability of zinc: Loading tests with human milk, cow’s milk, and infant formulas. Pediatrics 1981; 68: 394–396.

    PubMed  CAS  Google Scholar 

  43. Lonnerdal B, Hoffman B, Hurley LS. Zinc and copper binding proteins in human milk Amer J Clin Nutr 1982; 36: 1170–1176.

    CAS  Google Scholar 

  44. Hurley LS, Lonnerdal B. Zinc binding in human milk: Citrate vs. picolinate. Nutr Rev 1982; 40: 65–71.

    Article  PubMed  CAS  Google Scholar 

  45. Harzer G, Kauer H. Binding of zinc to casein. Amer J Clin Nutr 1982; 35: 981–987.

    PubMed  CAS  Google Scholar 

  46. Casey CE, Neville MC, Hambidge KM. Studies in human lactation: Secretion of zinc, copper, and manganese in human milk. Amer J Clin Nutr 1989; 112: 642–651.

    Google Scholar 

  47. Casey CE, Hambidge KM, Neville MC. Studies in human lactation: Zinc, copper. manganese, and chromium in human milk in the first month of lactation. Amer J Clin Nutr 1985; 41: 1193–1200.

    PubMed  CAS  Google Scholar 

  48. Lonnerdal B, Keen CL, Hurley LS. Manganese binding proteins in human and cow’s milk. Amer J Clin Nutr 1985; 41: 550–559.

    PubMed  CAS  Google Scholar 

  49. Chan WU, Bates JM, Rennert OM. Comparative studies of manganese binding in human breast milk, bovine milk and infant formula. J Nutr 1982; 112: 642–651.

    PubMed  CAS  Google Scholar 

  50. Davidsson L, Cederblad A, Lonnerdal B, Sandstrom B. Manganese absorption from human milk, cow’s milk, and infant formulas in humans. Amer J Clin Nutr 1989; 43: 823–827.

    Google Scholar 

  51. Dorner K, Dziadzka S, Hohn A, Sievers E, Odigs HD, Schulz-Lell G, Schaub J. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast milk and adapted cow’ s milk formulas. Br J Nutr 1989; 61: 559–572.

    Article  PubMed  CAS  Google Scholar 

  52. Casey CE, Hambidge KM. Chromium in human milk from American mothers. Br J Nutr 1984; 52: 73–77.

    Article  PubMed  CAS  Google Scholar 

  53. Cocho JA, Cervilla JR, Rey-Goldar ML, Fdea-Lorenzo JR, FragaJM. Chromium content in human milk, cow’s milk, and infant formulas. Biol Trace Elem Res 1992; 32: 105–107.

    Article  PubMed  CAS  Google Scholar 

  54. Anderson RA, Bryden NA, Patterson KY, Veillon C,on MB, Moser-Veillon PB. Breast milk chromium and its association with chromium intake, chromium excretion, and serum chromium. Amer J Clin Nutr 1993; 57: 519–523.

    PubMed  CAS  Google Scholar 

  55. Deelstra H, Van Schoor 0, Robberecht H, Clara R, Eylenbosch W. Daily chromium intake by infants in Belgium. Acta Paediatrica 1988; 77: 402–407.

    Article  CAS  Google Scholar 

  56. Smith AM, Picciano MF, MilnerJA. Selenium intakes and status of human milk and formula-fed infants. Amer J Clin Nutr 1982; 35: 521–526.

    PubMed  CAS  Google Scholar 

  57. McGuire MK, Burgert SL, Milner JA, Glass L, Kummer R, Deering R, Boucek R, Picciano MF. Selenium status of lactating women is affected by the form of selenium consumed. Amer J Clin Nutr 1993; 58: 649–652.

    PubMed  CAS  Google Scholar 

  58. Levander OA, Moser PB, Morris VC. Dietary selenium intake and selenium concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum lactating and nonlactating women. Am J Clin Nutr 1987; 46: 694–698.

    PubMed  CAS  Google Scholar 

  59. Debski B, Finley DA, Picciano MF, Lonnerdal B, Milner J. Selenium content and glutathione peroxidase activity of milk from vegetarian and nonvegetarian women. J Nutr 1989; 119: 215–220.

    PubMed  CAS  Google Scholar 

  60. Debski B, Picciano MF, Milner JA. Selenium content distribution of human, cow and goat milk. J Nutr 1986; 117: 1091–1097.

    Google Scholar 

  61. Milner JA, Sherman L, Picciano MF. Distribution of selenium in human milk Amer J Clin Nutr 1987; 45: 617–624.

    CAS  Google Scholar 

  62. McGuire MK, Burgert SL, Milner JA, Glass L, Kummer R, Deering R, Boucek R, Picciano MF. Selenium status of infants is influenced by supplementation of formula or maternal diets. Amer J Clin Nutr 1993; 58: 643–648.

    PubMed  CAS  Google Scholar 

  63. Smith AM, Chan GM, Moyer-Mileur LJ, Johnson CE, Gardner BR. Selenium status of preterm infants fed human milk, preterm formula, or selenium-supplemented preterm formula. J Pediatr 1991; 119: 429–433.

    Article  PubMed  CAS  Google Scholar 

  64. Tyrala EE, Borschel MW, Jacobs JR. Selenate fortification of infant formulas improves the selenium status of preterm infants. Am J Clin Nutr 1996; 64: 860–865.

    PubMed  CAS  Google Scholar 

  65. Darlow BA, Inder TE, Graham PJ, Slius KB, Malpos TJ Taylor BJ Winterbourn CC. The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 1995; 96: 314–319.

    PubMed  CAS  Google Scholar 

  66. Bougle D, Bureau F, Foucault P, Dhuamel JF, Muller G, Drosdowsky M. Molybdenum content of term and preterm human milk during the first 2 months of lactation. Amer J Clin Nutr 1988; 48: 652–654.

    PubMed  CAS  Google Scholar 

  67. Casey CE, Neville MC. Studies in human lactation 3: Molybdenum and nickel in human milk during the first month of lactation. Amer J Clin Nutr 1987; 45: 921–926.

    PubMed  CAS  Google Scholar 

  68. Gunshin H, Yoshikawa M, Doudou T, Kato N. Trace elements in human milk, cow’s milk, and infant formula. Agric Biol Chem 1985; 49: 21–26.

    Article  CAS  Google Scholar 

  69. Vermiglio F, Lo Presti VP, Finocchiaro MD, Battiato S, Grasso L, Ardita FV, Mancuso A, Trimarchi F. Enhanced iodine concentrating capacity by the mammary gland, in iodine deficient lactating women of an endemic goiter region in Sicily. J Endocrinol Invest 1992; 15: 137–142.

    PubMed  CAS  Google Scholar 

  70. De Curtis M, Napoitan E, Ciccimarra F, Mellone MC, Del Rio A. Aluminum content in human milk and in infant formulas (letter). EurJ Clin Nutr 1989; 43: 887.

    Google Scholar 

  71. Dirks OB, Jongeling-Eijndhoven JMPA, Flissebaalje TD, Gedalia I. Total and free ionic fluoride in human and cow’s milk as determined by gas-liquid chromatography and the fluoride electrode. Caries Research 1974; 8: 181–186.

    Article  PubMed  CAS  Google Scholar 

  72. American Academy of Pediatrics/Committee on Nutrition. Fluoride supplementation for children: Interim policy recommendation. Pediatrics 1995; 95: 777.

    Google Scholar 

  73. Warren JJ, Kanellis MJ, Levy SM. Fluorosis of the primary dentition: what does it mean for permanent teeth? J Am Dent Assoc 1999; 130: 347–356.

    PubMed  CAS  Google Scholar 

  74. American Academy of Pediatrics/Work Group on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 1997; 100: 1035–1039.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Picciano, M.F. (2000). Trace Element and Mineral Nutrition During Lactation. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics