Skip to main content

Viral Mechanisms of Human Carcinogenesis

  • Chapter
The Molecular Basis of Human Cancer

Abstract

Within the last two decades of cancer research, it has become increasingly clear that viruses play an important role in the development of a significant percentage of human cancers. At present, it is recognized that viral infections are linked to at least 15% of all malignant tumors in humans and thus represent the second most common identified risk factor for cancer, exceeded only by tobacco smoking (1). Cancer-associated viruses are found in several virus families and encompass both DNA and RNA viruses (Table 1). In the past few years, significant progress has been made towards elucidation of the molecular mechanisms through which viruses contribute to cell transformation. Different tumor viruses target common cellular pathways for growth control, but also exhibit unique (virus-specific) properties that contribute to oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. zur Hausen, H. (I 991) Viruses in human cancers. Science 254: 1167 1173.

    Google Scholar 

  2. zur Hausen, H. (1996) Papillomavirus infections: a major cause of human cancers. Biochim. Biophys. Acta 1288: F55 - F78.

    Google Scholar 

  3. Howley, P. (1996) Papillomavirinae: the viruses and their replication. In: Fields Virology (Fields, B. N., Knipe, D. M., Howley, P. M., eds.), Lippincott-Raven, Philadelphia, pp. 2045–2076.

    Google Scholar 

  4. Dollard, S. C., Wilson, J. L., Demeter, L. M., Bonnez, W., Reichman, R. C., Borker, T. R., et al. (1992) Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev. 6: 1131–1142.

    Article  PubMed  CAS  Google Scholar 

  5. Meyers, C., Frattini, M. G., Hudson, J. B., and Laimins, L. A. (1992) Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257: 971–973.

    Article  PubMed  CAS  Google Scholar 

  6. Pisani, P., Parkin, D. M., and Ferlay, J. (1993) Estimates of the worldw ide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int. J. Cancer 54: 594–606.

    Google Scholar 

  7. Bosch, F. X., Munoz, N., de Sanjosé, S., Izarzugaza, I., Gili, M., Viladiu, P., et al. (1992) Risk factors for cervical cancer in Columbia and Spain. Int. J. Cancer 52: 750–758.

    Article  PubMed  CAS  Google Scholar 

  8. Koutsky, L. A., Holmes, K. K., Critchlow, C. W., Stevens, C. E., Paavonen, J., Beckmann, A. M., et al. (1992) A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N. Engl. J. Med. 327: 1271–1278.

    Article  Google Scholar 

  9. Dillner, J., Lehtinen, M., Bjorge, T., Luostarinen, T., Youngman L., Jell um, E., et al. (1997) Prospective seroepidemiologic study of human papillomavirus infections as a risk factor for invasive cervical cancer. J. Natl. Cancer Inst. 89: 1293–1299.

    Google Scholar 

  10. Schwarz, E., Freese, U. K., Gissmann, L., Mayer, W., Roggenbuck, B., Stromlau, A., et al. (1985) Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 31: 111–114.

    Article  Google Scholar 

  11. von Knebel Doeberitz, M. (1992) Papillomaviruses in human disease: Part II. Molecular biology and immunology ofpapillomavirus infections and carcinogenesis. Eue. J. Med. 1: 485–491.

    CAS  Google Scholar 

  12. Hoppe-Seyler, F. and Butz, K. (1994) Cellular control of human papillomavirus oncogene transcription. Mol. Carcinogenesis 10: 134–141.

    Article  CAS  Google Scholar 

  13. Durst, M., Glitz, D., Schneider, A., and zur Hausen, H. (1992) Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology 189: 132–140.

    Article  PubMed  CAS  Google Scholar 

  14. Thierry, F. and Yaniv, M. (1987) The BPV 1-E2-trans-acting protein can be either an activator or a repressor of the HPV 18 regulatory region. EMBO J. 6: 3391–3397.

    PubMed  CAS  Google Scholar 

  15. Jeon, S. and Lambert, P. F. (1995) Integration of HPV 16 DNA into the human genome leads to increased stability of E6/E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. USA 92: 1654–1658.

    Article  PubMed  CAS  Google Scholar 

  16. Hoppe-Seyler, F. and Scheffner, M. (1997) E6 protein. In: Papillomaviruses in Human Cancer: The Role of the E6 and E7 Oncoproteins ( Tommassino, M., ed.), Landes Bioscience, Austin, TX, pp. 71–102.

    Chapter  Google Scholar 

  17. Jones, D. L. and Munger, K. (1996). Interactions of the human papillomavirus E7 protein with cell cycle regulators. Semin. Cancer Biol. 7: 327–337.

    Article  PubMed  CAS  Google Scholar 

  18. Kubbutat, M. H. G. and Vousden. K. H. (1996) Role of the E6 and E7 oncoproteins in HPV-induced anogenital malignancies. Semin. Virol. 7: 295–304.

    Article  CAS  Google Scholar 

  19. Scheffner, M., Werness, B. A., Huibregtsc, J. M., Levine, A. J., and Howley, P. M. (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  20. Lane, D. P. (1992) p53, guardian ofthe genome. Nature 358: 15–16.

    Google Scholar 

  21. Fritsche, M., Haessler, C., and Brandner, G. (1993) Induction of nuclear accumulation ofthe tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8: 307–318.

    PubMed  CAS  Google Scholar 

  22. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Google Scholar 

  23. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., et al. (1993) WAF-1, a potential mediator or p53 tumor suppression. Cell 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  24. Miyashita, T. and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  25. Caelles, C., Heimberg, A., and Karin, M. (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223.

    Google Scholar 

  26. Mietz, J. A., Unger, T., Huibregtse, J. M., and Howley, P. M. (1992) The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J. 11: 5013–5020.

    PubMed  CAS  Google Scholar 

  27. Hoppe-Seyler, F. and Butz, K. (1993) Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J. Viral. 67: 3111–3117.

    CAS  Google Scholar 

  28. Kessis, T. D., Slebos, R. J., Nelson, W. G., Kastan, M. B., Plunkett, B. S., Han, S. M., et al. (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90: 3988–3992.

    Article  PubMed  CAS  Google Scholar 

  29. White A. E,. Livanos, E. M., and Tlsty, T. (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8: 666–677.

    CAS  Google Scholar 

  30. Scheffner, M., Munger, K., Byrne, J. C., and Howley, P. M. (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 88: 5523–5527.

    Article  PubMed  CAS  Google Scholar 

  31. Park, D. J., Wilczynski, S. P., Paquette, R. L., Miller, C. W., and Koeffler, H. P. (1994) p53 mutations in HPV-negative cervical carcinoma. Oncogene 9: 205–210.

    Google Scholar 

  32. Butz, K., Shahabeddin, L., Geisen, C., Spitkovsky, D., Ullmann, A., and Hoppe-Seyler, F. (1995) Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10: 927–936.

    PubMed  CAS  Google Scholar 

  33. Butz, K., Geisen. C., Ullmann, A., Spitkovsky, D., and HoppeSeyler, F. (1996) Cellular responses of HPV-positive cancer cells to genotoxic anti-cancer agents: repression of E6/E7-oncogene expression and induction of apoptosis. Int. J. Cancer 68: 506–513.

    CAS  Google Scholar 

  34. Pim, D., Storey, A., Thomas, M., Massimi, P., and Banks, L. (1994) Mutational analysis of HPV18–E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9: 1869–1876.

    PubMed  CAS  Google Scholar 

  35. Spitkovsky, D., Aengeneyndt, F., Braspenning, J., and von Knebel Doeberitz, M. (1996) p53-independent growth regulation of cervical cancer cells by the papillomavirus E6 oncogene. Oncogene 13: 1027–1035.

    Google Scholar 

  36. Lamberti, C., Morrissey, L. C., Grossman, S. R., and Androphy, E. J. (1990) Transcriptional transactivation by the human papillomavirus E6 zinc finger protein. EMBO J. 9: 1907–1913.

    PubMed  CAS  Google Scholar 

  37. Sedman, S. A., Barbosa, M. S., Vass, W. C., Hubbert, N. L., Haas, J. A., Lowy, D. R., et al. (1991) The full length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J. Virol. 65: 4860–4866.

    PubMed  CAS  Google Scholar 

  38. Pan, H. and Griep, A. E. (1995) Temporally distinct patterns of p53- dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9: 2157–2169.

    Article  PubMed  CAS  Google Scholar 

  39. Klingelhutz, A. J., Foster, S. A., and McDougall, J. K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380: 79–82.

    Article  PubMed  CAS  Google Scholar 

  40. Keen, N., Elston, R., and Crawford L. (1994) Interaction of the E6 protein of human papillomavirus with cellular proteins. Oncogene 9: 1493–1499.

    PubMed  CAS  Google Scholar 

  41. Chen, J. J., Reid, C. E., Band, V., and Androphy, E. J. (1995) Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269: 529–531.

    Article  PubMed  CAS  Google Scholar 

  42. Munger, K. and Phelps, W. C. (1993) The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim. Biophys. Acta 1155: 111–123.

    Google Scholar 

  43. Weinberg, R. A. (1995) The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  44. LaThangue, N. B. (1994) DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell cycle control. Trends Biochem. Sci. 19: 108–114.

    Article  CAS  Google Scholar 

  45. Huang, P. S., Patrick, D. R., Edwards, G., Goodhart, P. J., Huber, H. E., Miles, L., et al. (1993) Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol. Cell. Biol. 13: 953–960.

    PubMed  CAS  Google Scholar 

  46. Boyer, S. N., Wazer, D. E., and Band, A. (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56: 4620–4624.

    PubMed  CAS  Google Scholar 

  47. Jones, D. L., Thompson, D. A., and Munger, K. (1997) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV Type 16 E7-induced apoptosis. Virology 239: 97–107.

    Article  PubMed  CAS  Google Scholar 

  48. Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B., and Galloway, D. A. (1997) Inhibition of cdk activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11: 2090–2100.

    Article  PubMed  CAS  Google Scholar 

  49. Jones, D. L., Alani, R. M., and Munger, K. (1997) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21 CIP i-mediated inhibition of cdk2. Genes Dev. 11: 2101–2111.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng, S., Schmidt-Grimminger, D.-C., Murant, T., Broker, T. R., and Chow, L. T. (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9: 2335–2349.

    Article  PubMed  CAS  Google Scholar 

  51. Edmonds, C. and Vousden, K. H. (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63: 2650–2656.

    PubMed  CAS  Google Scholar 

  52. Banks, L., Edmonds, C., and Vousden, K. (1990) Ability of HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH 3T3 cells. Oncogene 5: 1383–1389.

    PubMed  CAS  Google Scholar 

  53. Phelps, W. C., Munger, K., Lee, C. L., Barnes, J. A., and Howley, P. M. (1992) Structure-function analysis of the human papillomavirus type 16 E7 protein. J. Virol. 66: 2418–2427.

    PubMed  CAS  Google Scholar 

  54. Dyson, N., Guida, P., Munger, K., and Harlow, E. (1992) Homologous sequences in adenovirus El A and human papillomavirus E7 proteins mediate interaction with the same set of proteins. J. Virol. 66: 6893–6902.

    PubMed  CAS  Google Scholar 

  55. Tommasino, M., Adamczewski, J. P., Carlotti, F., Barth, C. F., Manetti, R., Contorni, M., et al. (1993) HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8: 195–202.

    PubMed  CAS  Google Scholar 

  56. McIntyre, M. C., Ruesch, M. N., and Laimins, L. A. (1996) Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology 215: 73–82.

    CAS  Google Scholar 

  57. Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J. W., and Jansen-Dürr, P. (1996) Inactivation of the cdk inhibitor p27KIPt by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13: 2323–2330.

    PubMed  CAS  Google Scholar 

  58. Vousden, K. H., Vojtesek, B., Fisher, C., and Lane, D. (1993) HPV I 6-E7 or adenovirus E l A can overcome the growth arrest of cells immortalized with a temperature-sensitive p53. Oncogene 8: 1697–1702.

    CAS  Google Scholar 

  59. Demers, G. W., Foster, S. A., Halbert, C. L., and Galloway, D. A. (1994) Growth arrest by induction of p53 in DNA-damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl. Acad. Sci. USA 91: 4382–4386.

    Article  PubMed  CAS  Google Scholar 

  60. Hickman, E. S., Picksley, S. M., and Vousden, K. H. (1994) Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9: 2177–2181.

    PubMed  CAS  Google Scholar 

  61. Slebos, R. J. C., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O., Jacks, T., Hedrick, L., et al. (1994) p53-dependent Gl-arrest involves pRb-related proteins and is disrupted by the human papillomavirus E7 oncoprotein. Proc. Natl. Acad. Sci. USA 91:5320–5324.

    Google Scholar 

  62. Chuang, L. S.-H., Ian, H.-1., Koh, T.-W., Ng, H.-H., Xu, G., and Li, B. F. L. (1997). Human DNA-(cytosine-5) methyltransferasePCNA complex as a target for p21 WAF 1. Science 277: 1996–2000.

    CAS  Google Scholar 

  63. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369: 547–578.

    Google Scholar 

  64. Lam E. W.-F., Morris, J. D. H., Davies, R., Crook, T., Watson, R. J., and Vousden, K. H. (1994) HPV16 E7 oncoprotein deregulates B-myb expression: correlation with targeting of p107/E2F complexes. EMBO J. 13: 871–878.

    PubMed  CAS  Google Scholar 

  65. Zerfass, K., Schulze, A., Spitkovsky, D., Friedman, V., Henglein, B., and Jansen-Dürr, P. (1995) Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J. Virol. 69: 6389–6399.

    CAS  Google Scholar 

  66. Antinore, M. J., Birrer, M. J., Patel, D., Nader, L., and McCance, D. J. (1996) The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 15: 1950–1960.

    PubMed  CAS  Google Scholar 

  67. Massimi, P., Pim, D., Storey, A., and Banks, L. (1996) HPV-16 E7 and adenovirus Ela complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 12: 2325–2330.

    PubMed  CAS  Google Scholar 

  68. Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R., and Schiller, J. T. (1989) HPV16 E6 and E7 proteins cooperate to immortalise human foreskin keratinocytes. EMBO J. 8: 3905–3910.

    PubMed  CAS  Google Scholar 

  69. Munger, K., Phelps, W. C., Bubb, V., Howley, P. M., and Schlegel, R. (1989) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63: 4417–4421.

    PubMed  CAS  Google Scholar 

  70. Puthenveettil, J. A., Frederickson, S. M., and Reznikoff, C. A. (1996) Apoptosis in human papillomavirus 16 E7- but not E6-immortalized uroepithelial cells. Oncogene 13: 1123–1131.

    PubMed  CAS  Google Scholar 

  71. Jablonska, S. and Majewski, S. (1994) Epidermodysplasia verruciformis: immunological and clinical aspects. Curr. Topics Microbiol. Immunol. 186: 157–175.

    Article  CAS  Google Scholar 

  72. Shahamanin, V., zur Hausen, H., Lavergne, D., Proby, C. M., Leigh,I. M., Neumann, C., et al. (1996) Human papillomavirus infections in non-melanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. J. Natl. Cancer Inst. 88: 802–811.

    Article  Google Scholar 

  73. Robinson, W. S. (1994) Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Ann. Rev. Med. 45: 297–323.

    Article  PubMed  CAS  Google Scholar 

  74. Ganem, D. (1996) Hepadnaviridae and their replication. In: Fields Virology ( Fields, B. N., Knipe, D. M., and Howley, P. M., ed.), Lippincott-Raven, Philadelphia, pp. 2703–2737.

    Google Scholar 

  75. Hollinger, F. B. (1996) Hepatits B virus. In: Fields Virology ( Fields, B. N., Knipe, D. M., and Howley, P. M., ed.), Lippincott-Raven, Philadelphia, pp. 2739–2807.

    Google Scholar 

  76. Beasley, R. P. (1988) Hepatitis B virus. The major etiology ofhepatocellular carcinoma. Cancer 61: 1942–1956.

    Article  PubMed  CAS  Google Scholar 

  77. Pisani, P., Parkin, D. M., Munoz, N., and Ferlay, J. (1997) Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol. Biomark. Prevent. 6: 387–400.

    CAS  Google Scholar 

  78. Shirakata, Y., Kawada, M., Fujiki, Y., Sano, H., Kobayashi, M., and Koike, K. (1989) The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH 3T3 cells. Jpn. J. Cancer Res. 80: 617–621.

    Article  PubMed  CAS  Google Scholar 

  79. Höhne, M., Schäfer, S., Seifer, M., Feitelson, M. A., Paul, D., and Gerlich, W. H. (1990) Malignant transformation of immortalised transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J. 9: 1137–1145.

    PubMed  Google Scholar 

  80. Kim, S., Koike, K., Saito, I., Myamura, F., and Ray, G. (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351: 317–320.

    Article  PubMed  CAS  Google Scholar 

  81. Doria, M., Klein, N., Lucito, R., and Schneider, R. J. (1995) The hepatitis B virus Hbx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBOJ. 14: 4747–4757.

    CAS  Google Scholar 

  82. Koike, K. and Takada, S. (1995) Biochemistry and functions of hepatitis B virus X protein. Intervirology 38: 89–99.

    PubMed  CAS  Google Scholar 

  83. Feitelson, M. A., Zhu, M., Duan, X.-L., and London, W. T. (1993) Hepatitis X-antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 8: 1109–1117.

    PubMed  CAS  Google Scholar 

  84. Wang, X. W., Forrester, K., Yeh, H., Feitelson, M. A., Gu, J.-R., and Harris, C. C. (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91: 2230–2234.

    Article  PubMed  CAS  Google Scholar 

  85. Wang, X. W., Tgibson. M. K., Vermeulen, W., Yeh, H., Forrester, K., Sturzbecher, H.-W., et al. (1995) Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res. 55: 60126016.

    Google Scholar 

  86. Ueda, H., Ullrich, S. J., Gangemi, J. D., Kappel, C. A., Ngo, L., Feitelson, M. A., et al (1995) Functional inactivation but not structural mutation of p53 causes liver cancer. Nature Genet. 9: 41–47.

    Article  PubMed  CAS  Google Scholar 

  87. Takada, S., Kaneniwa, N., Tsuchida, N., and Koike, K. (1997). Cytoplasmic retention of the p53 tumor suppressor gene product is observed in the hepatitis B virus X gene-transfected cells. Oncogene 15: 1895–1901.

    Article  PubMed  CAS  Google Scholar 

  88. Hager. C., Velhagen, I., Zentgraf, H., and Schröder, C. H. (1991) Diversity of hepatitis B virus X gene-related transcripts in hepatocellular carcinoma: a novel polyadenylation site on viral DNA. J. Virol. 65: 4284–4291.

    Google Scholar 

  89. Hildt, E., Hofschneider, P. H., and Urban, S. (1996) The role of hepatitis B virus (HBV) in the development of hepatocellular carcinoma. Semin. Virol. 7: 333–347.

    Article  CAS  Google Scholar 

  90. Dejean, A., Bouguerelet, L., Grzeschik, K. H., and Tiollais, P. (19861 Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature 322: 70–72.

    Google Scholar 

  91. Wang, J., Cenivesse, X., Henglein, B., and Brechot, C. (1990) Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557.

    Article  PubMed  CAS  Google Scholar 

  92. Lieber, C. S., Garro, A., Leo, M. A., Mak, K. M., and Worner, T. (1986) Alcohol and cancer. Hepatology 6: 1005–1009.

    Article  PubMed  CAS  Google Scholar 

  93. Jhappan, C., Stahle, C., Harj ins, R. N., Fausto, N., Smith, G. H., and Merlino, G. T. (1990) TGF-a overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61: 1137–1 146.

    Google Scholar 

  94. Houghton, M. (1996) Hepatitis C viruses. In: Fields Virology ( Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven, Philadelphia, pp. 1035–1058.

    Google Scholar 

  95. Purcell, R. (1997). The hepatitis C virus: Overview. Hepatology 26: 11S - 14S.

    Article  PubMed  CAS  Google Scholar 

  96. Choo, Q.-L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. and Houghton, M. (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244: 359–362.

    Article  PubMed  CAS  Google Scholar 

  97. Hoofnagle, J. H. (1997) Hepatitis C: the clinical spectrum of disease. Hepatology 26: 15S - 20S.

    Article  PubMed  CAS  Google Scholar 

  98. Farci, P., Alter, H. J., Govindarajan, S., Wong, D. C., Engle, R., Lesniewski, R. R., et al. (1992) Lack of protective immunity against reinfection with hepatitis C virus. Science 258: 135–140.

    Article  PubMed  CAS  Google Scholar 

  99. National Institutes of Health consensus development conference panel statement: management of hepatitis C. (1997) Hepatology 26:2S–10S.

    Google Scholar 

  100. Di Bisceglie, A. M. (1997) Hepatitis C and hepatocellular carcinoma. Hepatology 26: 34S - 38S.

    Article  PubMed  Google Scholar 

  101. Ray, R. B., Lagging, L. M., Meyer, K., and Ray, R. (1996) Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J. Virol. 70:4438444 3.

    Google Scholar 

  102. Bhandari, B. N. and Wright, T. L. (1995) Hepatitis C: an overview. Ann. Rev. Med. 46: 309–317.

    Article  PubMed  CAS  Google Scholar 

  103. Kieff, E. (1996) Epstein-Barr virus and its replication. In: Fields Virology ( Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven Publishers, Philadelphia, pp. 2343–2396.

    Google Scholar 

  104. Rickinson, A. B. and Kieff, F. (1996) Epstein Barr virus. ln: Fields Virology (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven, Philadelphia, pp. 2397–2446.

    Google Scholar 

  105. Niedobitek, G. and Young, L. S. (1994) Epstein-Barr virus persistance and virus-associated tumors. Lancet 343: 333–335.

    Article  PubMed  CAS  Google Scholar 

  106. Wang, D., Liebowitz, D., and Kieff, E. (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43: 831–840.

    Article  PubMed  CAS  Google Scholar 

  107. Baichwal, V. R. and Sugden, B. (1988) Transformation of BALB 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2: 461–467.

    PubMed  CAS  Google Scholar 

  108. Dawson, C. W., Rickinson, A. B., and Young, L. S. (1990) Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature 344: 777–780.

    Article  PubMed  CAS  Google Scholar 

  109. Fahraeus, R., Rymo, L., Rhim, J. S., and Klein, G. (1990) Morphological transformation of human keratinocytes expressing the LMP gene of Epstein-Barr virus. Nature 345: 447 449.

    Google Scholar 

  110. Knecht, H., Berger, C., Al-Homsi, A. S., McQuain, C., and Brousset, P. (1997) Epstein-Barr virus oncogenesis. Crit. Rev. Oncol. Hematol. 26: 1 17 135.

    Google Scholar 

  111. Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., et al. (1997) Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 16: 6131–6140.

    Article  PubMed  CAS  Google Scholar 

  112. Wilson, J. B. and Levine, A. J. (1992) The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Curr. Top. Microhiol. Immunol. 182: 375–384.

    Article  CAS  Google Scholar 

  113. Srinivas, S. K. and Sixbey, J. W. (1995) Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J Virol. 69: 8155–8158.

    PubMed  CAS  Google Scholar 

  114. Henkel, T., Liang, P. D., Hayward, S. D., and Peterson, M. G. (1994) Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265: 92–95.

    Article  CAS  Google Scholar 

  115. Zimber-Strobl, U., Strobl, L. J., Meitinger, C., Hinrichs, R., Sakai, T., Furukawa, T., et al. (1994) Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila suppressor of hairless. EMBO J. 13: 4973–4982.

    PubMed  CAS  Google Scholar 

  116. Laux, G., Adam,. B., Strobl. L. J., and Moreau-Gachelin, F. (I 994) The Spi/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J. 13: 5624–5632.

    Google Scholar 

  117. Kempkes, B., Spitkovsky, D., Jansen-Dürr, P., Ellwart, J. W., Kremmer, E., Delecluse, H.-J., et al. (1995). B-cell proliferation and induction of early GI -regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. EMBO J. 14: 88–96.

    PubMed  CAS  Google Scholar 

  118. Parker, G. A., Crook, T., Bain, M., Sara, E. A., Farrell, P. J., and Allday, M. J. (1996) Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus EIA and papillomavirus E7. Oncogene 13: 2541–2549.

    PubMed  CAS  Google Scholar 

  119. Szekely, L., Selivanova, G., Magnusson, K. P., Klein, G., and Wiman, K. G. (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc. Natl. Acad. Sci. USA 90: 5455–5459.

    Article  PubMed  CAS  Google Scholar 

  120. Allday, M. J., Sinclair, A., Parker, G., Crawford, D. H., and Farrell, P. J. (1995) Epstein-Barr virus efficiently immortalizes human B cells without neutralizing the function of p53. EMBO J. 7: 1382–1391.

    Google Scholar 

  121. Oujedans, J. J., Jiwa, N. M., van deb Brule, A. J. C., Gräser, F. A., Horstman, A., Vos, W., et al. (1995) Detection of heterogeneous Epstein-Barr virus gene expression patterns within individual post-transplantation lymphoproliferative disorders. Am. J. Pathol. 147: 923–933.

    Google Scholar 

  122. Magrath, I. (1990) The pathogenesis of Burkitt’s lymphoma. Adv. Cancer Res. 55: 133–269.

    Article  PubMed  CAS  Google Scholar 

  123. Klein, G. and Klein, E. (1985) Evolution of tumors and the impact of molecular oncology. Nature 315: 190–195.

    Article  PubMed  CAS  Google Scholar 

  124. Lenoir, G. and Bornkamm, G. W. (1986) Burkitt’s lymphoma: a human cancer model for the study of the multistep development of cancer: proposal for a new scenario. In: Advances in Viral Oncol- ogy, vol. 7 (Klein, G., ed.), Raven Press, New York, pp. 173–206.

    Google Scholar 

  125. Geser, A., de The, G., Lenoir, G., Day, N. E., and Williams, E. H. (1982) Final case reporting from the Ugandian prospective study of the relationship between EBV and Burkitt’s lymphoma. Int. J. Cancer 29: 397–400.

    Article  PubMed  CAS  Google Scholar 

  126. Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H., et al. (1987) Differences in B-cell growth phenotype reflect novel patterns of Epstein-Ban virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 6: 2743–2751.

    PubMed  CAS  Google Scholar 

  127. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., et al. (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375: 685–688.

    Article  PubMed  CAS  Google Scholar 

  128. Simuzu, N., Tanabe-Kochikura, A., Kuroiwa, Y., and Takada, K. (1994) Isolation of Epstein-Ban virus (EBV)-negative cell clones from the EBV-positive Burkitt’s lymphoma BL line Akata: Malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68: 6069–6073.

    Google Scholar 

  129. Lam, K. M. C. and Crawford, D. H. (1991) The oncogenic potential of Epstein-Barr virus. Crit. Rev. Oncogenesis 2: 229–245.

    PubMed  CAS  Google Scholar 

  130. Polack, A., Hortnagel, K., Pajic, A., Baier, B., Falk, M., Mautner, J., et al. (1996) c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein. Proc. Natl. Acad. Sci. USA 93: 10411–10416.

    Google Scholar 

  131. Razzouk, B. I., Srinivas, S., Sample, C. E., Singh, V., and Sixbey, J. W. (1996) Epstein-Barr virus DNA recombination and loss in sporadic Burkitt’s lymphoma. J. Infect. Dis. 173: 529–535.

    Article  PubMed  CAS  Google Scholar 

  132. List, A. F., Greco, F. A., and Vogler, L. B. (1987) Lymphoproliferative diseases in immunocompromised hosts: the role of Epstein-Ban virus. J. Clin. Oncol. 5: 1673–1689.

    PubMed  CAS  Google Scholar 

  133. Oudejans, J. J., Jiwa, N. M., van den Brule, A. J. C., and Meijer, C. J. L. M. (1997). Epstein-Barr virus and its possible role in the pathogenesis ofB-cell lymphomas. Crit. Rev. Oncol. Hematol. 25: 127–138.

    Article  PubMed  CAS  Google Scholar 

  134. Sullivan, J. L. and Woda, B. A. (1989) X-linked lymphoproliferative syndrome. Immunodeficiency Rev. 1: 325–347.

    CAS  Google Scholar 

  135. Starzl, T. E., Nalesnik, M. A., Porter, K. A., Ho, M., Iwatsuki, S., Griffith, B. P., et al. (1984) Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1: 583–587.

    Article  PubMed  CAS  Google Scholar 

  136. Larson, R. S., Scott, M. A., McCurley, T. L., and Vnencak-Jones C. L. (1996) Microsatellite analysis of posttransplant lymphoproliferative disorders: determination of donor/recipient origin and identification of putative lymphomagenic mechanism. Cancer Res. 56: 4378–4381.

    Google Scholar 

  137. Hamilton-Dutoit, S. J., Pallesen, G., Franzmann, M. B., Karkov, J., Black, F., Skinhoj, P., and Pedersen, C. (1991) AIDS-related lymphoma: Histopathology, immunophenotype, and association with Epstein-Ban virus as demonstrated by in situ nucleic acid hybridization. Am. J. Pathol. 138: 149–163.

    PubMed  CAS  Google Scholar 

  138. Pallesen, G., Hamilton-Dutoit, S. J., and Shou, X. (1993) The association of Epstein-Barr virus (EBV) with T-cell lymphoproliferation and Hodgkin’s disease: two new developments in the EBV field. Adv. Cancer Res. 62: 179–239.

    Article  PubMed  CAS  Google Scholar 

  139. Meijer, C. J. L. M., Jiwa, N. M., Dukers, D. F., Oudejans, J. J., de Bruin, P. C., Walboomers, J. M. M., et al. (1996) Epstein-Barr virus and human T-cell lymphomas. Semin. Cancer Biol. 7: 191–196.

    Article  PubMed  CAS  Google Scholar 

  140. Wolf, J. and Diehl, V. (1994) Is Hodgkin’s disease an infectious disease? Ann. Oncol. 5: S105 - S111.

    Article  Google Scholar 

  141. Herbst, H. (1996) Epstein-Barr virus in Hodgkin’s disease. Semin. Cancer Biol. 7: 183–189.

    Article  PubMed  CAS  Google Scholar 

  142. Gutensohn, N. M. and Cole, P. (1980) Epidemiology of Hodgkin’s disease. Semin. Oncol. 7: 92–102.

    PubMed  CAS  Google Scholar 

  143. zur Hausen, H., Schulte-Holthausen, H., Klein, G., Henle, W., Henle, G., Clifford, P., and Santesson, L. (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228: 1056–1058.

    Article  PubMed  CAS  Google Scholar 

  144. Niedobitek, G., Agathanggelou, A., and Nicholls, J. M. (1996) Epstein-Barr virus infection and the pathogenesis of nasopharyngeal carcinoma: viral gene expression, tumour cell phenotype, and the role of the lymphoid stroma. Semin. Cancer Biol. 7: 165–174.

    Google Scholar 

  145. Henle, W., Ho, J. H. C., Henle, G., Chau, J. C. W., and Kwan, H. C. (1977) Nasopharyngeal carcinoma: significance of changes in Epstein-Barr virus-related antibody patterns following therapy. Int. J. Cancer 20: 663–672.

    Article  PubMed  CAS  Google Scholar 

  146. de The, G. and Zeng, Y. (1986) Population screening for EBV markers: towards improvement of nasopharyngcal carcinoma control. In: The Epstein-Barr Virus ( Epstein, M. A. and Achog, B. G., eds.), John Wiley and Sons, New York, pp. 237–248.

    Google Scholar 

  147. Osato, T. and Imai, S. (1996) Epstein-Ban virus and gastric carcinoma. Semin. Cancer Biol. 7: 175–182.

    Article  PubMed  CAS  Google Scholar 

  148. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, C., Knowles, D. M., et al. (1994) Identification of herpesvirus-like sequences in AIDS-associated Kaposi’s sarcoma. Science 266: 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  149. Renne, R., Zhong, W., Herndier, B., McGrath, M., Kedes, D., and Ganem, D. (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in a cultured B-cell lymphoma line. Nature Med. 2: 342–346.

    Article  PubMed  CAS  Google Scholar 

  150. Russo, J. J., Bohenzky, R. A., Cheien, M. C., Chen, J., Yan. M., Maddalena, D., et al. (1996) Nucleotide sequence of the Kaposi’s sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA 93: 14862–14867.

    Article  PubMed  CAS  Google Scholar 

  151. Biesinger, B., Müller-Fleckenstein, I., Simmer, B., Lang, G., Wittmann, S., Platzer, E., et al. (1992) Stable growth transformation of human T-lymphocytes by herpesvirus saimiri. Proc. Natl. Acad. Sci. USA 89: 3116–3119.

    Article  PubMed  CAS  Google Scholar 

  152. Neipel, F., Albrecht, J.-C., and Fleckenstein, B. (1997) Cell homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus type 8: determinants of its pathogenicity? J. Virol. 71: 4187–4192.

    PubMed  CAS  Google Scholar 

  153. Cheng, E. H. Y., Nicholas, J., Bellows, D., Hayward, G. S., Guo, H. G., Reitz, M. S., et al. (1997) A Bel-2 homolog encoded by Kaposi’s sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA 94: 690–694.

    Article  PubMed  CAS  Google Scholar 

  154. Chang, Y., Moore, P. S., Talbot, S. J., Boshoff, C. H., Zarkowska, T., Godden-Kent, D., et al. (1996) Cyclin encoded by KS herpesvirus. Nature 382: 410.

    Article  PubMed  CAS  Google Scholar 

  155. Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G., and Jones, N. (1997) Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390: 184–187.

    Article  PubMed  CAS  Google Scholar 

  156. Boshoff, C., Endo, Y., Collins, P. D., Takeuchi, Y., Reeves, J. D., Schweickart, V. L., et al. (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278: 290–294.

    Article  PubMed  CAS  Google Scholar 

  157. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gerhengorn, M. C., and Cesarman, E. (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385: 347–350.

    Article  PubMed  CAS  Google Scholar 

  158. Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E. G., Gutkind, J. S., et al. (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–89.

    Article  PubMed  CAS  Google Scholar 

  159. Roth, W. K., Brandstetter, H., and Sturzl, M. (1992) Cellular and molecular features of HIV-associated Kaposi’s sarcoma. AIDS 6: 895–913.

    Article  PubMed  CAS  Google Scholar 

  160. Ensoli, B., Barillari, G., and Gallo, R. C. (1992) Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Immunol. Rev. 127: 147–155.

    Article  PubMed  CAS  Google Scholar 

  161. Beral, V., Peterman, T. A., Berkelman, R. L., and Jaffe, H. W. (1990) Kaposi’s sarcoma among patients with AIDS: a sexually transmitted infection? Lancet 335: 123–128.

    Article  PubMed  CAS  Google Scholar 

  162. Ganem, D. (1996) Human herpesvirus 8 and the biology of Kaposi’s sarcoma. Semin. Virol. 7: 325–332.

    Article  CAS  Google Scholar 

  163. Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C., and Wong-Staal, F. (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345: 84–86.

    Article  PubMed  CAS  Google Scholar 

  164. Ganem, D. (1997) KSHV and Kaposi’s sarcoma: the end of the beginning? Cell 91: 157–160.

    Article  PubMed  CAS  Google Scholar 

  165. Gillison, M. L. and Ambinder, R. F. (1997) Human herpesvirus-8. Curr. Opin. Oncol. 9: 440–449.

    Article  PubMed  CAS  Google Scholar 

  166. Geraldo, G., Beth, E., and Haguenau, F. (1972) Herpes-type virus particles in tissue culture of Kaposi’s sarcoma from different geographic regions. J. Natl. Cancer Inst. 49: 1509–1513.

    Google Scholar 

  167. Lennette, E. T., Blackbourn, D. J., and Levy, J. A. (1996) Antibodies to human herpesvirus type 8 in the general population and in Kaposi’s sarcoma patients. Lancet 348: 858–861.

    Article  PubMed  CAS  Google Scholar 

  168. Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., CazalsHatem, D., Babinet, P., et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86: 1276–1280.

    PubMed  CAS  Google Scholar 

  169. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles D. M. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med, 322: 1186–1191.

    Google Scholar 

  170. Rettig, M. B., Ma, H. J., Vescio, R. A., Pold, M., Schiller, G., Belson, D., et al. (1997). Kaposi’s sarcoma-associated herpesvirus infection of bone-marrow dendritic cells from multiple myeloma patients. Science 276: 1851–1854.

    Article  PubMed  CAS  Google Scholar 

  171. Cann, A. J. and Chen, I. S. Y. (1996) Human T-cell leukemia virus types I and II. In: Fields Virology ( Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven, Philadelphia, pp. 1849–1880.

    Google Scholar 

  172. Kondo. T., Kono, H., Nonaka, H., Yoshida, R., Bando, F., Inoue, H., et al. (1987) Risk of adult T-cell leukemia lymphoma in HTLVI carriers. Lancet 2:159.

    Google Scholar 

  173. Rosenblatt, J. D., Golde, D. W., Wachsman, W., Giorgi, J. V., Jacobs. A., Schmidt. G. M., et al. (1986) A second isolate of HTLVII associated with atypical hairy-cell leukemia. N. Engl. J. Med. 315: 372–377.

    Article  PubMed  CAS  Google Scholar 

  174. Yamamoto, N., Okada, M., Koyanagi, Y., Kannagi, Y., and Hinuma, Y. (1982) Transformation of human leukocytes by cocultivation with an adult T-cell leukemia virus producer cell line. Science 217: 737–739.

    Article  PubMed  CAS  Google Scholar 

  175. Popovic, M., Lange-Wantzin, G., Sarin, P. S., Mann, D., and Gallo, R. C. (1983) Transformation of human umbilical cord blood T cells by human T cell leukemia/lymphoma virus. Proc. Natl. Acad. Sci. USA 80: 5402–5406.

    Article  PubMed  CAS  Google Scholar 

  176. Seiki, M., Eddy, R., Shows, T. B., and Yoshida, M. (1984) Nonspecific integration of the HTLV provirus genome into adult T-cell leukaemia cells. Nature 309: 640–642.

    Article  PubMed  CAS  Google Scholar 

  177. Yoshida, M. (1996) Multiple targets of HTLV-I for dysregulation of host cells. Semin. Virol. 7: 349–160.

    Article  CAS  Google Scholar 

  178. Grassmann, R., Dengler, C., Müller-Fleckenstein, I., Fleckenstein, B., McGuire, K., Dokhlear, M., et al. (1989) Transformation to continuous growth of primary human T-lymphocytes by human T cell leukemia virus type I X-region genes transduced by a herpes-virus saimiri vector. Proc. Natl. Acad. Sci. USA 86: 3351–3355.

    Article  PubMed  CAS  Google Scholar 

  179. Nerenberg, M., Hinrichs, S. H., Reynolds, R. K., Khoury, G., and Jay, G. (1987) The tat gene of human T lymphotropic virus type I induces mescnchymal tumors in transgenic mice. Science 237: 1324–1329.

    Article  PubMed  CAS  Google Scholar 

  180. Jeang, K. T., Widen, S. G., Semmes IV, O. J., and Wilson, S. H. (1990) HTLV-I trans-activator protein, Tax, is a trans-repressor of the human beta-polymerase gene. Science 247: 1082–1084.

    CAS  Google Scholar 

  181. Greene, W. C., Leonard, W. J., Wano, Y., Svetlik, P. B., Peffer, N. J., Sodrosky, J. G., et al. (1986) Trans-activator gene of HTLV II induces IL-2 receptor and IL-2 cellular gene expression. Science 232: 877–881.

    Article  PubMed  CAS  Google Scholar 

  182. Maruyama, M., Shibuya, H., Harada, H., Hatakeyama, M., Seiki, M., Fujita, T., et al. (1987) Evidence for aberrant activation of the intcrleukin-2 autocrine loop by HTLV-I-encoded p4Ox and T3/Ti complex triggering. Celi 48: 343–350.

    Article  CAS  Google Scholar 

  183. Kimata, J. T. and Ratner, L. (1991) Temporal regulation of viral and cellular gene expression during human T-Iymphotropic virus type I-mediated lymphocyte immortalization. J. Virol. 65: 4398–4407.

    PubMed  CAS  Google Scholar 

  184. Suzuki, T., Kitao, S., Matsushime, H., and Yaoshida, M. (1996) HTLV-1 Tax protein interacts with cyclin-dependent kinase inhibitor p161“K4A and counteracts its inhibitory activity towards cdk4. EMBO J. 15: 1607–1614.

    PubMed  CAS  Google Scholar 

  185. Pise-Masison, C. A., Choi, K.-S., Radonovich., M., Dittmer, J., Kim, S.-J., and Brady, J. N. (1998) Inhibition ofp53 transactivation function by the human T-cell lymphotropic virus type 1 tax protein. J. Virol. 72: 1165–1170.

    CAS  Google Scholar 

  186. Reid, R. L., Lindholm, P. F., Mireskandari, A., Dittmer, J., and Brady, J. N. (1993) Stabilization of wild-type p53 in human T-lymphocytes transformed by HTLV-I. Oncogene 8: 3029–3036.

    PubMed  CAS  Google Scholar 

  187. Cereseto, A., Diella, F., Mulloy, J. C., Cara, A., Michieli, P., Grassmann, R., et al. (1996) p53 functional impairment and high p2lWAV1/CIP1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells. Blood 88: 1551–1560.

    Google Scholar 

  188. Kinoshita, T., Shimoyama, M., Tobinai, K., Ito, M., Ito, S., Ikeda, S., et al. (1989) Detection of mRNA for the tax i/rex i gene of human T cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 86: 5620–5624.

    Article  PubMed  CAS  Google Scholar 

  189. Hoppe-Seyler, F. and Butz, K. (1995) Molecular mechanisms of virus-induced carcinogenesis: the interaction of viral factors with cellular tumor suppressor proteins. J. Mol. Med. 73: 529–538.

    Article  PubMed  CAS  Google Scholar 

  190. Walboomers, J. M. M., de Roda Husman, A.-M., van den Brule, A. J. C., Snijders, P. J. F., and Meijer, C. J. L. M. (1994) Detection of genital human papillomavirus infections: critical review of methods and prevalence studies in relation to cervical cancer. In: Cervical Cancer ( Stern, P., ed. ), Oxford University Press, pp. 41–71.

    Google Scholar 

  191. Carbone, M., Rizzo, P., and Pass, H. I. (1997) Simian virus 40, poliovaccines and human tumors: a review of recent developments. Oncogene 15: 1877–1888.

    Article  PubMed  CAS  Google Scholar 

  192. Dörries, K. (1997) New polyomavirus-induced disease. Adv. Virus Res. 48: 205–261.

    Article  PubMed  Google Scholar 

  193. Greaves, M. F. and Alexander, F. E. (1993) An infectious etiology for common acute lymphoblastic leukemia in childhood? Leukemia 7: 349–360.

    PubMed  CAS  Google Scholar 

  194. Schiller, J. T. and Lowy, D. R. (1996) Papillomavirus-like particles and HPV vaccine development. Semin. Cancer Biol. 7: 373–382.

    Article  PubMed  CAS  Google Scholar 

  195. Tindle, R. W. (1996) Human papillomavirus vaccines for cervical cancer. Curr. Opin. Immunol. 8: 643–650.

    Article  PubMed  CAS  Google Scholar 

  196. Chang, M. H., Chen, C. J., Lai, M. S., Hsu, H. M., Wu, T. C., Kong, M. S., et al. (1997) Universal hepatitis B vaccination in Taiwan and the incidence ofhepatocellular carcinoma in children. Taiwan childhood hepatoma study group. N. Engl. J. Med. 336: 1855–1859.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoppe-Seyler, F., Butz, K. (2002). Viral Mechanisms of Human Carcinogenesis. In: Coleman, W.B., Tsongalis, G.J. (eds) The Molecular Basis of Human Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-125-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-125-1_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-107-3

  • Online ISBN: 978-1-59259-125-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics