Skip to main content

Chromosomes and Chromosomal Instability in Human Cancer

  • Chapter
The Molecular Basis of Human Cancer

Abstract

Many human cancers have chromosomal abnormalities, and frequently specific abnormalities are associated with specific forms of cancer. These findings have emerged gradually over the past 30 years as increasingly better techniques have become available for preparation and analysis of human chromosomes. Because of the ease with which leukemia cells can be obtained and analyzed, most studies of karyotypic abnormalities have been performed on hematopoietic malignancies. Initial studies simply characterized the gross chromosomal abnormalities occurring in different types of cancer cells. More recently, molecular rearrangements that are associated with many chromosomal abnormalities have been characterized in detail. These rearrangements frequently involve cellular protooncogenes or tumor-suppressor genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rowley, J. D. (1982) Identification of the constant chromosome regions involved in human hematologic malignant disease. Science 216: 749–755.

    Article  PubMed  CAS  Google Scholar 

  2. Yunis, J. J. (1986) Chromosomal rearrangements, genes, and fragile sites in cancer: clinical and biological implications. In: Important Advances in Oncology ( DeVita, V., Hellman, S., and Rosenberg, S., eds.), Lippincott, Philadelphia, PA, pp. 93–128.

    Google Scholar 

  3. Squire, j., and Phillips, R. A. (1992) Genetic basis of cancer. In:The Basic Science of Oncology (Tannock, I. F., and Hill, R. P., eds.), McGraw-Hill, New York, NY, pp. 41–60.

    Google Scholar 

  4. Weiner, A.M. (1987) Chromosome abnormalities associated with human tumors. In: Molecular Biology of the Gene, 4th ed. ( Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M., eds.), Benjamin/Cummings, Menlo Park, CA, pp. 1074–1086.

    Google Scholar 

  5. Tanaka, K., Arif, M., Eguchi, M., Kyo, T., Dohy, H., and Kamada, N. (1997) Frequent jumping translocations of chromosomal segments involving the ABL oncogene alone or in combination with CD3-MLL genes in secondary leukemias. Blood 89: 596–600.

    PubMed  CAS  Google Scholar 

  6. ISCN (1991) Guidelines for Cancer Cytogenetics: Supplement to an International System for Human Cytogenetic Nomenclature VI. (Mitelman, F., ed.), Karger, Basel, Switzerland.

    Google Scholar 

  7. Rowley, J. D. (1973) A new consistent chromosomal abnormality in chronic myelogenous leukemia: myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293.

    Article  PubMed  CAS  Google Scholar 

  8. Rowley, J. D., and Testa, J. R. (1982) Chromosome abnormalities in malignant hematologic diseases. Adv. Cancer Res. 36: 103–148.

    Article  PubMed  CAS  Google Scholar 

  9. Groffen, J. J., Stephenson, J. R., Heisterkamp, N., de Klein, A., Bartram, C. R., and Grosveld, G. (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, ber, on chromosome 22. Cell 36: 93–99.

    Article  PubMed  CAS  Google Scholar 

  10. Dreazen, O., Cannani, E., and Gale, R. P. (1988) Molecular biology of chronic myelogenous leukemia. Semin. Hematol. 25: 35–48.

    PubMed  CAS  Google Scholar 

  11. Hermans, A., Heisterkamp, N., von Lindern, M., van Baal, S., Meijer, D., van der Plas, D., et al. (1987) Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51: 33–40.

    Article  PubMed  CAS  Google Scholar 

  12. Pane, F., Frigeri, F., Sindona, M., Luciano, L., Ferrara, F., Cimino, R., et al. (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88: 2410–2414.

    PubMed  CAS  Google Scholar 

  13. Kakizuka, A., Miller,W. H., Jr., Umesono, K., Warren, R. P., Jr., Frankel, S. R., Murty, V. V., et al. (1991) Chromosomal translocation t(15;17) in human acute myelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66: 663–674.

    Article  PubMed  CAS  Google Scholar 

  14. de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991) The PML-RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684.

    Article  PubMed  Google Scholar 

  15. Miyoshi, H., Kozu, T., Shimizu, K., Enomoto, K., Kaneko, Y., and Kamada, N. (1993) The t(8;21) translocation in acute myeloid leukemia results in production of an AML1–MTG8 fusion transcript. EMBO J 12: 2715–2721.

    PubMed  CAS  Google Scholar 

  16. Liu, P., Tarle, S. A., Hajra, A., Claxton, D. F., Marlton, P., Freedman, M., et al. (1993) Fusion between transcription factor CBF13/ PEBP2(3 and a myosin heavy chain in acute myeloid leukemia. Science 261: I041–1044.

    Google Scholar 

  17. von Lindern, M., Fornerod, M., van Baal, S., Jaegle, M., de Wit, T., Buijs, A., et al. (1992) The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol. Cell Biol. 12: 1687–1697.

    PubMed  CAS  Google Scholar 

  18. Morishita, K., Parganas, E., Willman, C. L., Whittaker, M. H., Drabkin, H., Oval, J., et al. (1992) Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc. Natl. Acad. Sci. USA 89: 3937–3941.

    Article  PubMed  CAS  Google Scholar 

  19. Mitani, K., Ogawa, S., Tanaka, T. Miyoshi, H., Kurokawa, M., Mano, H., et al. (1994) Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 13: 504–510.

    PubMed  CAS  Google Scholar 

  20. Tanaka, T., Tanaka, K., Ogawa, S., Kurokawa, M., Mitani, K., Nishida, J., et al. (1995) An acute myeloid leukemia gene, AML1, regulates hematopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO J. 14: 341–350.

    PubMed  CAS  Google Scholar 

  21. Tkachuk, D. C., Kohler, S., and Cleary, M. L. (1992) Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Celi 71: 691–700.

    Article  CAS  Google Scholar 

  22. Gu, Y., Nakamura, T., Alder, H., Prasad, R., Canaani, O., Cimino, G., et al. (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF -4 gene. Cell 71: 701–708.

    Article  PubMed  CAS  Google Scholar 

  23. Hamlyn, P. H., and Rabbitts, T.H. (1983) Translocation joins c-myc and immunoglobulin gamma-1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 304: 135–139.

    Article  PubMed  CAS  Google Scholar 

  24. Siebenlist, U., Hennighausen, J. Battey, J., and Leder, P. (1984) Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in a Burkitt lymphoma. Cell 37: 381–391.

    Article  PubMed  CAS  Google Scholar 

  25. Nourse, J., Mellentin, J. D., Galili, N., Wilkinson J., Stanbridge, E., Smith, S. D., et al. (1990) Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–545.

    Article  PubMed  CAS  Google Scholar 

  26. Kamps, M. P., Murre, C., Sun, X. H., and Baltimore, D. (1990) A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555.

    Article  PubMed  CAS  Google Scholar 

  27. Hatano, M., Roberts, C. W. M., Minden, M., Crist, W. M., and Korsmeyer, S. J.(199 I) Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253: 79–82.

    Google Scholar 

  28. Chen, Q., Cheng, J. T., Tsai, L. H., Schneider, N., Buchanan, G., Carroll, A., et al. (1990) The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loophelix protein. EMBO J. 9: 415–424.

    PubMed  CAS  Google Scholar 

  29. Motokura, T., Bloom, T., Kim, H. G., Juppner, H., Ruderman, J. V., Kronenberg, H. M., et al. (1991) A novel cyclin encoded by a bel 1-linked candidate oncogene. Nature 350: 512–515.

    Article  PubMed  CAS  Google Scholar 

  30. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C., and Croce, C. M. (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226: 1097–1099.

    Article  PubMed  CAS  Google Scholar 

  31. Vaux, D. L., Cory, S., and Adams, J. M. (1988) Bc1–2 gene promotes haematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    Article  PubMed  CAS  Google Scholar 

  32. Strasser, A., Harris, A. W., and Cory, S. (1991) bel-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67: 889–899.

    Google Scholar 

  33. Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., et al. (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  34. Ohno, H., Takimoto, G., and McKeithan, T. W. (1990) The candidate proto-oncogene bel-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell 60: 991–997.

    Article  PubMed  CAS  Google Scholar 

  35. Turc-Carel, C., Aurias, A., Mugneret, F., Lizard, S., Sidaner, I., Volk, C., et al. (1988) Chromosomes in Ewing’s sarcoma. I. An evaluation of 85 cases and remarkable consistency of t(11;22)(g24;g12). Cancer Genet. Cytogenet. 32: 229–238.

    Article  PubMed  CAS  Google Scholar 

  36. Delattre, O., Zucman, J., Plougastel, B., Desmaze, C., Melot, T., Peter, M., et al. (1992) Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359: 162–165.

    Article  PubMed  CAS  Google Scholar 

  37. Zucman, J., Delattre, O., Desmaze, C., Plougastel, B., Joubert, I., Melot, T., et al. (1992) Cloning and characterization of the Ewing’ s sarcoma and peripheral neuroepithelioma t(11;22) translocation breakpoints. Genes Chromosomes Cancer 5: 271–277.

    Article  PubMed  CAS  Google Scholar 

  38. Ohno, T., Ouchida, M., Lee, L., Gatalica, Z., Rao, V. N., and Reddy, E. S. P. (1994) The EWS gene, involved in Ewing family tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 9: 3087–3097.

    PubMed  CAS  Google Scholar 

  39. Bailly, R. A., Bosselut, R., Zucman, J., Cormier, F., Delattre, O., Roussel, M., et al. (1994) DNA-binding and transcriptional activation properties of the EWS-FLI- I fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol. Cell. Biol. 14: 3230–3241.

    PubMed  CAS  Google Scholar 

  40. Sorensen, P. H. B., Lessnick, S. L., Lopez-Terrada, D., Liu, X. F., Triche, T. J., and Denny, C. T. (1994) A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nature Genet. 6: 146–151.

    Article  PubMed  CAS  Google Scholar 

  41. Bridge, J. A., Borek, D. A., Neff, J. R., and Huntrakoon, M. (1990) Chromosomal abnormalities in clear cell sarcoma. Implications for histogenesis. Am. J. Clin. Pathol. 93: 26–31.

    PubMed  CAS  Google Scholar 

  42. Zucman, J., Delattre, O., Desmaze, C., Epstein, A., Stenman, G., Speleman, F., et al. (1993) EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of softparts. Nature Genet. 4: 341–345.

    Article  PubMed  CAS  Google Scholar 

  43. Gerald, W. L., Miller, H. K., Battifora, H., Miettinen, M., Silva, E. G., and Rosai, J. (1991) Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am. J. Surg. Pathol. 15: 499–513.

    Article  PubMed  CAS  Google Scholar 

  44. Rodriguez, E., Sreekantaiah, C., Gerald, W., Reuter, V. E., Motzer, R. J., and Chaganti, R. S. K. (1993) A recurring translocation, t(11;22) (p13;g11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet. Cytogenet. 69: 17–21.

    Article  PubMed  CAS  Google Scholar 

  45. Gerald, W. L., Rosai, J., and Ladanyi, M. (1995) Characterization of the genomic breakpoint and chimeric transcripts inthe EWSWT1 gene fusion of desmoplastic small round cell tumor. Proc. Natl. Acad. Sci. USA 92: 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  46. Sreekantaiah, C., Ladanyi, M., Rodriguez, E., and Chaganti, R. S. K. (1994) Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms. Am. J. Pathol. 144: 1121–1134.

    PubMed  CAS  Google Scholar 

  47. Crozat, A., Aman, P., Mandahl, N., and Ron, D. (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640–644.

    Article  PubMed  CAS  Google Scholar 

  48. Rabbitts, T. H., Forster, A., Larson, R., and Nathan, P. (1993) Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nature Genet. 4: 175–180.

    Article  PubMed  CAS  Google Scholar 

  49. Galili, N., Davis, R. J., Fredericks, W. J., Mukhopadhyay, S., Rauscher III F. J., Emanuel, B. J., et al. (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nature Genet. 5: 230–235.

    Article  PubMed  CAS  Google Scholar 

  50. Shapiro, D. N., Sublett, J. E., Li, B., Downing, J. R., and Naeve, C. W. (1993) Fusion of PAX3 to a member of the forkhead family to transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 53: 5108–5112.

    PubMed  CAS  Google Scholar 

  51. Davis, R. J., D’Cruz, C. M., Lovell, M. A., Biegel, J. A., and Barr, F. G. (1994) Fusion of PAX7 to FKHR by the variant t(I;I3)(p36;g14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 54: 2869–2872.

    PubMed  CAS  Google Scholar 

  52. Ruttledge, M. H., Sarrazin, J., Rangaratnam, S., Phelan, C. M., Twist, E., Merel, P., et al. (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningioma. Nature Genet. 6: 180–184.

    Article  PubMed  CAS  Google Scholar 

  53. Weinberg, R. A. (1991) Tumor suppressor genes. Science 254: 1 138–1146.

    Google Scholar 

  54. Tadokoro, K., Fujii, H., Ohshima, A., Kakizawa, Y., Shimizu, K., Sakai, A., et al. (1992) Intragenic homozygous deletion of the WTI gene in Wilms’ tumor. Oncogene 7: 1215–1221.

    PubMed  CAS  Google Scholar 

  55. Powell, S. M., Zilz, N., Beazer-Barclay, Y., Bryan, T. M., Hamilton, S. R., Thibodeau, S. N., et al. (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359: 235–237.

    Article  PubMed  CAS  Google Scholar 

  56. Schwab, M., Varmus, H. E., Bishop, J. M., Grzeschik, K. H., Naylor, S. L., Sakaguchi, A. Y., et al. (1984) Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308: 288–291.

    Article  PubMed  CAS  Google Scholar 

  57. Nau. M. M., Brooks, B. J., Battey, J., Sausville, E., Gazdar A. F., Kirsch,l. R., et al. (1985) L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 318: 69–73.

    Article  Google Scholar 

  58. Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington, DC.

    Google Scholar 

  59. Sancar, A. (1996) DNA excision repair. Ann. Rev. Biochem. 65: 43–81.

    Article  PubMed  CAS  Google Scholar 

  60. Auerbach, A. D., and Verlander, P. C. (1997) Disorders of DNA replication and repair. Curr. Opin. Pediatrics 9: 600–616.

    Article  CAS  Google Scholar 

  61. Robins, P., Jones, C. J., Biggerstaff, M., Lindahl, T., and Wood, R. D. (1991) Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 10: 3913–3921.

    PubMed  CAS  Google Scholar 

  62. Treber, D. K., Chen, Z. H., and Essigmann, J. M. (1992) An ultraviolet light-damaged DNA recognition protein absent in xeroderma pigmentosum group E cells binds selectively to pyrimidine (6–4) pyrimidone photoproducts. Nucleic Acids Res. 20: 5805–5810.

    Article  Google Scholar 

  63. Scherly, D., Nouspikel, T., Corlet, J., Ucla, C., Bairoch, A., and Clarkson, S. G. (1993) Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363: 182–185.

    Article  PubMed  CAS  Google Scholar 

  64. O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C., and Wood, R. D. (1994) XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371: 432–435.

    Article  PubMed  Google Scholar 

  65. van Vuuren, A. J., Vermeulen, W., Weeda, G., Appeldoorn, E., Jaspers, N. G. J., van der Eb A. J., et al. (1994) Correlation of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). EMBO J. 13: 1645–1653.

    PubMed  CAS  Google Scholar 

  66. Drapkin, R., Reardon, J. T., Ansari, A., Huang, J. C., Zawel, L., Ahn, K., et al. (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase I1. Nature 368: 769–772.

    Article  PubMed  CAS  Google Scholar 

  67. Leveillard, T., Andera, L., Bissonnette, N., Schaeffer, L., Bracco, L., Egly, J.-M., et al. (1996) Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 15: 1615–1624.

    PubMed  CAS  Google Scholar 

  68. Cleaver, J. E. (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218: 652–656.

    Article  PubMed  CAS  Google Scholar 

  69. Tanaka, K., and Wood, R. D. (1994) Xeroderma Pigmentosum and nucleotide excision repair of DNA. Trends. Biochem. Sci. 19: 83–86.

    Article  PubMed  CAS  Google Scholar 

  70. German, J. (1993) Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72: 393–406.

    Article  PubMed  CAS  Google Scholar 

  71. German, J., Ellis, N. A., Proytcheva, M. (1996) Bloom’s syndrome: XIX. Cytogenetic and population evidence for genetic heterogeneity. Clin. Genet. 49: 223–231.

    Article  PubMed  CAS  Google Scholar 

  72. German, J. (1997) Bloom’s syndrome: XX. The first 100 cancers. Cancer Genet. Cytogenet. 93: 100–106.

    Article  PubMed  CAS  Google Scholar 

  73. Ellis, N. A., Groden, J., Ye, T.-Z., Straughen, J., Lennon, D. J., Ciocci, S., et al. (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83: 655–666.

    Article  PubMed  CAS  Google Scholar 

  74. Ellis, N. A., and German, J. (1996) Molecular genetics of Bloom’s syndrome. Human Mol. Genet. 5: 1457–1463.

    CAS  Google Scholar 

  75. Alberts, A., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell. Garland, New York, NY.

    Google Scholar 

  76. Simon, M., Giot, L., and Faye, G. (1991) The 3’ to 5’ exonuclease activity located in the DNA polymerase 8 subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10: 2165–2170.

    PubMed  CAS  Google Scholar 

  77. Morrison, A., Bell, J. B., Kunkel, T. A., and Sugino, A. (1991) Eukaryotic DNA polymerase amino acid sequence required for 3’ to 5’ exonuclease activity. Proc. Natl. Acad. Sci. USA 88: 94739477.

    Google Scholar 

  78. Palombo, F., Iaccarino, I., Nakajima, E., Ikejima, M., Shimada, T., and Jiricny, J. (1996) hMutSb, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6: 1181–1184.

    Google Scholar 

  79. Ionov, Y. M., Peinado, A., Malkhosyan, S., Shibata, D., and Perucho, M. (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561.

    Article  PubMed  CAS  Google Scholar 

  80. Thibodeau, S. N., Bren, G., and Schaid, D. (1993) Microsatellite instability in cancer of the proximal colon. Science 260: 816–819.

    Article  PubMed  CAS  Google Scholar 

  81. Risinger, J. I., Berchuck, A., Kohler, M. F., Watson, P., Lynch, H. T., and Boyd, J. (1993) Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53: 5100–5103.

    PubMed  CAS  Google Scholar 

  82. Orth, K., Hung, J. Gazdar, A., Bowcock, A., Mathis, J. M., and Sambrook, J. (1994) Genetic instability in human ovarian cancer cell lines. Proc. Natl. Acad. Sci. USA 91: 9495–9499.

    Article  CAS  Google Scholar 

  83. Ouyang, H., Shiwaku, H. O., Hagiwara, H., Miura, K., Abe, T., Kato, Y., et al. (1997) The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach, and colorectum. Cancer Res. 57: 1851–1854.

    PubMed  CAS  Google Scholar 

  84. Wada, C., Shionoya, S., Fujino, Y., Tokuhiro, H., Akahoshi, T., Uchida, T., et al. (1994) Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 83: 3449–3456.

    PubMed  CAS  Google Scholar 

  85. Kaneko, H., Horiike, S., Inazawa, J., Nakai, H., Misawa, S. (1995) Microsatellite instability is an early genetic event in myelodysplastic syndrome. Blood 86: 1236–1237.

    PubMed  CAS  Google Scholar 

  86. Gartenhaus, R., Johns, M. M. Ill, Wang, P., Rai, K., and Sidransky, D. (1996) Mutant phenotype in a subset of chronic lymphocytic leukemia. Blood 87: 38–41.

    PubMed  CAS  Google Scholar 

  87. Robledo, M., Martinez, B., Arranz, E., Trujillo, M. J., Gonzalez, A. A., Rivas, C., et al. (1995) Genetic instability of microsatellites in hematologic neoplasms. Leukemia 9: 960–964.

    PubMed  CAS  Google Scholar 

  88. Bedi, G. C., Westra, W. H., Farzadegan, H., Pitha, P. M., and Sidransky, D. (1995) Microsatellite instability in primary neoplasms from HIV+ patients. Nature Med. 1: 65–68.

    Article  PubMed  CAS  Google Scholar 

  89. Liu, B., Parsons, R., Papadopoulos, N., Nicolaides, N. C., Lynch, H. T., Watson, P., et al. (1996) Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nature Med. 2: 169–174.

    Article  PubMed  CAS  Google Scholar 

  90. Papadopoulos, N., Nicolaides, N. C., Liu, B., Parsons, R., Lengauer, C., Palombo, F., et al. (1995) Mutations of GTBP in genetically unstable cells. Science 268: 1915–1917.

    Article  PubMed  CAS  Google Scholar 

  91. Katabuchi, H., van Rees, B., Lambers, A. R., Ronnett, B.M., Blazes, M.S., Leach, F.S. et al. (1995) Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res. 55: 5556–5560.

    PubMed  CAS  Google Scholar 

  92. Hangaishi, A., Ogawa, S., Mitani, K., Hosoya, N., Chiba, S., Yazaki, Y., and Hirai, H. (1997) Mutations and loss of expression of a mismatch repair gene, hMLHI, in leukemia and lymphoma cell lines. Blood 89: 1740–1747.

    PubMed  CAS  Google Scholar 

  93. Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., et al. (1995) Inactivation of the type II TGF-13 receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338.

    Article  PubMed  CAS  Google Scholar 

  94. da Costa, L. T., Liu, B., el-Deiry, W., Hamilton, S. R., Kinzler, K. W., Vogelstein, B., et al. (1995) Polymerase d variants in RER+ colorectal tumors. Nature Genet. 9: 10–1 I.

    Google Scholar 

  95. Tateishi, M., Ishida, T., Hamatake, M., Fukuyama, Y., Kodono, S., Sugimachi, K., et al. (1994) DNA polymerase alpha as an independent prognostic parameter in non-small cell lung cancer: an immunohistochemical study. Eur. J. Surg. Oncol. 20: 461–466.

    PubMed  CAS  Google Scholar 

  96. Wang, L., Patel, U., Ghosh, L., and Banerjee, S. (1992) DNA polymerase beta mutations in human colorectal cancer. Cancer Res. 52: 4824–4827.

    PubMed  CAS  Google Scholar 

  97. Dobashi, Y., Shuin, T., Tsuruga, H., Uemura, H., Torigoe, S., and Kubota, Y. (1994) DNA polymerase (3 gene mutation in human prostate cancer. Cancer Res. 54: 2827–2829.

    PubMed  CAS  Google Scholar 

  98. Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG),,, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85: 6622–6626.

    Article  PubMed  CAS  Google Scholar 

  99. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345: 458–460.

    Article  PubMed  CAS  Google Scholar 

  100. Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with aging. Nature 346: 866–868.

    Article  PubMed  CAS  Google Scholar 

  101. de Lange, T. (1995) Telomere dynamics and genome instability in human cancer. In: Telomeres ( Blackburn, E. H. and Greider, C. W., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 265–293.

    Google Scholar 

  102. Shay, J. W. (1995) Aging and cancer: are telomeres and telomerase the connection? Mol. Med. Today 1: 378–384.

    Article  PubMed  CAS  Google Scholar 

  103. Shay, J. W., and Wright, W. E. (1996) Telomerase activity in human cancer. Curr. Opin. Oncol. 8: 66–71.

    Article  PubMed  CAS  Google Scholar 

  104. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  105. Feng, J., Funk, W. D., Wang, S. S., Weinrich, S. L., Avilion, A. A., Chiu, C. P., et al. (1995) The RNA component ofhuman telomerase. Science 269: 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  106. Nakamura, T. M., Morin, G. B., Chapman, K. B., Weinrich, S. L., Adrews, W. H., Lingner, J., et al. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277: 955–959.

    Article  PubMed  CAS  Google Scholar 

  107. Meyerson, M., Counter, C. M., Eaton, E. N., Ellisen, L. W., Steiner, P., Caddie, S. D., et al. (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90: 785–795.

    Google Scholar 

  108. Nakayama, J., Saito, M., Nakamura, H., Matsuura, A., and Ishikawa, F. (1997) TLPI: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88: 875–884.

    Article  PubMed  CAS  Google Scholar 

  109. Broccoli, D., Smogorzewska, A., Chong, L., and de Lange, T. (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17: 231–235.

    Article  PubMed  CAS  Google Scholar 

  110. van Steensel, B., and de Lange, T. (1997) Control oftelomere length by the human telomeric protein TRF1. Nature 385: 740–743.

    Article  PubMed  CAS  Google Scholar 

  111. Harley, C. B., and Sherwood, S. W. (1997) Telomerase, checkpoints and cancer. Cancer Surv. 29: 263–284.

    PubMed  CAS  Google Scholar 

  112. Counter, C. M., Avilion, A. A., LeFeuvre, C. E., Stewart, N. G., Grider, C. W., Harley. C. B., et al. (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells with express telomerase activity. EMBO. J. 11: 1921–1929.

    PubMed  CAS  Google Scholar 

  113. Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33: 787–91.

    Article  PubMed  CAS  Google Scholar 

  114. Hiyama, K., Ishioka, S., Shirotani, Y., Imai, K., Hiyama, E., Murakami, I., et al. (1995) Aleterations in telomric repeat length in lung cancer are associated with loss of heterozygosity in p53 and Rb. Oncogene 10: 937–944.

    PubMed  CAS  Google Scholar 

  115. Ohyashiki, K., Ohyashiki, J. H., Iwama, H., Hayashi, S., Shay, J. W., and Toyama, K. (1996) Telomerase reactivation in leukemia cells. Int. J. Oncol. 8: 417–421.

    PubMed  CAS  Google Scholar 

  116. Ohyashiki, K., Ohyashiki, J. H., Iwama, H., Hayashi, S., Shay, J. W., and Toyama, K. (1997) Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression. Leukemia 23: 190–194.

    Google Scholar 

  117. Ohyashiki, J. H., Ohyashiki, K., Fujimura, T., Kawakubo, K., Shimamoto, T., Iwabuchi, A., et al. (1994) Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res. 54: 3557–3560.

    PubMed  CAS  Google Scholar 

  118. Hartwell, L. H. (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546.

    Article  PubMed  CAS  Google Scholar 

  119. Hartwell, L. H. and Kastan, M. B. (1994) Cell cycle control and cancer. Science 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  120. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery Jr, C. A., Butel, J. S., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  121. Levine, A. J., Momand, J., and Finaly, C. A., (1991) The p53 tumor suppressor gene. Nature 351: 453–456.

    Article  PubMed  CAS  Google Scholar 

  122. Sturzbecher, H. W., Donzelmann, B., Henning, W., Knippschild, U., and Buchhop, S. (1996) p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15: 1992–2002.

    Google Scholar 

  123. Cross, S. M., Sanche, C. A., Morgan, C. A., Schimke, M. K., Ramel, S., Idzerda, R. L., et al. (1995) A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356.

    Article  PubMed  CAS  Google Scholar 

  124. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S., and van Woude, G. F. (1996) Abnormal centrosome amplification in the absence of p53. Science 271: 1744–1747.

    Article  PubMed  CAS  Google Scholar 

  125. Livingstone, L. R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T. D. (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923935.

    Google Scholar 

  126. Yin, Y., Tainsky, M. A., Bischoff, F. Z., Strong, L. C., and Wahl, G. M. (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937948.

    Google Scholar 

  127. Shiloh, Y. (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Ann. Rev. Genet. 31: 635–662.

    Article  PubMed  CAS  Google Scholar 

  128. Taylor, A. M. R., Metcalfe, J. A., Thick, J., and Mak, Y.-F. (1996) Leukemia and lymphoma in ataxia telangiectasia. Blood 87: 423–438.

    PubMed  CAS  Google Scholar 

  129. Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995) A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  130. Zakian, V. A. (1995) ATM-related genes: what do they tell us about functions of the human gene? Cell 82: 685–687.

    Article  PubMed  CAS  Google Scholar 

  131. Metcalfe, J. A., Parkhill, J., Campbell, L., Stacey, M., Biggs, P., Byrd, P. J., et al. (1996) Accelerated telomere shortening in ataxia telangiectasia. Nature Genet. 13: 350–353.

    Article  PubMed  CAS  Google Scholar 

  132. Smilenov, L. B., Morgan, S. E., Mellado, W., Sawant, S. G., Kastan, M. B., and Pandita, T. K. (1997) Influence of ATM function on telomere metabolism. Oncogene 15: 2659–2665.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shimamoto, T., Ohyashiki, K. (2002). Chromosomes and Chromosomal Instability in Human Cancer. In: Coleman, W.B., Tsongalis, G.J. (eds) The Molecular Basis of Human Cancer. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-125-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-125-1_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-107-3

  • Online ISBN: 978-1-59259-125-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics