Skip to main content

Secretagogue Activity of Trachynilysin, a Neurotoxic Protein Isolated from Stonefish (Synanceia trachynis) Venom

  • Chapter
Handbook of Neurotoxicology

Abstract

Approximately 400 to 500 species of marine fish may be poisonous to humans after ingestion. Most poisonous fish are nonmigratory reef fish and can be either herbivores or carnivores. Some of them have tissues that are toxic at all times, others are poisonous during certain periods of the year or in certain geographical areas, and still others have only specific organs that are toxic, and their toxicity may vary with time, location, and habitat (reviewed in ref. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molgó, J., Benoit, E., Legrand, A. M., and Kreger, A. S. (1999) Bioactive agents involved in fish poisoning: an overview, in Proceedings of the 5th Indo-Pacific Fish Conference (Noumea, 1997), ( Séret, B. and Sire, J. Y., eds.), Soc. Fr. Ichtyol., Paris, pp. 721–738.

    Google Scholar 

  2. Russell, F. E. (1965) Marine toxins and venomous and poisonous marine animals, in Advances in Marine Biology, vol. 3 ( Russell, F. E., ed.), Academic Press, London, pp. 255–385.

    Google Scholar 

  3. Halstead, B. W. (1988) Scorpionfishes, in Poisonous and Venomous Marine Animals of the World, 2nd rev. ed., The Darwin Press, Princeton, pp. 839–906.

    Google Scholar 

  4. Sutherland, S. K. (1983) Genus Synanceia (Linnaeus), stonefishes: S. verrucosa (Bloch & Schneider) & S. trachynis (Richardson), in Australian Animal Toxins, the Creatures, Their Venoms and Care of the Poisoned Patient, Oxford University Press, Melbourne, pp. 400–410.

    Google Scholar 

  5. Wiener, S. (1958) Stonefish sting and its treatment. Med. J. Aust. 2, 218–222.

    Google Scholar 

  6. Wiener, S. (1959) Observations on the venom of the stonefish (Synanceja trachynis). Med. J. Aust. 1, 620–627.

    Google Scholar 

  7. Saunders, P. R. (1959) Venom of the stonefish Synanceja horrida (Linnaeus). Arch. Int. Pharmacodyn. Thér. 123, 195–205.

    PubMed  CAS  Google Scholar 

  8. Austin, L., Cairncross, K. D., and McCallum, I. A. N. (1961) Some pharmacological actions of the venom of the stone fish (Synanceja horrida). Arch. Int. Pharmacodyn. 131, 339–347.

    PubMed  CAS  Google Scholar 

  9. Austin, L., Gillis, R. G., and Youatt, G. (1965) Stonefish venom: some biochemical and chemical observations. Aust. J. Exp. Biol. Med. Sci. 43, 79–90.

    Article  PubMed  CAS  Google Scholar 

  10. Saunders, P. R. (1959) Venom of stonefish Synanceja verrucosa. Science 129, 272–274.

    CAS  Google Scholar 

  11. Bagnis, R. (1968) A propos de 51 cas de piqûres venimeuses par la “Rascasse” tropicale Svnanceia verrucosa. Méd. Trop. 28, 612–620.

    CAS  Google Scholar 

  12. Deakins, D. E. and Saunders, P. R. (1967) Purification of the lethal fraction of the venom of the stonefish Synanceja horrida (Linnaeus). Toxicon 4, 257–262.

    Article  PubMed  CAS  Google Scholar 

  13. Lagraulet, J., Tapu, J., Cuzon, G., Fabre-Teste, R., and Toudic, A. (1972) Recent data on stings of poisonous fishes of the Synanceja genus and disk electrophoresis study of their venom. Bull. Soc. Pathol. Exot. 65, 605–621.

    CAS  Google Scholar 

  14. Scharnagl E., Smola, M., and Pierer, G. (1987) Steinfisch-stichverletzung an der hand. Handchirurgie 19, 46–48.

    CAS  Google Scholar 

  15. Low K. S., Gwee, M. C. E., and Yuen, R. (1990) Neuromuscular effects of the venom of the stonefish Synanceja horrida. Eur. J. Pharmacol. 183, 574.

    Article  Google Scholar 

  16. Low, K. S., Gwee, M. C., Yuen, R., Gopalakrishnakone, P., and Khoo, H. E. (1993) Stonustoxin: a highly potent endothelium-dependent vasorelaxant in the rat. Toxicon 31, 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  17. Khoo, H. E., Yuen, R., Poh, C. H., and Tan, C. H. (1992) Biological activities of Synanceja horrida (stonefish) venom. Nat. Toxins 1, 54–60.

    Article  PubMed  CAS  Google Scholar 

  18. Kreger, A. S., Molgó, J., Cornelia, J. X., Hansson, B., and Thesleff, S. (1993). Effects of stonefish (Synanceia trachynis) venom on murine and frog neuromuscular junctions. Toxicon 31, 307–317.

    Article  PubMed  CAS  Google Scholar 

  19. Shiomi, K., Hosaka, M., and Kikuchi, T. (1993). Properties of a lethal factor in stonefish Synanceia verrucosa venom. Nippon Suis. Gakk. 59, 1099.

    Google Scholar 

  20. Hopkins, B. J, Hodgson, W. C., and Sutherland S. K. (1994) Pharmacological studies of stonefish (Synanceja trachynis) venom. Toxicon 32, 1197–1210.

    Article  PubMed  CAS  Google Scholar 

  21. Gwee, M. C., Gopalakrishnakone, P., Yuen, R., Khoo, H. E., and Low, K. S. (1994) A review of stonefish venoms and toxins. Pharmacol. Ther. 64, 509–528.

    Article  PubMed  CAS  Google Scholar 

  22. Gamier, P., Goudey-Perrière, F., Breton, P., Dewulf, C., Petek, F., and Perrière, C. (1995) Enzymatic properties of the stonefish (Synanceia verrucosa Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon 33, 143–155.

    Article  Google Scholar 

  23. Poh, C. H., Yuen, R., Khoo, H. E., Chung, M., Gwee, M., and Gopalakrishnakone, P. (1991) Purification and partial characterization of stonustoxin (lethal factor) from Synanceia horrida venom. Comp. Biochem. Physiol. 99B, 793–798.

    CAS  Google Scholar 

  24. Low, K. S., Gwee, M. C., Yuen, R., Gopalakrishnakone, P., and Khoo, H. E. (1994) Stonustoxin: effects on neuromuscular function in vitro and in vivo. Toxicon 32, 573–581.

    Article  PubMed  CAS  Google Scholar 

  25. Goudey-Perriere, F. and Perriere, C. (1998) Pharmacological properties of fish venoms. C. R. Seances Soc. Biol. Fil. 192, 503–548.

    PubMed  CAS  Google Scholar 

  26. Hodgson, W. C. (1997). Pharmacological action of Australian animal venoms. Clin. Exp. Pharmacol. Physiol. 24, 10–17.

    Article  PubMed  CAS  Google Scholar 

  27. Khoo, H. E, Chen, D., and Yuen, R. (1998) Role of free thiol groups in the biological activities of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Toxicon 36, 469–476.

    Article  PubMed  CAS  Google Scholar 

  28. Khoo, H. E., Chen, D., and Yuen, R. (1998) The role of cationic amino acid residues in the lethal activity of stonustoxin from stonefish (Synanceja horrida) venom. Biochem. Mol. Biol. Int. 44, 643–646.

    PubMed  CAS  Google Scholar 

  29. Ghadessy, F. J., Chen, D., Kini, R. M., Chung, M. C. M., Jeyaseelan, K., Khoo, H. E., and Yuen, R. (1996) Stonustoxin is a novel lethal factor from stonefish (Synanceja horrida) venom. cDNA cloning and characterization. J. Biol. Chem. 271, 25575–25581.

    Article  PubMed  CAS  Google Scholar 

  30. Gamier, P., Ducancel, F., Ogawa, T., Boulain, J. C., Goudey-Perrière, F., Perrière, C., and Ménez, A. (1997) Complete amino-acid sequence of the beta-subunit of VTX from venom of the stonefish (Synanceia verrucosa) as identified from cDNA cloning experiments. Biochem. Biophys. Acta 1337, 1–5.

    Article  Google Scholar 

  31. Kreger, A. S. (1991) Detection of a cytolytic toxin in the venom of the stonefish (Synanceia trachynis). Toxicon 29, 733–743.

    Article  PubMed  CAS  Google Scholar 

  32. Hopkins, B. J. and Hodgson, W. C. (1998) Enzyme and biochemical studies of stonefish (Synanceja trachynis) and soldierfish (Gymnapistes marmoratus) venoms. Toxicon 36, 791–793.

    Article  PubMed  CAS  Google Scholar 

  33. Colasante, C., Meunier, F. A., Kreger, A. S., and Molgó, J. (1996) Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom. Eur. J. Neurosci. 8, 2149–2156.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, D., Kini, R. M., Yuen, R., and Khoo, H. E. (1997) Haemolytic activity of stonustoxin from stonefish (Synanceja horrida) venom: pore formation and the role of cationic amino acid residues. Biochem. J. 325, 685–691.

    PubMed  CAS  Google Scholar 

  35. Ouanounou, G., Mattei, C., Meunier, F. A., Kreger, A. S., and Molgó, J. (2000) Trachynilysin, a protein neurotoxin isolated from Synanceia trachynis venom, increases spontaneous quantal acetylcholine release from Torpedo marmorata neuromuscular junctions. Cybium 24, (Suppl), 149–156.

    Google Scholar 

  36. Kerr, L. M. and Yosikami, D. (1984) A venom peptide with a novel presynaptic blocking action. Nature 308, 282–284.

    Article  PubMed  CAS  Google Scholar 

  37. Van der Kloot, W., and Molgó, J. (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 899–991.

    Article  PubMed  Google Scholar 

  38. Betz, W. J., Mao, F., and Bewic, G. S. (1992) Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J. Neurosci. 12, 363–375.

    PubMed  CAS  Google Scholar 

  39. Henkel, A.W. and Betz, W.J. ( 1995. Monitoring of black widow spider venom (BWSV) induced exo-and endocytosis in living frog motor nerve terminals with FM1–43. Neuropharmacology 34, 1397–1406

    Article  PubMed  CAS  Google Scholar 

  40. Giovannucci, D. R., Yule, D. I., and Stuenkel, E. L. (1998) Optical measurement of stimulus-evoked membrane dynamics in single pancreatic acinar cells. Am. J. Physiol. 275, C732–739.

    PubMed  CAS  Google Scholar 

  41. De Paiva, A., Meunier, F. A., Molgó, J., Aoki, K. R., and Dolly, J. O. (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl. Acad. Sci. USA 96, 3200–3205.

    Article  PubMed  Google Scholar 

  42. Cochilla, A. J., Angleson, J. K., and Betz, W. J. (1999) Monitoring secretory membrane with FM1–43 fluorescence. Ann. Rev. Neurosci. 22, 1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Kavalali, E. T., Klingauf, J., and Tsien, R. W. (1999) Properties of fast endocytosis at hippocampal synapses. Phil. Trans. R. Soc. Lond. Series B 354, 337–346.

    Article  CAS  Google Scholar 

  44. Hurlbut, W. P., Iezzi, N., Fesce, R., and Ceccarelli, B. (1988) Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. J. Physiol. (Lond.) 425, 501–526.

    Google Scholar 

  45. Heuser, J. E. (1989) Review of electron microscopic evidence favouring vesicle exocytosis as the structural basis for quantal release during synaptic transmission. Q. J. Exp. Physiol. 74, 1051–1069.

    PubMed  CAS  Google Scholar 

  46. Kelly, R. (1993) Storage and release of neurotransmitters. Neuron 10, 43–53.

    Article  Google Scholar 

  47. Betz, W. J. and Angleson, J. K. (1998) The synaptic vesicle cycle. Annu. Rev. Physiol. 60, 347–363.

    Article  PubMed  CAS  Google Scholar 

  48. Thureson-Klein, A. K., Klein R. L., Zhu P. C., and Kong, J. Y. (1988) Differential release of transmitters and neuropeptides co-stored in central and peripheral neurons, in Cellular and Molecular Basis of Synaptic Transmission ( Zimmermann, H., ed.), Springer Verlag, Berlin, pp. 137–151.

    Chapter  Google Scholar 

  49. De Camilli, P. and Jahn, R. (1990) Pathways to regulated exocytosis in neurons. Annu. Rev. Physiol. 52, 625–645.

    Article  PubMed  Google Scholar 

  50. Matteoli, M., Haimann, C., Torri-Tarelli, F., Polak, J. M., Ceccarelli, B., and De Camilli P. (1988) Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc. Natl. Acad. Sci. USA 85, 7366–7370.

    Article  PubMed  CAS  Google Scholar 

  51. Matteoli, M., Haimann C., and De Camilli, P. (1990) Substance P-like immunoreactivity at the frog neuromuscular junction. Neuroscience 37, 271–275.

    Article  PubMed  CAS  Google Scholar 

  52. Rosenthal, L. and Meldolesi, J. (1989) Alpha-latrotoxin and related toxins. Pharmacol. Ther. 42, 115–134.

    Article  PubMed  CAS  Google Scholar 

  53. Torri-Tarelli, F., Villa, A., Valtorta, F., De Camilli, P., Greengard, P., and Ceccarelli, B. (1990) Redistribution of synaptophysin and synapsin I during a-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J. Cell Biol. 110, 449–459.

    Article  PubMed  CAS  Google Scholar 

  54. Meunier, F. A., Mattei, C., Chameau, P., Lawrence, G., Colasante, C., Kreger, A.S., et al. (2000) Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Cat+. J. Cell Sci. 113, 1119–1125.

    PubMed  CAS  Google Scholar 

  55. Herreros, J., Lalli, G., Montecucco, C., and Schiavo, G. (1999) Pathophysiological properties of clostridia) neurotoxins, in The Comprehensive Sourcebook of Bacterial Protein Toxins ( Freer, J. H. and Alouf, J. E., eds.), Academic Press, London, pp. 202–228.

    Google Scholar 

  56. Lawrence, G. W., Foran, P., and Dolly, J. O. (1996). Distinct exocytotic responses of intact and permeabilized chromaffin cells after cleavage of the 25-kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B. Eur. J. Biochem. 236, 877–886.

    Article  PubMed  CAS  Google Scholar 

  57. Foran, P., Lawrence, G. W., Shone, C. C., Foster, K. A., and Dolly, J. O. (1996) Botulinum neurotoxin C 1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells–correlation with its blockade of catecholamine release. Biochemistry 35, 2630–2636.

    Article  PubMed  CAS  Google Scholar 

  58. Chameau, C., Meunier, F. A., Kreger, A. S., Shimahara, T., and Molgó, J. (1997) Increase of intracellular Cat+ in cultured mouse hippocampal neurons by trachynilysin, a protein toxin extracted from stonefish (Synanceia trachynis) venom. Toxicon 35, 1662.

    Article  Google Scholar 

  59. Chameau, P., Lucas, P., Melliti, K., Bournaud, R., and Shimahara, T. (1999) Development of multiple calcium channel types in cultured mouse hippocampal neurons. Neuroscience 90, 383–388.

    Article  PubMed  CAS  Google Scholar 

  60. Lopez, M. G., Albillos, A., de la Fuente, M. T., Borges, R., Gandia, L., Carbone, E., et al. (1994) Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflügers Arch. Eur. J. Physiol. 427, 348–354.

    Article  CAS  Google Scholar 

  61. Albillos, A., Garcia, A. G., Olivera, B., and Gandia, L. (1996) Re-evaluation of the P/Q Cat+ channel components of Bat+ currents in bovine chromaffin cells superfused with solutions containing low and high Bat+ concentrations. Pflügers Arch. Eur. J. Physiol. 432, 1030–1038.

    Article  CAS  Google Scholar 

  62. Artalejo, C. R., Adams, M. E., and Fox, A. P. (1994) Three types of Cat+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76.

    Article  PubMed  CAS  Google Scholar 

  63. Burgoyne, R. D. (1991) Control of exocytosis in adrenal chromaffin cells. Biochim. Biophys. Acta 1071, 174–202.

    Article  PubMed  CAS  Google Scholar 

  64. Hamprecht, B. (1977) Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma x glioma hybrids in cell culture. Int. Rev. Cytol. 49, 99–170.

    Article  PubMed  CAS  Google Scholar 

  65. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  66. Ouanounou, G., Malo, M., Kreger, A. S., Prado de Carvalho, L., and Molgo, J. (1999) Changes in ionic permeability induced by trachynilysin in differentiated NG108–15 neuro-blastoma cells. Toxicon 37, 1234.

    Google Scholar 

  67. Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA, p. 607.

    Google Scholar 

  68. Finkelstein, A., Rubin, L. L., and Tzeng, M. C. (1976) Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science 193, 1009–1011.

    Article  PubMed  CAS  Google Scholar 

  69. Hurlbut, W. P., Chieregatti, E., Valtorta, F., and Haimann, C. (1994) Alpha-latrotoxin channels in neuroblastoma cells. J. Membr. Biol. 138, 91–102.

    PubMed  CAS  Google Scholar 

  70. Zorec, R., Tester, M., Macek, P., and Mason, W. T. (1990) Cytotoxicity of equinatoxin-II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J. Membr. Biol. 118, 243–249.

    Article  PubMed  CAS  Google Scholar 

  71. Belmonte, G., Pederzolli, C., Macek, P., and Menestrina, G. (1993) Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes. J. Membr. Biol. 131, 11–22.

    Article  PubMed  CAS  Google Scholar 

  72. Macek, P., Belmonte, G., Pederzolli, C., and Menestrina, G. (1994) Mechanism of action of equinatoxin-II, a cytolysin from the sea anemone Actinia equina L. belonging to the family of actinoporins. Toxicology 87, 205–227.

    Article  PubMed  CAS  Google Scholar 

  73. Shai, Y. (1995). Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci. 20, 460–464.

    Article  PubMed  CAS  Google Scholar 

  74. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M., and Südhof, T. C. (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257, 50–56.

    Article  PubMed  CAS  Google Scholar 

  75. Davletov, B. A., Shamotienko, O. G., Lelianova, V. G., Grishin, E. V., and Ushkaryov, Y. A. (1996) Isolation and biochemical characterization of a Ca“-independent alphalatrotoxin-binding protein. J. Biol. Chem. 271, 23239–23245

    Google Scholar 

  76. Lelianova, V. G., Davletov, B. A., Sterling, A., Rahman, M. A., Grishin, E. V., Totty, N. F., and Ushkaryov, Y. A. (1997). Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem. 272, 21,504–21, 508.

    Google Scholar 

  77. Krasnoperov, V. G., Beavis, R., Chepurny, O. G., Little, A. R., Plotnikov, A. N., and Petrenko, A. G. (1996) The calcium-independent receptor of alpha-latrotoxin is not a neurexin. Biochem. Biophy. Res. Corn. 227, 868–875.

    Article  CAS  Google Scholar 

  78. Bittner, M. A., Krasnoperov, V. G., Stuenkel, E. L., Petrenko, A. G., and Holz, R. W. (1998) A Cat+-independent receptor for alpha-latrotoxin, CIRL, mediates effects on secretion via multiple mechanisms. J. Neurosci. 18, 2914–2922.

    PubMed  CAS  Google Scholar 

  79. Krasnoperov, V. G., Bittner, M. A., Beavis, R., Kuang, Y., Salnikow, K. V., Chepurny, O. G., et al. (1997) Alpha-latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18, 925–937.

    Article  PubMed  CAS  Google Scholar 

  80. Sugita, S., Ichtchenko, K., Khvotchev, M., and Südhof, T. C. (1998) Alpha-latrotoxin receptor CIRL/latrophilin 1 (CLI) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. J Biol. Chem. 273, 32715–32724.

    Article  PubMed  CAS  Google Scholar 

  81. Davletov, B. A., Meunier, F. A., Ashton, A. C., Matsushita, H., Hirst, W. D., Lelianova, V. G., et al. (1998) Vesicle exocytosis stimulated by alpha-latrotoxin is mediated by latrophilin and requires both external and stored Ca’. EMBO J 17, 3909–3920.

    Article  PubMed  CAS  Google Scholar 

  82. Rahman, M. A., Ashton, A. C., Meunier, F. A., Davletov, B. A., Dolly, J. O., and Ushkaryov, Y. A. (1999). Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca’ and is mediated by latrophilin, G proteins and phospholipase C. Phil. Trans. R. Soc. Lond. Series B 354, 379–386.

    Article  CAS  Google Scholar 

  83. Ichtchenko, K., Khvotchev, M., Kiyatkin, N., Simpson, L., Sugita, S., and Südhof, T. (1998) alpha-latrotoxin action probed with recombinant toxin: receptors recruit alphalatrotoxin but do not transduce an exocytotic signal. EMBO J. 17, 6188–6199.

    Google Scholar 

  84. Orlova, E. V., Rahman, M. A., Gowen, B., Volynski, K. E., Ashton, A. C., Manser, C., et al. (2000) Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat. Struct. Biol. 7, 48–53.

    Article  PubMed  CAS  Google Scholar 

  85. Saibil, H. R. (2000) The black widow’s versatile venom. Nat. Struct. Biol. 7, 3–4.

    Article  PubMed  CAS  Google Scholar 

  86. Volynski, K. E., Meunier, F.A., Lelianova, V. G., Dudina, E. E., Volkova, T. M., Rahman, M. A., et al. (2000) Latrophilin, neurexin, and their signaling-deficient mutants facilitate alpha-latrotoxin insertion into membranes but are not involved in pore formation. J. Biol. Chem. 275, 41175–41183.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meunier, F.A. et al. (2002). Secretagogue Activity of Trachynilysin, a Neurotoxic Protein Isolated from Stonefish (Synanceia trachynis) Venom. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-132-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-132-9_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-193-6

  • Online ISBN: 978-1-59259-132-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics