Skip to main content

Dopamine and Its Modulation of Drug-Induced Neuronal Damage

  • Chapter
Handbook of Neurotoxicology

Abstract

Dopamine (DA), or 3-hydroxytyramine, is a chemical species that has immense importance for the proper functioning of a number of the body’s organ systems. Perhaps DA exerts its most profound influence in its role as a neurotransmitter. DA is distributed in a rather discrete manner throughout the central nervous system (CNS), with its cell bodies originating in the mesencephalon. Its axonal processes ramify from here to many distant sites where DA participates in the process of neuronal communication. As a neurotransmitter, DA is known to mediate a wide-variety of physiological processes and behaviors including locomotor activity, modulation of the cardiovascular system, food-intake, regulation of body temperature, and neuroendocrine function, to mention but a few. DA also mediates the reinforcing effects of a number of psychostimulant drugs of abuse such as cocaine and the amphetamines. In a broader sense, DA is actually considered the neurotransmitter in the brain’s pleasure center (i.e., the nucleus accumbens) where it decodes the reinforcing effects of diverse stimuli. When the DA neuronal system does not function properly, it is possible that the ensuing disruption in higher-cognitive processes can lead to psychiatric illness. Furthermore, if the nigrostriatal DA system damaged or destroyed, the effects can manifest themselves as a neurological disorder, and Parkinson’s disease (PD) is the best known example of this. Therefore, the DA neuronal system is extremely important to brain function and it maintains a delicate balance between normal function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., and Gutknecht, W. F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    PubMed  CAS  Google Scholar 

  2. Graham, D. G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  3. Hastings, T. G., Lewis, D. A., and Zigmond, M. J. (1996) Reactive dopamine metabolites and neurotoxicity: implications for Parkinson’s disease. Adv. Exp. Med. Biol. 387, 97–106.

    PubMed  CAS  Google Scholar 

  4. Hastings, T. G. and Zigmond, M. J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J. Neurochem. 63, 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  5. Gieseg, S. P., Simpson, J. A., Charlton, T. S., Duncan, M. W., and Dean, R. T. (1993) Protein-bound 3,4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 32, 4780–4786.

    Article  PubMed  CAS  Google Scholar 

  6. Terland, O., Flatmark, T., Tangeras, A., and Gronberg, M. (1997) Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J. Mol. Cell. Cardiol. 29, 1731–1738.

    Article  PubMed  CAS  Google Scholar 

  7. Stokes, A. H., Brown, B. G., Lee, C. K., Doolittle, D. J., and Vrana, K. E. (1996) Tyrosinase enhances the covalent modification of DNA by dopamine. Brain Res. Mol. Brain Res. 42, 167–170.

    Article  PubMed  CAS  Google Scholar 

  8. Maker, H. S., Weiss, C., Silides, D. J., and Cohen, G. (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. Neurochem. 36, 589–593.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen, G., Farooqui, R., and Kesler, N. (1997) Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc. Natl. Acad. Sci. USA 94, 4890–4894.

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  11. Berman, S. B., Zigmond, M. J., and Hastings, T. G. (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J. Neurochem. 67, 593–600.

    Article  PubMed  CAS  Google Scholar 

  12. Berman, S. B. and Hastings, T. G. (1997) Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J. Neurochem. 69, 1185–1195.

    Article  PubMed  CAS  Google Scholar 

  13. Filloux, F. and Townsend, J. J. (1993) Pre-and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp. Neurol. 119, 79–88.

    Article  PubMed  CAS  Google Scholar 

  14. Hastings, T. G., Lewis, D. A., and Zigmond, M. J. (1996) Role of oxidation in the neuro-toxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. USA 93, 1956–1961.

    Article  PubMed  CAS  Google Scholar 

  15. Hoyt, K. R., Reynolds, I. J., and Hastings, T. G. (1997) Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: interactions with and differences from glutamate-induced cell death. Exp. Neurol. 143, 269–281.

    Article  PubMed  CAS  Google Scholar 

  16. Lai, C. T. and Yu, P. H. (1997) Dopamine-and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem. Pharmacol. 53, 363–372.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg, P. A. (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J. Neurosci. 8, 2887–2894.

    PubMed  CAS  Google Scholar 

  18. Cadet, J. L. and Brannock, C. (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem. Int. 32, 117–131.

    Article  PubMed  CAS  Google Scholar 

  19. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., and Ricaurte, G. A. (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [1 I C]WIN-35,428. J. Neurosci. 18, 8417–8422.

    PubMed  CAS  Google Scholar 

  20. McCann, U. D., Szabo, Z., Scheffel, U., Dannals, R. F., and Ricaurte, G. A. (1998) Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings [see comments]. Lancet 352, 1433–1437.

    Article  PubMed  CAS  Google Scholar 

  21. Gibb, J. W., Johnson, M., Elayan, I., Lim, H. K., Matsuda, L., and Hanson, G. R. (1997) Neurotoxicity of amphetamines and their metabolites. NIDA Res. Monogr. 173, 128–145.

    PubMed  CAS  Google Scholar 

  22. Schmidt, C. J., Ritter, J. K., Sonsalla, P. K., Hanson, G. R., and Gibb, J. W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233, 539–544.

    PubMed  CAS  Google Scholar 

  23. Stone, D. M., Johnson, M., Hanson, G. R., and Gibb, J. W. (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J. Pharmacol. Exp. Ther. 247, 79–87.

    PubMed  CAS  Google Scholar 

  24. Gibb, J. W., Stone, D. M., Johnson, M., and Hanson, G. R. (1989) Role of dopamine in the neurotoxicity induced by amphetamines and related designer drugs, NIDA Res. Monogr. 94, 161–178.

    PubMed  CAS  Google Scholar 

  25. Schmidt, C. J., Black, C. K., and Taylor, V. L. (1991) L-DOPA potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, pchloroamphetamine or methamphetamine to rats. Eur. J. Pharmacol. 203, 41–49.

    Article  PubMed  CAS  Google Scholar 

  26. Aguirre, N., Barrionuevo, M., Lasheras, B., and Del Rio, J. (1998) The role of dopaminergic systems in the perinatal sensitivity to 3, 4-methylenedioxymethamphetamine-induced neurotoxicity in rats. J. Pharmacol. Exp. Ther. 286, 1159–1165.

    PubMed  CAS  Google Scholar 

  27. Fumagalli, F., Gainetdinov, R. R., Wang, Y. M., Valenzano, K. J., Miller, G. W., and Caron, M. G. (1999) Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. J. Neurosci. 19, 2424–2431.

    PubMed  CAS  Google Scholar 

  28. Cohen, G. (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann. NY Acad. Sci. 738, 8–14.

    Article  PubMed  CAS  Google Scholar 

  29. Cubells, J. F., Rayport, S., Rajendran, G., and Sulzer, D. (1994) Methamphetamine neuro-toxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J. Neurosci. 14, 2260–2271.

    PubMed  CAS  Google Scholar 

  30. Sulzer, D., Chen, T. K., Lau, Y. Y., Kristensen, H., Rayport, S., and Ewing, A. (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15, 4102–4108.

    PubMed  CAS  Google Scholar 

  31. Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D., and Edwards, R. H. (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19, 1271–1283.

    Article  PubMed  CAS  Google Scholar 

  32. Rudnick, G. and Wall, S. C. (1992) The molecular mechanism of “ecstasy” [3,4methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl. Acad. Sci. USA 89, 1817–1821.

    Article  PubMed  CAS  Google Scholar 

  33. Schuldiner, S., Steiner-Mordoch, S., Yelin, R., Wall, S. C., and Rudnick, G. (1993) Amphetamine derivatives interact with both plasma membrane and secretory vesicle biogenic amine transporters. Mol. Pharmacol. 44, 1227–1231.

    PubMed  CAS  Google Scholar 

  34. Pardo, B., Mena, M. A., Casarejos, M. J., Paino, C. L., and De Yebenes, J. G. (1995) Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res. 682, 133–143.

    Article  PubMed  CAS  Google Scholar 

  35. Newcomer, T. A., Rosenberg, P. A., and Aizenman, E. (1995) Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin. J. Neurochem. 64, 1742–1748.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng, N., Maeda, T., Kume, T., Kaneko, S., Kochiyama, H., Akaike, A., Goshima, Y., and Misu, Y. (1996) Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res. 743, 278–283.

    Article  PubMed  CAS  Google Scholar 

  37. Basma, A. N., Morris, E. J., Nicklas, W. J., and Geller, H. M. (1995) L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J. Neurochem. 64, 825–832.

    Article  PubMed  CAS  Google Scholar 

  38. Alexander, T., Sortwell, C. E., Sladek, C. D., Roth, R. H., and Steece-Collier, K. (1997) Comparison of neurotoxicity following repeated administration of 1-dopa, d-dopa and dopamine to embryonic mesencephalic dopamine neurons in cultures derived from Fisher 344 and Sprague-Dawley donors. Cell Transplant 6, 309–315.

    Article  PubMed  CAS  Google Scholar 

  39. Fahn, S (1998) Welcome news about levodopa, but uncertainty remains [editorial] [see comments]. Ann. Neurol. 43, 551–444.

    Article  PubMed  CAS  Google Scholar 

  40. Heikkila, R. E., Manzino, L., Cabbat, F. S., and Duvoisin, R. C. (1985) Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase B. J. Neurochem. 45, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  41. Shoulson, I. (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann. Neurol. 44, S160 - S166.

    PubMed  CAS  Google Scholar 

  42. Giovanni, A., Liang, L. P., Hastings, T. G., and Zigmond, M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  43. Shankaran, M., Yamamoto, B. K., and Gudelsky, G. A. (1999) Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and longterm depletion of serotonin in the striatum. J. Neurochem. 72, 2516–2522.

    Article  PubMed  CAS  Google Scholar 

  44. Yamamoto, B. K. and Zhu, W. (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J. Pharmacol. Exp. Ther. 287, 107–114.

    PubMed  CAS  Google Scholar 

  45. Deng, X. and Cadet, J. L. (1999) Methamphetamine administration causes overexpression of nNOS in the mouse striatum [In Process Citation]. Brain Res. 851, 254–257.

    Article  PubMed  CAS  Google Scholar 

  46. Zheng, Y. and Laverty, R. (1998) Role of brain nitric oxide in (+/-)3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats. Brain Res. 795, 257–263.

    Article  PubMed  CAS  Google Scholar 

  47. Gudelsky, G. A. (1996) Effect of ascorbate and cysteine on the 3,4-methylenedioxymethamphetamine-induced depletion of brain serotonin. J. Neural. Transm. 103, 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  48. Hom, D. G., Jiang, D., Hong, E. J., Mo, J. Q., and Andersen, J. K. (1997) Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity. Brain Res. Mol. Brain Res. 46, 154–160.

    Article  PubMed  CAS  Google Scholar 

  49. Sheng, P., Cerruti, C., Ali, S., and Cadet, J. L. (1996) Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells. Ann. NYAcad. Sci. 801, 174–186.

    Article  CAS  Google Scholar 

  50. Itzhak, Y., Martin, J. L., and Ali, S. F. (1999) Methamphetamine-and 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice, Synapse 34, 305–312.

    Article  PubMed  CAS  Google Scholar 

  51. Itzhak, Y. and Ali, S. F. (1996) The neuronal nitric oxide synthase inhibitor, 7nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J. Neurochem. 67, 1770–1773.

    Article  PubMed  CAS  Google Scholar 

  52. Ali, S. F. and Itzhak, Y. (1998) Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann. NYAcad. Sci. 844, 122–130.

    Article  CAS  Google Scholar 

  53. Callahan, B. T. and Ricaurte, G. A. (1998) Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity. NeuroReport 9, 2691–2695.

    Article  PubMed  CAS  Google Scholar 

  54. Di Monte, D. A., Royland, J. E., Jakowec, M. W., and Langston, J. W. (1996) Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase. J. Neurochem. 67, 2443–2450.

    Article  PubMed  Google Scholar 

  55. Jayanthi, S., Ladenheim, B., Andrews, A. M., and Cadet, J. L. (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy). Neuroscience 91, 1379–1387.

    Article  PubMed  CAS  Google Scholar 

  56. Jayanthi, S., Ladenheim, B., and Cadet, J. L. (1998) Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. NYAcad. Sci. 844, 92–102.

    Article  CAS  Google Scholar 

  57. Hirata, H., Asanuma, M., and Cadet, J. L. (1998) Superoxide radicals are mediators of the effects of methamphetamine on Zif268 (Egr-1, NGFI-A) in the brain: evidence from using CuZn superoxide dismutase transgenic mice. Brain Res. Mol. Brain Res. 58, 209–216.

    Article  PubMed  CAS  Google Scholar 

  58. Cadet, J. L., Ali, S. F., Rothman, R. B., and Epstein, C. J. (1995) Neurotoxicity, drugs and abuse, and the CuZn-superoxide dismutase transgenic mice. Mol. Neurobiol. 11, 155–163.

    Article  PubMed  CAS  Google Scholar 

  59. Cadet, J. L., Ladenheim, B., Hirata, H., Rothman, R. B., Ali, S., Carlson, E., Epstein, C., and Moran, T. H. (1995) Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): evidence from using CuZn-superoxide dismutase transgenic mice. Synapse 21, 169–176.

    Article  PubMed  CAS  Google Scholar 

  60. Hirata, H., Ladenheim, B., Rothman, R. B., Epstein, C., and Cadet, J. L. (1995) Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Res. 677, 345–347.

    Article  PubMed  CAS  Google Scholar 

  61. Cadet, J. L., Ladenheim, B., Baum, I., Carlson, E., and Epstein, C. (1994) CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and of methylenedioxymethamphetamine (MDMA). Brain Res. 655, 259–262.

    Article  PubMed  CAS  Google Scholar 

  62. Cadet, J. L., Ali, S., and Epstein, C. (1994) Involvement of oxygen-based radicals in methamphetamine-induced neurotoxicity: evidence from the use of CuZnSOD transgenic mice. Ann. NYAcad. Sci. 738, 388–391.

    Article  CAS  Google Scholar 

  63. Kita, T., Paku, S., Takahashi, M., Kubo, K., Wagner, G. C., and Nakashima, T. (1998) Methamphetamine-induced neurotoxicity in BALB/c, DBA/2N and C57BL/6N mice. Neuropharmacology 37, 1177–1184.

    Article  PubMed  CAS  Google Scholar 

  64. Beckman, J. S. and Koppenol, W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am. J. Physiol. 271, C1424 - C1437.

    PubMed  CAS  Google Scholar 

  65. Crow, J. P. and Beckman, J. S. (1995) The role of peroxynitrite in nitric oxide-mediated toxicity. Curr. Top. Microbiol. Immunol. 196, 57–73.

    Article  PubMed  CAS  Google Scholar 

  66. Crow, J. P. and Beckman, J. S. (1995) Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv. Pharmacol. 34, 17–43.

    Article  PubMed  CAS  Google Scholar 

  67. Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., and Beckman, J. S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5, 834–842.

    Article  PubMed  CAS  Google Scholar 

  68. Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P. (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol. 233, 229–240.

    Article  PubMed  CAS  Google Scholar 

  69. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250.

    PubMed  CAS  Google Scholar 

  70. Crow, J. P. and Ischiropoulos, H. (1996) Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol. 269, 185–194.

    Article  PubMed  CAS  Google Scholar 

  71. Souza, J M., Daikhin, E., Yudkoff, M., Raman, C. S., and Ischiropoulos, H. (1999) Factors determining the selectivity of protein tyrosine nitration. Arch. Biochem. Biophys. 371, 169–178.

    Article  PubMed  CAS  Google Scholar 

  72. van der Vliet, A., Eiserich, J. P., Kaur, H., Cross, C. E., and Halliwell, B. (1996) Nitrotyrosine as biomarker for reactive nitrogen species. Methods Enzymol. 269, 175–184.

    Article  PubMed  Google Scholar 

  73. Ischiropoulos, H. and al-Mehdi, A. B. (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 364, 279–282.

    Article  PubMed  CAS  Google Scholar 

  74. Smith, M. A., Richey Harris, P. L., Sayre, L. M., Beckman, J. S., and Perry, G. (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657.

    PubMed  CAS  Google Scholar 

  75. Crow, J. P. and Beckman, J. S. (1996) The importance of superoxide in nitric oxide-dependent toxicity: evidence for peroxynitrite-mediated injury. Adv. Exp. Med. Biol. 387, 147–161.

    PubMed  CAS  Google Scholar 

  76. Ischiropoulos, H. (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356, 1–11.

    Article  PubMed  CAS  Google Scholar 

  77. Ara, J., Przedborski, S., Naini, A. B., Jackson-Lewis, V., Trifiletti, R. R., Horwitz, J., and Ischiropoulos, H. (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc. Natl. Acad. Sci. USA 95, 7659–7663.

    Article  PubMed  CAS  Google Scholar 

  78. Imam, S. Z., Crow, J. P., Newport, G. D., Islam, F., Slikker, W., Jr., and Ali, S. F. (1999) Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res. 837, 15–21.

    Article  PubMed  CAS  Google Scholar 

  79. Simonian, N. A. and Coyle, J. T. (1996) Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83–106.

    Article  PubMed  CAS  Google Scholar 

  80. Fahn, S and Cohen, G. (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann. Neurol. 32, 804–812.

    Article  PubMed  CAS  Google Scholar 

  81. Tatton, W. G. and Olanow, C. W. (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria [see comments]. Biochim. Biophys. Acta 1410, 195–213.

    Article  PubMed  CAS  Google Scholar 

  82. Gutteridge, J. M. (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann. NY Acad. Sci. 738, 201–213.

    Article  PubMed  CAS  Google Scholar 

  83. Zang, L. Y. and Misra, H. P. (1993) Generation of reactive oxygen species during the monoamine oxidase-catalyzed oxidation of the neurotoxicant, 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine. J. Biol. Chem. 268, 16504–16512.

    PubMed  CAS  Google Scholar 

  84. Zang, L. Y. and Misra, H. P. (1992) EPR kinetic studies of superoxide radicals generated during the autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivated intermediate of parkinsonian-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Biol. Chem. 267, 23601–23608.

    PubMed  CAS  Google Scholar 

  85. Zang, L. Y. and Misra, H. P. (1992) Superoxide radical production during the autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium perchlorate. J. Biol. Chem. 267, 17547–17552.

    PubMed  CAS  Google Scholar 

  86. Klivenyi, P., St. Clair, D., Wermer, M., Yen, H. C., Oberley, T., Yang, L., and Flint Beal, M. (1998) Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol. Dis. 5, 253–258.

    Article  PubMed  CAS  Google Scholar 

  87. Andrews, A. M., Ladenheim, B., Epstein, C. J., Cadet, J. L., and Murphy, D. L. (1996) Transgenic mice with high levels of superoxide dismutase activity are protected from the neurotoxic effects of 2’-NH2-MPTP on serotonergic and noradrenergic nerve terminals. Mol. Pharmacol. 50, 1511–1519.

    PubMed  CAS  Google Scholar 

  88. Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A. B., Simonetti, S., Fahn, S., et al. (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  89. Matthews, R. T., Beal, M. F., Fallon, J., Fedorchak, K., Huang, P. L., Fishman, M. C., and Hyman, B. T. (1997) MPP+ induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol. Dis. 4, 114–121.

    Article  PubMed  CAS  Google Scholar 

  90. Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., and Dawson, T. M. (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc. Natl. Acad. Sci. USA 93, 4565–4571.

    Article  PubMed  CAS  Google Scholar 

  91. Liberatore, G. T., Jackson-Lewis, V., Vukosavic, S., Mandir, A. S., Vila, M., McAuliffe, W. G., et al. (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nature Med. 5, 1403–1409.

    Article  PubMed  CAS  Google Scholar 

  92. Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. F. (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons [see comments], Nature Med. 2, 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  93. Schulz, J. B., Matthews, R. T., Muqit, M. M., Browne, S. E., and Beal, M. F. (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTPinduced neurotoxicity in mice. J. Neurochem. 64, 936–939.

    Article  PubMed  CAS  Google Scholar 

  94. Golbe, L. I. (1993) Risk factors in young-onset Parkinson’s disease [editorial; comment]. Neurology 43, 1641–1643.

    Article  PubMed  CAS  Google Scholar 

  95. Hubble, J. P., Cao, T., Hassanein, R. E., Neuberger, J. S., and Koller, W. C. (1993) Risk factors for Parkinson’s disease [see comments]. Neurology 43, 1693–1697.

    Article  PubMed  CAS  Google Scholar 

  96. Semchuk, K. M., Love, E. J., and Lee, R. G. (1991) Parkinson’s disease and exposure t o rural environmental factors: a population based case-control study. Can. J. Neurol. Sci. 18, 279–286.

    PubMed  CAS  Google Scholar 

  97. Seidler, A., Hellenbrand, W., Robra, B. P., Vieregge, P., Nischan, P., Joerg, J., et al. (1996) Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 46, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  98. Fleming, L., Mann, J. B., Bean, J., Briggle, T., and Sanchez-Ramos, J. R. (1994) Parkinson’s disease and brain levels of organochlorine pesticides. Ann. Neurol. 36, 100–103.

    Article  PubMed  CAS  Google Scholar 

  99. Semchuk, K. M., Love, E. J., and Lee, R. G. (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  100. Koller, W., Vetere-Overfield, B., Gray, C., Alexander, C., Chin, T., Dolezal, J., et al. (1990) Environmental risk factors in Parkinson’s disease. Neurology 40, 1218–1221.

    Article  PubMed  CAS  Google Scholar 

  101. Barbeau, A., Dallaire, L., Buu, N. T., Poirier, J., and Rucinska, E. (1985) Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci. 37, 1529–1538.

    Article  PubMed  CAS  Google Scholar 

  102. Brooks, A. I., Chadwick, C. A., Gelbard, H. A., Cory-Slechta, D. A., and Federoff, H. J. (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 823, 1–10.

    Article  PubMed  CAS  Google Scholar 

  103. Wagner, S. R. and Greene, F. E. (1978) Dieldrin-induced alterations in biogenic amine content of rat brain. Toxicol. Appl. Pharmacol. 43, 45–55.

    Article  PubMed  CAS  Google Scholar 

  104. Heinz, G. H., Hill, E. F., and Contrera, J. F. (1980) Dopamine and norepinephrine depletion in ring doves fed DDE, dieldrin, and Aroclor 1254. Toxicol. Appl. Pharmacol. 53, 75–82.

    Article  PubMed  CAS  Google Scholar 

  105. Sanchez-Ramos, J., Facca, A., Basit, A., and Song, S. (1998) Toxicity of dieldrin for dopaminergic neurons in mesencephalic cultures. Exp. Neurol. 150, 263–271.

    Article  PubMed  CAS  Google Scholar 

  106. Bergen, W. G. (1971) The in vitro effect of dieldrin on respiration of rat liver mitochondria. Proc. Soc. Exp. Biol. Med. 136, 732–735.

    PubMed  CAS  Google Scholar 

  107. Miller, G. W., Kirby, M. L., Levey, A. I., and Bloomquist, J. R. (1999) Heptachlor alters expression and function of dopamine transporters [In Process Citation]. Neurotoxicology 20, 631–637.

    PubMed  CAS  Google Scholar 

  108. Vaccari, A. and Saba, P. (1995) The tyramine-labelled vesicular transporter for dopamine: a putative target of pesticides and neurotoxins. Eur. J. Pharmacol. 292, 309–314.

    PubMed  CAS  Google Scholar 

  109. Ho, Y. S., Gargano, M., Cao, J., Bronson, R. T., Heimler, I., and Hutz, R. J. (1998) Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J. Biol. Chem. 273, 7765–7769.

    Article  PubMed  CAS  Google Scholar 

  110. Huang, T. T., Yasunami, M., Carlson, E. J., Gillespie, A. M., Reaume, A. G., Hoffman, E. K., et al. (1997) Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch. Biochem. Biophys. 344, 424–432.

    Article  PubMed  CAS  Google Scholar 

  111. Yang, W. and Sun, A. Y. (1998) Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem. Res. 23, 47–53.

    Article  PubMed  CAS  Google Scholar 

  112. Yang, W. L. and Sun, A. Y. (1998) Paraquat-induced cell death in PC12 cells. Neurochem. Res. 23, 1387–1394.

    Article  PubMed  CAS  Google Scholar 

  113. Li, X. and Sun, A. Y. (1999) Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells. J. Neural. Transm. 106, 1–21.

    Article  PubMed  CAS  Google Scholar 

  114. Day, B. J., Patel, M., Calavetta, L., Chang, L. Y., and Stamler, J. S. (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proc. Natl. Acad. Sci. USA 96, 12760–12765.

    Article  PubMed  CAS  Google Scholar 

  115. Kerry, N. and Rice-Evans, C. (1998) Peroxynitrite oxidises catechols to o-quinones. FEBS Lett. 437, 167–171.

    Article  PubMed  CAS  Google Scholar 

  116. Pannala, A. S., Razaq, R., Halliwell, B., Singh, S., and Rice-Evans, C. A. (1998) Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation? Free Radic. Biol. Med. 24, 594–606.

    Article  PubMed  CAS  Google Scholar 

  117. Hastings, T. G. and Zigmond, M. J. (1997) Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. J. Neural. Transm. (Suppl.)49, 103–110.

    CAS  Google Scholar 

  118. Stokes, A. H., Hastings, T. G., and Vrana, K. E. (1999) Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659–665.

    Article  PubMed  CAS  Google Scholar 

  119. LaVoie, M. J. and Hastings, T. G. (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19, 1484–1491.

    PubMed  CAS  Google Scholar 

  120. Spencer, J. P., Jenner, P., Daniel, S. E., Lees, A. J., Marsden, D. C., and Halliwell, B. (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71, 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  121. Montine, T. J., Picklo, M. J., Amarnath, V., Whetsell, W. O., Jr., and Graham, D. G. (1997) Neurotoxicity of endogenous cysteinylcatechols. Exp. Neurol. 148, 26–33.

    Article  PubMed  CAS  Google Scholar 

  122. Rowe, D. B., Le, W., Smith, R. G., and Appel, S. H. (1998) Antibodies from patients with Parkinson’s disease react with protein modified by dopamine oxidation. J. Neurosci. Res. 53, 551–558.

    Article  PubMed  CAS  Google Scholar 

  123. Pfeiffer, S. and Mayer, B. (1998) Lack of tyrosine nitration by peroxynitrite generated at physiological pH. J. Biol. Chem. 273, 27280–27285.

    Article  PubMed  CAS  Google Scholar 

  124. Ohnishi, T., Yamazaki, H., Iyanagi, T., Nakamura, T., and Yamazaki, I. (1969) Oneelectron-transfer reactions in biochemical systems. II. The reaction of free radicals formed in the enzymic oxidation. Biochim. Biophys. Acta 172, 357–369.

    Article  PubMed  CAS  Google Scholar 

  125. Iyanagi, T. and Yamazaki, I. (1969) One-electron-transfer reactions in biochemical systems. 3. One-electron reduction of quinones by microsomal flavin enzymes. Biochim. Biophys. Acta 172, 370–381.

    Article  PubMed  CAS  Google Scholar 

  126. Iyanagi, T. and Yamazaki, I. (1970) One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Biochim. Biophys. Acta 216, 282–294.

    Article  PubMed  CAS  Google Scholar 

  127. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  128. Misra, H. P. and Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175.

    PubMed  CAS  Google Scholar 

  129. Berman, S. B. and Hastings, T. G. (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem. 73, 1127–1137.

    Article  PubMed  CAS  Google Scholar 

  130. Kuhn, D. M., Arthur, R. E., Jr., Thomas, D. M., and Elferink, L. A. (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J. Neurochem. 73, 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  131. Kuhn, D. M., Aretha, C. W., and Geddes, T. J. (1999) Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J. Neurosci. 19, 10289–10294.

    PubMed  CAS  Google Scholar 

  132. Grima, B., Lamouroux, A., Blanot, F., Biguet, N. F., and Mallet, J. (1985) Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc. Natl. Acad. Sci. USA 82, 617–621.

    Article  PubMed  CAS  Google Scholar 

  133. Andersson, K. K., Vassort, C., Brennan, B. A., Que, L., Jr., Haavik, J., Flatmark, T., et al. (1992) Purification and characterization of the blue-green rat phaeochromocytoma (PC 12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40. Biochem. J. 284, 687–695.

    PubMed  CAS  Google Scholar 

  134. Almas, B., Le Bourdelles, B., Flatmark, T., Mallet, J., and Haavik, J. (1992) Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications. Eur. J. Biochem. 209, 249–255.

    Article  PubMed  CAS  Google Scholar 

  135. Haavik, J., Martinez, A. and Flatmark, T. (1990) pH-dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser-40. FEBS Lett. 262, 363–365.

    Article  PubMed  CAS  Google Scholar 

  136. Haavik, J., Le Bourdelles, B., Martinez, A., Flatmark, T., and Mallet, J. (1991) Recombinant human tyrosine hydroxylase isozymes. Reconstitution with iron and inhibitory effect of other metal ions. Eur. J. Biochem. 199, 371–378.

    Article  PubMed  CAS  Google Scholar 

  137. Ramsey, A. J., Daubner, S. C., Ehrlich, J. I., and Fitzpatrick, P. F. (1995) Identification of iron ligands in tyrosine hydroxylase by mutagenesis of conserved histidinyl residues. Protein Sci. 4, 2082–2086.

    Article  PubMed  CAS  Google Scholar 

  138. Ribeiro, P., Wang, Y., Citron, B. A., and Kaufman, S. (1992) Regulation of recombinant rat tyrosine hydroxylase by dopamine. Proc. Natl. Acad. Sci. USA 89, 9593–9597.

    Article  PubMed  CAS  Google Scholar 

  139. Kuhn, D. M. and Arthur, R., Jr. (1998) Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J. Neurosci. 18, 7111–7117.

    PubMed  CAS  Google Scholar 

  140. Kato, T., Ito, S., and Fujita, K. (1986) Tyrosinase-catalyzed binding of 3,4dihydroxyphenylalanine with proteins through the sulfhydryl group. Biochim. Biophys. Acta 881, 415–421.

    Article  PubMed  CAS  Google Scholar 

  141. Paz, M. A., Fluckiger, R., Boak, A., Kagan, H. M., and Gallop, P. M. (1991) Specific detection of quinoproteins by redox-cycling staining. J. Biol. Chem. 266, 689–692.

    PubMed  CAS  Google Scholar 

  142. Simpson, J. A., Narita, S., Gieseg, S., Gebicki, S., Gebicki, J. M., and Dean, R. T. (1992) Long-lived reactive species on free-radical-damaged proteins. Biochem. J. 282, 621–624.

    PubMed  CAS  Google Scholar 

  143. Simpson, J. A., Gieseg, S. P., and Dean, R. T. (1993) Free radical and enzymatic mechanisms for the generation of protein bound reducing moieties. Biochim. Biophys. Acta 1156, 190–196.

    Article  PubMed  CAS  Google Scholar 

  144. Dean, R. T., Fu, S., Stocker, R., and Davies, M. J. (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324, 1–18.

    PubMed  CAS  Google Scholar 

  145. Dean, R. T., Gebicki, J., Gieseg, S., Grant, A. J., and Simpson, J. A. (1992) Hypothesis: a damaging role in aging for reactive protein oxidation products? Mutat. Res. 275, 387–393.

    Article  PubMed  CAS  Google Scholar 

  146. Davies, M. J., Fu, S., Wang, H., and Dean, R. T. (1999) Stable mlarkers of oxidant damage to proteins and their application in the study of human disease Free Rad. Biol. Med. 27, 1151–1163.

    Article  PubMed  CAS  Google Scholar 

  147. Brunmark, A. and Cadenas, E. (1989) Redox and addition chemistry of quinoid compounds and its biological implications. Free Rad. Biol. Med. 7, 435–477.

    Article  PubMed  CAS  Google Scholar 

  148. Velez-Pardo, C., Jimenez Del Rio, M., Ebinger, G., and Vauquelin, G. (1996) Redox cycling activity of monoamine-serotonin binding protein conjugates. Biochem. Pharmacol. 51, 1521–1525.

    Article  PubMed  CAS  Google Scholar 

  149. Shen, X. M. and Dryhurst, G. (1996) Oxidation chemistry of (-)-norepinephrine in the presence of L-cysteine. J. Med. Chem. 39, 2018–2029.

    Article  PubMed  CAS  Google Scholar 

  150. Shen, X. M., Zhang, F. and Dryhurst, G. (1997) Oxidation of dopamine in the presence of cysteine: characterization of new toxic products. Chem. Res. Toxicol. 10, 147–155.

    Article  PubMed  CAS  Google Scholar 

  151. Liu, K. P., Gershon, M. D., and Tamir, H. (1985) Identification, purification, and characterization of two forms of serotonin binding protein from rat brain. J. Neurochem. 44, 1289–1301.

    Article  PubMed  CAS  Google Scholar 

  152. Tamir, H. and Liu, K. P. (1982) On the nature of the interaction between serotonin and serotonin binding protein: effect of nucleotides, ions, and sulfhydryl reagents. J. Neurochem. 38, 135–141.

    Article  PubMed  CAS  Google Scholar 

  153. Smythies, J. and Galzigna, L. (1998) The oxidative metabolism of catecholamines in the brain: a review. Biochim. Biophys. Acta 1380, 159–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuhn, D.M. (2002). Dopamine and Its Modulation of Drug-Induced Neuronal Damage. In: Massaro, E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-165-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-165-7_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-194-3

  • Online ISBN: 978-1-59259-165-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics