Skip to main content

PI3K-Related Kinases

Roles in Cell-Cycle Regulation and DNA Damage Responses

  • Chapter
Signaling Networks and Cell Cycle Control

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 297 Accesses

Abstract

In the not too distant past, the very large and still growing family of signaling kinases could be neatly subdivided into two broad classes, those that phosphorylated lipids and those that used proteins as substrates. Investigators who focused on protein kinases rarely crossed ideological paths with researchers involved in lipid kinase research. However, as is often the case in modern-day cell biology, the conceptual division of ATP-binding phosphotransferases into lipid kinases and protein kinases has proved an oversimplification of the chaotic reality that typifies the process of intracellular signaling. First, we were surprised to learn that certain bona fide lipid kinases, specifically the phosphoinositide 3-kinases (PI3Ks), were quite capable of phosphorylating a limited spectrum of protein substrates, at least when pressed to do so under in vitro conditions. Then, during the mid-1990s, the molecular cloning efforts of several laboratories further confused the picture with the identification of a novel family of high molecular mass kinases whose catalytic domains bore a clear resemblance to those of PI3Ks. Based on this primary sequence homology, the newly identified kinases were named PI3Krelated kinases (PIKKs). The expectation at the time was that the PIKK family members would relay signals, at least in part, through the phosphorylation of inositol phospholipids. Instead, it now appears that evolution has brought us full circle—in spite of the lipid kinase-like catalytic domain, the PIKKs apparently have dedicated themselves fully to the phosphorylation of protein substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996; 14: 483–510.

    Article  PubMed  CAS  Google Scholar 

  2. Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 1994; 8: 2401–2415.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson CW, Carter TH. The DNA-activated protein kinase—DNA-PK. Curr Top Microbiol Immunol 1996; 217: 91–111.

    Article  PubMed  CAS  Google Scholar 

  4. Araki H, Leem SH, Phongdara A, Sugino A. Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci USA 1995; 92:11, 791–11, 795.

    Google Scholar 

  5. Artuso M, Esteve A, Bresil H, Vuillaume M, Hall J. The role of the Ataxia telangiectasia gene in the p53, WAF1/CIP1(p21)- and GADD45-mediated response to DNA damage produced by ionising radiation. Oncogene 1995; 11: 1427–1435.

    PubMed  CAS  Google Scholar 

  6. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 1996; 7: 25–42.

    PubMed  CAS  Google Scholar 

  7. Barlow C, Brown KD, Deng CX, Tagle DA, Wynshaw-Boris A. Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nature Genet 1997; 17: 453–456.

    Article  PubMed  CAS  Google Scholar 

  8. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A. Atm-deficient mice: A paradigm of ataxia telangiectasia. Cell 1996; 86: 159–171.

    Article  PubMed  CAS  Google Scholar 

  9. Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, Barlow C, Baltimore D, Wynshaw-Boris A, Kastan MB, Wang JYJ. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 1997; 387: 516–519.

    Article  PubMed  CAS  Google Scholar 

  10. Beamish H, Khanna KK, Lavin MF. Ionizing radiation and cell cycle progression in ataxia telangiectasia. Radiat Res 1994; 138: S130–3.

    Article  PubMed  CAS  Google Scholar 

  11. Beamish H, Lavin MF. Radiosensitivity in ataxia-telangiectasia: Anomalies in radiation-induced cell cycle delay. Int J Radiat Biol 1994; 65: 175–184.

    Article  PubMed  CAS  Google Scholar 

  12. Beamish H, Williams R, Chen P, Lavin MF. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem 1996; 271:20, 486–20, 493.

    Google Scholar 

  13. Bentley NJ, Holtzman DA, Flaggs G, Keegan KS, DeMaggio A, Ford JC, Hoekstra M, Can AM. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J 1996; 15: 6641–6651.

    PubMed  CAS  Google Scholar 

  14. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 1996; 15: 658–664.

    PubMed  CAS  Google Scholar 

  15. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci USA 1991; 88: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  16. Blocher D, Sigut D, Hannan MA. Fibroblasts from ataxia telangiectasia (AT) and AT heterozygotes show an enhanced level of residual DNA double-strand breaks after low dose-rate gamma-irradiation as assayed by pulsed field gel electrophoresis. Int J Radiat Biol 1991; 60: 791–802.

    Article  PubMed  CAS  Google Scholar 

  17. Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, Jackson SP. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995; 80: 813–823.

    Article  PubMed  CAS  Google Scholar 

  18. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, Jeggo PA. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 1996; 93:10, 285–10, 290.

    Google Scholar 

  19. Boddy MN, Furnari B, Mondesert O, Russell P. Replication checkpoint enforced by kinases Cdsl and Chkl. Science 1998; 280: 909–912.

    Article  PubMed  CAS  Google Scholar 

  20. Bosma MJ, Carroll AM. The SCID mouse mutant: Definition, characterization, and potential uses. Annu Rev Immunol 1991; 9: 323–350.

    Article  PubMed  CAS  Google Scholar 

  21. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756–758.

    Article  PubMed  CAS  Google Scholar 

  22. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 1995; 377: 441–446.

    Article  PubMed  CAS  Google Scholar 

  23. Brown KD, Ziv Y, Sadanandan SN, Chessa L, Collins FS, Shiloh Y, Tagle DA. The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc Natl Acad Sci USA 1997; 94: 1840–1845.

    Article  PubMed  CAS  Google Scholar 

  24. Brune GJ, Fadden P, Haystead TAJ, Lawrence JC Jr. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 1997; 272:32, 547–32, 550.

    Google Scholar 

  25. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi J, Houghton PJ, Lawrence JC, Abraham RT. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997a; 277: 99–101.

    Article  PubMed  CAS  Google Scholar 

  26. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 1996; 15: 5256–5267.

    PubMed  CAS  Google Scholar 

  27. Brush GS, Anderson CW, Kelly TJ. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc Natl Acad Sci USA 1995; 91:12, 520–12, 524.

    Google Scholar 

  28. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT’ phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998; 95: 1432–1437.

    Article  PubMed  CAS  Google Scholar 

  29. Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 1993; 13: 6012–6023.

    PubMed  CAS  Google Scholar 

  30. Canman CE, Wolff AC, Chen CY, Fornace AJ Jr, Kastan MB. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res 1994; 54: 5054–5058.

    PubMed  CAS  Google Scholar 

  31. Can AM. Analysis of fission yeast DNA structure checkpoints. Microbiology 1998; 144: 5–11.

    Article  Google Scholar 

  32. Carter T, Vancurova I, Sun I, Lou W, DeLeon S. A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol 1990; 10: 6460–6471.

    PubMed  CAS  Google Scholar 

  33. Carty MP, Zernik-Kobak M, McGrath S, Dixon K. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. EMBO J 1994; 13: 2114–2123.

    PubMed  CAS  Google Scholar 

  34. Chan DW, Lees-Miller SP. The DNA-dependent protein kinase is inactivated by autophosphorylation of the catalytic subunit. J Biol Chem 1996; 271: 8936–8941.

    Article  PubMed  CAS  Google Scholar 

  35. Chen J, Zheng XF, Brown EJ, Schreiber SL. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci USA 1995; 92: 4947–4951.

    Article  PubMed  CAS  Google Scholar 

  36. Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996; 10: 2438 2451.

    Google Scholar 

  37. Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 1994; 91:12, 574–12, 578.

    Google Scholar 

  38. Chu G. Role of the Ku autoantigen in V(D)J recombination and double-strand break repair. Curr Top Microbiol Immunol 1996; 217: 113–132.

    Article  PubMed  CAS  Google Scholar 

  39. Cimprich KA, Shin TB, Keith CT, Schreiber SL. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc Natl Acad Sci USA 1996; 93: 2850 2855.

    Google Scholar 

  40. Cliby WA, Roberts CJ, Cimprich KA, Stringer CM, Lamb JR, Schreiber SL, Friend SH. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J 1998; 17: 159–169.

    Article  PubMed  CAS  Google Scholar 

  41. Cohen MM, Levy HP. Chromosome instability syndromes. Adv Hum Genet 1936; 18: 43149.

    Google Scholar 

  42. Cornforth MN, Bedford JS. On the nature of a defect in cells from individuals with ataxiatelangiectasia. Science 1985; 227: 1589–1591.

    Article  PubMed  CAS  Google Scholar 

  43. Coverley D, Kenny MK, Munn M, Rupp WD, Lane DP, Wood RD. Requirement for the replication protein SSB in human DNA excision repair. Nature 1991; 349: 538–541.

    Article  PubMed  CAS  Google Scholar 

  44. Danska JS, Holland DP, Mariathasan S, Williams KM, Guidos CJ. Biochemical and genetic defects in the DNA-dependent protein kinase in murine scid lymphocytes. Mol Cell Biol 1996; 16: 5507–5517.

    PubMed  CAS  Google Scholar 

  45. Dennis PB, Pullen N, Kozma SC, Thomas G. The principal rapamycin-sensitive p70(s6k) phosphorylation sites, T-229 and T-389, are differentially regulated by rapamycin-insensitive kinase kinases. Mol Cell Biol 1996; 16: 6242–6251.

    PubMed  CAS  Google Scholar 

  46. Di Como CJ, Arndt KT. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dey 1996; 10: 1904–1916.

    Article  Google Scholar 

  47. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CM, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  48. el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169–1174.

    PubMed  CAS  Google Scholar 

  49. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  50. Elledge SJ. Cell cycle checkpoints: Preventing an identity crisis. Science 1996; 274: 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  51. Elledge SJ, Harper JW. Cdk inhibitors: On the threshold of checkpoints and development. Curr Opin Cell Biol 1994; 6: 847–852.

    Article  PubMed  CAS  Google Scholar 

  52. Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 1997; 272:10, 240–10, 247.

    Google Scholar 

  53. Fairman MP, Stillman B. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 1988; 7: 1211–1218.

    PubMed  CAS  Google Scholar 

  54. Firpo EJ, Koff A, Solomon MJ, Roberts JM. Inactivation of a Cdk2 inhibitor during interleukin 2-induced proliferation of human T lymphocytes. Mol Cell Biol 1994; 14: 48894901.

    Google Scholar 

  55. Ford MD, Martin L, Lavin MF. The effects of ionizing radiation on cell cycle progression in ataxia telangiectasia. Mutat Res 1984; 125: 115–122.

    Article  PubMed  CAS  Google Scholar 

  56. Fornace AJJ, Little JB. Normal repair of DNA single-strand breaks in patients with ataxia telangiectasia. Biochim Biophys Acta 1980; 607: 432–437.

    Article  PubMed  CAS  Google Scholar 

  57. Forozan F, Karhu R, Kononen J, Kallioniemi A, Kallioniemi OP. Genome screening by comparative genomic hybridization. Trends Genet 1997; 13: 405–409.

    Article  PubMed  CAS  Google Scholar 

  58. Francesconi S, Grenon M, Bouvier D, Baldacci G. p56(chkl) protein kinase is required for the DNA replication checkpoint at 37 degrees C in fission yeast. EMBO J 1997; 16: 1332–1341.

    Article  PubMed  CAS  Google Scholar 

  59. Freeman K, Livi GP. Missense mutations at the FKBP12-rapamycin-binding site of TOR1. Gene 1996; 172: 143–147.

    Article  PubMed  CAS  Google Scholar 

  60. Fried LM, Koumenis C, Peterson SR, Green SL, van Zijl P, Allalunis-Turner J, Chen DJ, Fishel R, Giaccia AJ, Brown JM, Kirchgessner CU. The DNA damage response in DNA-dependent protein kinase-deficient SCID mouse cells: Replication protein A hyperphosphorylation and p53 induction. Proc Natl Acad Sci USA 1996; 93:13, 825–13, 830.

    Google Scholar 

  61. Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 1997; 16: 1921–1933.

    Article  PubMed  CAS  Google Scholar 

  62. Fulop GM, Phillips RA. The scid mutation in mice causes a general defect in DNA repair. Nature 1990; 347: 479–482.

    Article  PubMed  CAS  Google Scholar 

  63. Fumari B, Rhind N, Russell P. Cdc25 mitotic inducer targeted by chkl DNA damage checkpoint kinase. Science 1997; 277: 1495–1497.

    Article  Google Scholar 

  64. Gatti RA, Boder E, Vinters HV, Sparkes RS, Norman A, Lange K. Ataxia-telangiectasia: An interdisciplinary approach to pathogenesis. Medicine 1991; 70: 99–117.

    Article  PubMed  CAS  Google Scholar 

  65. Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dey 1998; 12: 502–513.

    Article  CAS  Google Scholar 

  66. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: Requirement for DNA ends and association with Ku antigen. Cell 1993; 72: 131–142.

    Article  PubMed  CAS  Google Scholar 

  67. Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC Jr. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 1995; 92: 7222–7226.

    Article  PubMed  CAS  Google Scholar 

  68. Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B, Petes TD. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 1995; 82: 823–829.

    Article  PubMed  CAS  Google Scholar 

  69. Hall MN. The TOR signalling pathway and growth control in yeast. Biochem Soc Trans 1996; 24: 234–239.

    PubMed  CAS  Google Scholar 

  70. Hammarsten O, Chu G. DNA-dependent protein kinase: DNA binding and activation in the absence of Ku. Proc Natl Acad Sci USA 1998; 95: 525–530.

    Article  PubMed  CAS  Google Scholar 

  71. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 1998; 273:14, 484–14, 494.

    Google Scholar 

  72. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993; 75: 805–816.

    Article  PubMed  CAS  Google Scholar 

  73. Hartley KO, Gell D, Smith GC, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW, Jackson SP. DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 1995; 82: 849–856.

    Article  PubMed  CAS  Google Scholar 

  74. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  75. Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 1989; 246: 629–634.

    Article  PubMed  CAS  Google Scholar 

  76. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  PubMed  CAS  Google Scholar 

  77. Hawley RS, Tartof KD. The effect of mei-41 on rDNA redundancy in Drosophila melanogaster. Genetics 1983; 104: 63–80.

    CAS  Google Scholar 

  78. Heinz-Herzog K, Chong MJ, Kapsetaki M, Morgan JI, Mckinnon PJ. Requirement for Atm ionizing radiation-induced cell death in the developing nervous system. Science 1998; 280: 1089–1091.

    Article  Google Scholar 

  79. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253: 905–909.

    Article  PubMed  CAS  Google Scholar 

  80. Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 1998; 148: 99–112.

    CAS  Google Scholar 

  81. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 1994; 5: 105–118.

    PubMed  CAS  Google Scholar 

  82. Henricksen LA, Wold MS. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J Biol Chem 1994; 269:24, 203–24, 208.

    Google Scholar 

  83. Hunter T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 1995; 83: 1–4.

    Article  PubMed  CAS  Google Scholar 

  84. Jackson SP. DNA damage detection by DNA dependent protein kinase and related enzymes. Cancer Sury 1996; 28: 261–279.

    CAS  Google Scholar 

  85. Jackson SP. The recognition of DNA damage. Curr Opin Genet Dev 1996; 6: 19–25.

    Article  PubMed  CAS  Google Scholar 

  86. Jhappan C, Morse HC, Fleischmann RD, Gottesman MM, Merlino G. DNA-PKcs: A T-cell tumour suppressor encoded at the mouse scid locus. Nature Genet 1997; 17: 483–486.

    Article  PubMed  CAS  Google Scholar 

  87. Jimenez G, Yucel J, Rowley R, Subramani S. The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc Natl Acad Sci USA 1992; 89: 4952–4956.

    Article  PubMed  CAS  Google Scholar 

  88. Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 1996; 134: 963–970.

    Article  PubMed  CAS  Google Scholar 

  89. Jung M, Kondratyev A, Lee SA, Dimtchev A, Dritschilo A. ATM gene product phosphorylates I kappa B-alpha. Cancer Res 1997; 57: 24–27.

    PubMed  CAS  Google Scholar 

  90. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–597.

    Article  PubMed  CAS  Google Scholar 

  91. Kato R, Ogawa H. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 1994; 22: 3104–3112.

    Article  CAS  Google Scholar 

  92. Keegan KS, Holtzman DA, Plug AW, Christenson ER, Brainerd EE, Flaggs G, Bentley NJ, Taylor EM, Meyn MS, Moss SB, Carr AM, Ashley T, Hoekstra MF. The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 1996; 10: 2423–2437.

    Article  PubMed  CAS  Google Scholar 

  93. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV. Cdc42 and Racl induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 1997; 390: 63 2636.

    Google Scholar 

  94. Keith CT, Schreiber SL. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 1995; 270: 50–51.

    Article  PubMed  CAS  Google Scholar 

  95. Khanna KK, Lavin MF. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 1993; 8: 3307–3312.

    PubMed  CAS  Google Scholar 

  96. Khosravi-Far R, Campbell S, Rossman KL, Der CJ. Increasing complexity of Ras signal transduction: Involvement of Rho family proteins. Adv Cancer Res 1998; 72: 57–107.

    Article  PubMed  CAS  Google Scholar 

  97. Ko LJ, Prives C. p53: Puzzle and paradigm. Genes Dev 1996; 10: 1054–1072.

    Article  PubMed  CAS  Google Scholar 

  98. Kostrub CF, Knudsen K, Subramani S, Enoch T. Hus1p, a conserved fission yeast checkpoint protein, interacts with Radlp and is phosphorylated in response to DNA damage. EMBO J 1998; 17: 2055–2066.

    Article  PubMed  CAS  Google Scholar 

  99. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    Article  PubMed  CAS  Google Scholar 

  100. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993; 73: 585–596.

    Article  PubMed  CAS  Google Scholar 

  101. Lane DP, Lu X, Hupp T, Hall PA. The role of the p53 protein in the apoptotic response. Philos Trans R Soc Lond 1994; 345: 277–280.

    Article  CAS  Google Scholar 

  102. Lavin MF, Davidson M. Repair of strand breaks in superhelical DNA of ataxia telangiectasia lymphoblastoid cells. J Cell Sci 1981; 48: 383–391.

    PubMed  CAS  Google Scholar 

  103. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997; 15: 177–202.

    Article  PubMed  CAS  Google Scholar 

  104. Lawrence JCJ, Abraham RT. PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 1997; 22: 345–349.

    Article  PubMed  CAS  Google Scholar 

  105. Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 1990; 345: 544–547.

    Article  PubMed  CAS  Google Scholar 

  106. Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Liu YL, Kung HF, Sonenberg N. Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 1992; 6: 1631–1642.

    Article  PubMed  CAS  Google Scholar 

  107. Leber R, Wise TW, Mizuta R, Meek K. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 1998; 273: 1794–1801.

    Article  PubMed  CAS  Google Scholar 

  108. Lee SH, Kim DK. The role of the 34-kDa subunit of human replication protein A in simian virus 40 DNA replication in vitro. J Biol Chem 1995; 270:12, 801–12, 807.

    Google Scholar 

  109. Lees-Miller SP, Anderson CW. The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues. J Biol Chem 1989; 264:17, 275–17, 280.

    Google Scholar 

  110. Lees-Miller SP, Chen YR, Anderson CW. Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 1990; 10: 6472–6481.

    PubMed  CAS  Google Scholar 

  111. Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 1992; 12: 5041–5049.

    PubMed  CAS  Google Scholar 

  112. Lehman AR, Stevens S. The production and repair of double strand breaks in cells from normal humans and from patients with ataxia telangiectasia. Biochim Biophys Acta 1977; 474: 49–60.

    Article  PubMed  CAS  Google Scholar 

  113. Levin NA, Brzoska P, Gupta N, Minna JD, Gray JW, Christman MF. Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 1994; 54: 5086–5091.

    PubMed  CAS  Google Scholar 

  114. Lieber MR, Grawunder U, Wu X, Yaneva M. Tying loose ends: Roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dey 1997; 7: 99–104.

    Article  CAS  Google Scholar 

  115. Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, Bosma MJ, Gellert M. The defect in murine severe combined immune deficiency: Joining of signal sequences but not coding segments in V(D)J recombination. Cell 1988; 55: 7–16.

    Article  PubMed  CAS  Google Scholar 

  116. Lieberman HB, Hopkins KM, Nass M, Demetrick D, Davey S. A human homolog of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc Natl Acad Sci USA 1996; 93:13, 890–13, 895.

    Google Scholar 

  117. Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC Jr. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 1994; 266: 653–656.

    Article  PubMed  CAS  Google Scholar 

  118. Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3–L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycinsensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem 1995; 270:18, 531–18, 538.

    Google Scholar 

  119. Lindsay HD, Griffiths DJ, Edwards RJ, Christensen PU, Murray JM, Osman, Walworth N, Can AM. S-phase-specific activation of Cdsl kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dey 1998; 12: 382–395.

    Article  CAS  Google Scholar 

  120. Liu VF, Weaver DT. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol Cell Biol 1993; 13: 7222–7231.

    PubMed  CAS  Google Scholar 

  121. Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995; 270:27, 531–27, 537.

    Google Scholar 

  122. Lu X, Lane DP. Differential induction of transcriptionally active p53 following UV or ionizing radiation: Defects in chromosome instability syndromes? Cell 1993; 75: 765–778.

    Article  PubMed  CAS  Google Scholar 

  123. Lustig AJ, Petes TD. Identification of yeast mutants with altered telomere structure. Proc Nall Acad Sci USA 1986; 83: 1398–1402.

    Article  CAS  Google Scholar 

  124. Lydall D, Weinert T. Yeast checkpoint genes in DNA damage processing: Implications for repair and arrest. Science 1995; 270: 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  125. Mendez R, Myers MGJ, White MF, Rhoads RE. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol 1996; 16: 2857–2864.

    PubMed  CAS  Google Scholar 

  126. Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ, Taylor AM. Accelerated telomere shortening in ataxia telangiectasia. Nature Genet 1996; 13: 350–353.

    Article  PubMed  CAS  Google Scholar 

  127. Meyn MS. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 1995; 55: 5991–6001.

    PubMed  CAS  Google Scholar 

  128. Mimori T, Hardin JA. Mechanism of interaction between Ku protein and DNA. J Biol Chem 1986; 261:10, 375–10, 379.

    Google Scholar 

  129. Mimori T, Hardin JA, Steitz JA. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem 1986; 261: 2274–2278.

    PubMed  CAS  Google Scholar 

  130. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  131. Moore SP, Erdile L, Kelly T, Fishel R. The human homologous pairing protein HPP-1 is specifically stimulated by the cognate single-stranded binding protein hRP-A. Proc Natl Acad Sci USA 1991; 88: 9067–9071.

    Article  PubMed  CAS  Google Scholar 

  132. Morgan SE, Kastan MB. Dissociation of radiation-induced phosphorylation of replication protein A from the S-phase checkpoint. Cancer Res 1997; 57: 3386–3389.

    PubMed  CAS  Google Scholar 

  133. Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Mol Cell Biol 1997; 17: 2020–2029.

    PubMed  CAS  Google Scholar 

  134. Morice WG, Brunn GJ, Wiederrecht G, Siekierka JJ, Abraham RT. Rapamycin-induced inhibition of p34cdc2 kinase activation is associated with G1/S-phase growth arrest in T lymphocytes. J Biol Chem 1993; 268: 3734–3738.

    PubMed  CAS  Google Scholar 

  135. Morice WG, Wiederrecht G, Brunn GJ, Siekierka JJ, Abraham RT. Rapamycin inhibition of interleukin-2-dependent p33cdk2 and p34cdc2 kinase activation in T lymphocytes. J Biol Chem 1993; 268:22, 737–22, 745.

    Google Scholar 

  136. Morrow DM, Tagle DA, Shiloh Y, Collins FS, Hieter P. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 1995; 82: 831–840.

    Article  PubMed  CAS  Google Scholar 

  137. Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, Kozma SC, Thomas G. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol 1997; 17: 5648–5655.

    PubMed  CAS  Google Scholar 

  138. Mozdarani H, Bryant PE. Kinetics of chromatid aberrations in G2 ataxia-telangiectasia cells exposed to X-rays and ara A. Int J Radiat Biol 1989; 55: 71–84.

    Article  PubMed  CAS  Google Scholar 

  139. Murakami H, Okayama H. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 1995; 374: 817–819.

    Article  PubMed  CAS  Google Scholar 

  140. Murata K, Wu J, Brautigan DL. B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc Natl Acad Sci USA 1997; 94:10, 624–10, 629.

    Google Scholar 

  141. Nagasawa H, Latt SA, Lalande ME, Little JB. Effects of X-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts. Mutat Res 1985; 148: 71–82.

    Article  PubMed  CAS  Google Scholar 

  142. Nagasawa H, Little JB. Comparison of kinetics of X-ray-induced cell killing in normal, ataxia telangiectasia and hereditary retinoblastoma fibroblasts. Mutat Res 1983; 109: 297308.

    Google Scholar 

  143. Nasim A, Smith BP. Genetic control of radiation sensitivity in Schizosaccharomyces pombe. Genetics 1975; 79: 573–582.

    CAS  Google Scholar 

  144. Navas TA, Zhou Z, Elledge SJ. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 1995; 80: 29–39.

    Article  PubMed  CAS  Google Scholar 

  145. Nelson WG, Kastan MB. DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 1994; 14: 1815–1823.

    PubMed  CAS  Google Scholar 

  146. Nourse J, Firpo E, Flanagan WM, Coats S, Polyak K, Lee MH, Massague J, Crabtree GR, Roberts JM. Interleukin-2-mediated elimination of the p27Kipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994; 372: 570–573.

    Article  PubMed  CAS  Google Scholar 

  147. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362: 857–860.

    Article  PubMed  CAS  Google Scholar 

  148. Oren M. Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol 1994; 5: 221–227.

    PubMed  CAS  Google Scholar 

  149. Pain VM. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 1996; 236: 747–771

    Article  PubMed  CAS  Google Scholar 

  150. Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: A new explanation. Proc Natl Acad Sci USA 1980; 77: 7315–7317.

    Article  PubMed  CAS  Google Scholar 

  151. Pan ZQ, Amin AA, Gibbs E, Niu H, Hurwitz J. Phosphorylation of the p34 subunit of human single-stranded-DNA-binding protein in cyclin A-activated G1 extracts is catalyzed by cdk-cyclin A complex and DNA-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91: 8343–8347.

    Article  PubMed  CAS  Google Scholar 

  152. Pan ZQ, Park CH, Amin AA, Hurwitz J, Sancar A. Phosphorylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair. Proc Natl Acad Sci USA 1995; 92: 4636–4640.

    Article  PubMed  CAS  Google Scholar 

  153. Pandita TK, Hittelman WN. Initial chromosome damage but not DNA damage is greater in ataxia telangiectasia cells. Radiat Res 1992; 130: 94–103.

    Article  PubMed  CAS  Google Scholar 

  154. Pandita TK, Hittelman WN. The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat Res 1992; 131: 214–223.

    Article  PubMed  CAS  Google Scholar 

  155. Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell 1997; 88: 315–321.

    Article  PubMed  CAS  Google Scholar 

  156. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 1994; 371: 762–767.

    Article  PubMed  CAS  Google Scholar 

  157. Pearson RB, Dennis PB, Han JW, Williamson NA, Kozma SC, Wettenhall RE, Thomas G. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 1995; 14: 5279–5287.

    PubMed  CAS  Google Scholar 

  158. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica–Worms H. Mitotic and G2 checkpoint control: Regulation of 14–3–3 protein binding by phosphorylation of Cdc25C on serine–216. Science 1997; 277: 1501 – 1505.

    Article  PubMed  CAS  Google Scholar 

  159. Peterson SR, Jesch SA, Chamberlin TN, Dvir A, Rabindran SK, Wu C, Dynan WS. Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 1995; 270: 1449–1454.

    Article  PubMed  CAS  Google Scholar 

  160. Plug AW, Peters AH, Xu Y, Keegan KS, Hoekstra MF, Baltimore D, Ashley T. ATM and RPA in meiotic chromosome synapsis and recombination. Nature Genet 1997; 17: 457–461.

    Article  PubMed  CAS  Google Scholar 

  161. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 1994; 54: 2419–2423.

    PubMed  CAS  Google Scholar 

  162. Proud CG. p70 S6 kinase: An enigma with variations. Trends Biochem Sci 1996; 21: 18 1185.

    Google Scholar 

  163. Proud CG, Denton RM. Molecular mechanisms for the control of translation by insulin. Biochem J 1997; 328: 329–341.

    PubMed  CAS  Google Scholar 

  164. Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett 1997; 410: 78–82.

    Article  PubMed  CAS  Google Scholar 

  165. Rathmell WK, Kaufmann WK, Hurt JC, Byrd LL, Chu G. DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage. Cancer Res 1997; 57: 68–74.

    PubMed  CAS  Google Scholar 

  166. Rhind N, Fumari B, Russell P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dey 1997; 11: 504–511.

    Article  CAS  Google Scholar 

  167. Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995; 270:21, 176–21, 180.

    Google Scholar 

  168. Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of omithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 1996; 93: 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  169. Rudolph NS, Latt SA. Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia. Mutat Res 1989; 211: 31–41.

    Article  PubMed  CAS  Google Scholar 

  170. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT 1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994; 78: 35–43.

    Article  PubMed  CAS  Google Scholar 

  171. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, Abraham RT. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 1995; 270: 815–822.

    Article  PubMed  CAS  Google Scholar 

  172. Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. Regulation of RAD53 by the ATM-like kinases MEC1 and TELL in yeast cell cycle checkpoint pathways. Science 1996; 271: 357–360.

    Article  PubMed  CAS  Google Scholar 

  173. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ. Conservation of the Chkl checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science 1997; 277: 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  174. Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res (in press).

    Google Scholar 

  175. Sasai K, Evans JW, Kovacs MS, Brown JM. Prediction of human cell radiosensitivity: Comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization. Int J Radiat Oncol Biol Phys 1994; 30: 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  176. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268: 1749–1753.

    Article  PubMed  CAS  Google Scholar 

  177. Schmidt A, Bickle M, Beck T, Hall MN. The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 1997; 88: 531–542.

    Article  PubMed  CAS  Google Scholar 

  178. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC. Evidence of insulin-stimulated phosphorylation and activation of mammalian target of rapamycin by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 1998; 95: 7772–7777.

    Article  PubMed  CAS  Google Scholar 

  179. Seaton BL, Yucel J, Sunnerhagen P, Subramani S. Isolation and characterization of the Schizosaccharomyces pombe rad3 gene, involved in the DNA damage and DNA synthesis checkpoints. Gene 1991; 119: 83–89.

    Article  Google Scholar 

  180. Sedgwick RP, Boder E. Ataxia-telangiectasia. Handb Clin Neurol 1991; 16: 347–423.

    Google Scholar 

  181. Shafman T, Khana KK, Kedar P, Spring K, Kozlov S, Yen T, Hobson K, Gatei M, Zhang N, Watters D, Egerton M, Shiloh Y, Kharbanda S, Kufe D, Lavin MF. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 1997; 387: 520–523.

    Article  PubMed  CAS  Google Scholar 

  182. Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997; 91: 325–334.

    Article  PubMed  CAS  Google Scholar 

  183. Shiloh Y, Tabor E, Becker Y. Abnormal response of ataxia-telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Carcinogenesis 1983; 4: 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  184. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dey 1997; 11: 3471–3481.

    Article  CAS  Google Scholar 

  185. Smilenov LB, Morgan SE, Mellado W, Sawant SG, Kastan MB, Pandita TK. Influence of ATM function on telomere metabolism. Oncogene 1997; 15: 2659–2665.

    Article  PubMed  CAS  Google Scholar 

  186. Smith L, Liu SJ, Goodrich L, Jacbobson D, Degnin C, Bentley N, Carr A, Flaggs G, Keegan K, Hoekstra M, Thayer MJ. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nature Genet 1998; 19: 39–46.

    Article  PubMed  CAS  Google Scholar 

  187. Sonenberg N, Gingras AC. The mRNA 5’ CAP-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 1998; 10: 268–275.

    Article  PubMed  CAS  Google Scholar 

  188. Speicher MR, Howe C, Crotty P, du MS, Costa J, Ward DC. Comparative genomic hybridization detects novel deletions and amplifications in head and neck squamous cell carcinomas. Cancer Res 1995; 55: 1010–1013.

    PubMed  CAS  Google Scholar 

  189. Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 1994; 269:32, 027–32, 030.

    Google Scholar 

  190. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar S, James MR, Lichter P, Dohner H. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nature Med 1997; 3: 1155–1159.

    Article  PubMed  CAS  Google Scholar 

  191. Sugimoto K, Ando S, Shimomura T, Matsumoto K. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol Cell Biol 1997; 17: 5905–5914.

    PubMed  CAS  Google Scholar 

  192. Sugimoto K, Shimomura T, Hashimoto K, Araki H, Sugino A, Matsumoto K. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc Natl Acad Sci USA 1996; 93: 7048–7052.

    Article  PubMed  CAS  Google Scholar 

  193. Sun Z, Fay DS, Marini F, Foiani M, Stern DF. Spkl/Rad53 is regulated by Mec 1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dey 1996; 10: 395–406.

    Article  CAS  Google Scholar 

  194. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 1987; 316: 1289–1294.

    Article  PubMed  CAS  Google Scholar 

  195. Taylor AM, Metcalfe JA, Oxford JM, Hamden DG. Is chromatid-type damage in ataxia telangiectasia after irradiation at GO a consequence of defective repair? Nature 1976; 260: 441–443.

    Google Scholar 

  196. Vaziri H. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review. Biochemistry 1997; 62: 1306–1310.

    Google Scholar 

  197. von Manteuffel S, Gingras AC, Ming XF, Sonenberg N, Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 1996; 93: 4076–4080.

    Article  Google Scholar 

  198. Walker AI, Hunt T, Jackson RJ, Anderson CW. Double-stranded DNA induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-shock protein in animal cell extracts. EMBO J 1985; 4: 139–145.

    PubMed  CAS  Google Scholar 

  199. Walworth N, Davey S, Beach D. Fission yeast chkl protein kinase links the rad checkpoint pathway to cdc2. Nature 1993; 363: 368–371.

    Article  PubMed  CAS  Google Scholar 

  200. Walworth NC, Bernards R. rad-dependent response of the chkl-encoded protein kinase at the DNA damage checkpoint. Science 1996; 271: 353–356.

    Article  PubMed  CAS  Google Scholar 

  201. Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. Mitogen-activated protein kinases activate the serine/threonine kinases Mnkl and Mnk2. EMBO J 1997; 16: 1909–1920.

    Article  PubMed  CAS  Google Scholar 

  202. Watters D, Khanna KK, Beamish H, Birrell G, Spring K, Kedar P, Gatei M, Stenzel D, Hobson K, Kozlov S, Zhang N, Farrell A, Ramsay J, Gatti R, Lavin M. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 1997; 14: 1911–1921.

    Article  PubMed  CAS  Google Scholar 

  203. Weinert TA, Kiser GL, Hartwell LH. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dey 1994; 8: 652–665.

    Article  CAS  Google Scholar 

  204. Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P. atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nature Genet 1997; 16: 397–401.

    Article  PubMed  CAS  Google Scholar 

  205. Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA 1987; 84: 1834–1838.

    Article  PubMed  CAS  Google Scholar 

  206. Wold MS. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 1997; 66: 61–92.

    Article  PubMed  CAS  Google Scholar 

  207. Wold MS, Kelly T. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 1988; 85: 2523–2527.

    Article  PubMed  CAS  Google Scholar 

  208. Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 1996; 16: 1722–1733.

    PubMed  CAS  Google Scholar 

  209. Xia SJ, Shammas MA, Shmookler RR. Reduced telomere length in ataxia-telangiectasia fibroblasts. Mutat Res 1996; 364: 1–11.

    Article  PubMed  Google Scholar 

  210. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 1993; 366: 701–704.

    Article  PubMed  CAS  Google Scholar 

  211. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10: 2411–2422.

    Article  PubMed  CAS  Google Scholar 

  212. Xu Y, Baltimore D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 1996; 10: 2401–2410.

    Article  PubMed  CAS  Google Scholar 

  213. Yaneva M, Kowalewski T, Lieber MR. Interaction of DNA-dependent protein kinase with DNA and with Ku: Biochemical and atomic-force microscopy studies. EMBO J 1997; 16: 5098–5112.

    Article  PubMed  CAS  Google Scholar 

  214. Zernik-Kobak M, Vasunia K, Connelly M, Anderson CW, Dixon K. Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J Biol Chem 1997; 272:23, 896–23, 904.

    Google Scholar 

  215. Zheng P, Fay DS, Burton J, Xiao H, Pinkham JL, Stern DF. SPK1 is an essential S-phasespecific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol Cell Biol 1993; 13: 5829–5842.

    PubMed  CAS  Google Scholar 

  216. Zheng XF, Florentin D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 1995; 82: 121–130.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tibbetts, R.S., Abraham, R.T. (2000). PI3K-Related Kinases. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics