Skip to main content

Targeted p53 Gene Therapy-Mediated Radiosensitization and Chemosensitization

  • Chapter
Signaling Networks and Cell Cycle Control

Abstract

Gene therapy is based on restoring a missing or defective cellular function by delivering and expressing a gene encoding the protein responsible for that function. Initially, gene therapy was envisioned as a potential means to correct inherited mono-genic defects. This remains an active area of research, and a number of human clinical trials of this approach are ongoing (1–3). In addition to inherited monogenic defects, gene therapy is being applied to other types of diseases. This chapter describes gene therapy, as it is being used in the armamentarium of the war against cancer. More than 100 oncology-related clinical trials involving gene therapy have been approved worldwide (4). These therapeutic protocols include the expression of cytokines to enhance cellular immunogenicity, the expression of genes encoding prodrug activating enzymes, the expression of genes resulting in increased drug sensitivity (e.g., HSVTK/gancyclovir), or drug resistance (e.g., MDR-1 to protect normal bone marrow cells) (5) and the restoration of the function(s) of tumor suppressor genes. In addition to trials wherein an exogenous gene is being expressed with therapeutic intent, a number of other trials involving the suppression of gene expression (e.g., with antisense molecules targeting oncogenes) are also ongoing. The focus of the current chapter is the nonviral delivery of a functional tumor suppressor gene (encoding p53) to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 1995; 270: 475–480.

    Article  PubMed  CAS  Google Scholar 

  2. Kiem HP, von Kalle C, Schuening F, Storb R. Gene therapy and bone marrow transplantation. Curr Opin Oncol 1995; 7: 107–114.

    Article  PubMed  CAS  Google Scholar 

  3. Medin JA, Karlsson S. Viral vectors for gene therapy of hematopoietic cells. Immunotechnology 1997; 3: 3–19.

    Article  PubMed  CAS  Google Scholar 

  4. Roth JA, Cristiano RJ. Gene therapy for cancer: What have we done and where are we going? J Natl Cancer Inst 1997; 89: 21–39.

    Article  PubMed  CAS  Google Scholar 

  5. Licht T, Herrmann F, Gottesman MM, Pastan I. (1997). In vivo drug-selectable genes: a new concept in gene therapy. Stem Cells 1997; 15: 104–111.

    Article  Google Scholar 

  6. Bramson JL, Graham FL, Gauldie J. The use of adenoviral vectors for gene therapy and gene transfer in vivo. Curr Opin Biotechnol 1995; 6: 590–595.

    Article  PubMed  CAS  Google Scholar 

  7. Smith TA, Mehaffey MG, Kayda DB, Saunders JM, Yei S, Trapnell BC, McClelland A, Kaleko M. Adenovirus mediated expression of therapeutic plasma levels of Human Factor IX in mice. Nature Genet 1993; 5: 397–402.

    Article  PubMed  CAS  Google Scholar 

  8. Setoguchi Y, Jaffe HA, Chu, CS, Crystal RG. Intraperitoneal in vivo gene therapy to deliver Alpha 1-Antitrypsin to the systemic circulation. Am J Respir Cell Mol Biol 1994; 10: 369–377.

    PubMed  CAS  Google Scholar 

  9. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    PubMed  CAS  Google Scholar 

  11. Russell SJ, Hawkins RE, Winter G. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res 1993; 21: 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  12. Chu TH, Martinez I, Sheay WC, Dornburg R. Cell targeting with retroviral vector particles containing antibody-envelope fusion proteins. Gene Ther 1994; 1: 292–299.

    PubMed  CAS  Google Scholar 

  13. Kasahara N, Dozy AM, Kan YW. Tissue-specific targeting of retroviral vectors through ligand—receptor interactions. Science 1994; 266: 1373–1376.

    Article  PubMed  CAS  Google Scholar 

  14. Han X, Kasahara N, Kan YW. Ligand-directed retroviral targeting of human breast cancer cells. Proc Natl Acad Sci USA 1995; 92: 9747–9751.

    Article  PubMed  CAS  Google Scholar 

  15. Sosnowski BA, Gonzalez AM, Chandler LA, Buechler YJ, Pierce GF, Baird A. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J Biol Chem 1996; 271: 3364733653.

    Google Scholar 

  16. Goldman CK, Rogers BE, Douglas JT, Sosnowski BA, Ying W, Siegal GP, Baird A, Campain JA, Curiel DT. Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res 1997; 57: 1447–1451.

    PubMed  CAS  Google Scholar 

  17. Cotten M, Wagner E. Non-viral approaches to gene therapy. Curr Opin Biotechnol 1993; 4: 705–710.

    Article  PubMed  CAS  Google Scholar 

  18. Sun WH, Burkholder JK, Sun J, Culp J, Turner J, Lu XG, Pugh TD, Ershler WB, Yang NS. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA 1995; 92: 2889–2893.

    Article  PubMed  CAS  Google Scholar 

  19. Rakhmilevich AL, Turner J, Ford MJ, McCabe D, Sun WH, Sondel PM, Grota K, Yang NS. Gene gun-mediated skin transfection with Interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA 1996; 93: 6291–6296.

    Article  PubMed  CAS  Google Scholar 

  20. Curiel DT, Wagner E, Cotten M, Bimstiel ML, Agarwal S, Li CM, Loechel S, Hu PC. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther 1992; 3: 147–154.

    Article  PubMed  CAS  Google Scholar 

  21. Cristiano RJ, Smith LC, Kay MA, Brinkley BR, Woo SL. Hepatic gene therapy: Efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirusDNA complex. Proc Natl Acad Sci USA 1993; 90:11, 548–11, 552.

    Google Scholar 

  22. Allen TM. Liposomes. Opportunities in drug delivery. Drugs 1997; 54 (suppl 4): 8–14.

    Article  PubMed  CAS  Google Scholar 

  23. Farhood H, Gao X, Son K, Yang YY, Lazo JS, Huang L, Barsoum J, Bottega R, Epand RM. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann NY Acad Sci 1994;716:23–34; discussion 34, 35.

    Google Scholar 

  24. Dass CR, Walker TL, Burton MA, Decruz EE. Enhanced anticancer therapy mediated by specialized liposomes. J Pharm Pharmacol 1997; 49: 972–975.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang WW, Fujiwara T, Grimm EA, Roth JA. Advances in cancer gene therapy. Adv Pharmacol 1995; 32: 289–341.

    Article  PubMed  CAS  Google Scholar 

  26. Wolff JA, Budker V. Cationic lipid-mediated gene transfer. In: Sobol RE, Scanlon KJ, eds. Internet book of gene therapy. Stanford, CT: Appleton and Lange, 1995 65–73.

    Google Scholar 

  27. Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358: 15, 16.

    Google Scholar 

  28. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994; 22: 3551–3555.

    PubMed  CAS  Google Scholar 

  29. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  PubMed  CAS  Google Scholar 

  30. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B. P53 mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 1993; 53: 2231–2234.

    PubMed  CAS  Google Scholar 

  31. Sidransky D, Hollstein M. Clinical implications of the p53 gene. Annu Rev Med 1996; 47: 285–301.

    Article  PubMed  CAS  Google Scholar 

  32. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  33. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    Article  PubMed  CAS  Google Scholar 

  34. Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993; 329: 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  35. Harris CC. Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996a; 88: 1442–1455.

    Article  Google Scholar 

  36. Harris CC. P53 tumor suppressor gene: From the basic research laboratory to the clinic-An abridged historical perspective. Carcinogenesis 1996b; 17: 1187–1198.

    CAS  Google Scholar 

  37. Heimdal K, Lothe RA, Lystad S, Holm R, Fossa SD, Borresen AL. No germline tp53 mutations detected in familial and bilateral testicular cancer. Genes Chromosom Cancer 1993; 6: 92–97.

    Article  PubMed  CAS  Google Scholar 

  38. Wada M, Bartram CR, Nakamura H, Hachiya M, Chen DL, Borenstein J, Miller CW, Ludwig L, Hansen-Hagge TE, Ludwig WD. Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood. Blood 1993; 82: 3163–3169.

    PubMed  CAS  Google Scholar 

  39. Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nature Genet 1994; 7: 91–97.

    Article  PubMed  CAS  Google Scholar 

  40. Faraldi F, Calzolari A, Alfieri E, Mincione GP, Mincione F. Lack of detection of p53 expression in retinoblastoma tumor cells. Pathologica 1994; 86: 401–402.

    PubMed  CAS  Google Scholar 

  41. Malkin D, Sexsmith E, Yeger H, Williams BR, Coppes MS. Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer Res 1994; 54: 2077–2079.

    PubMed  CAS  Google Scholar 

  42. Nabeya Y, Loganzo F Jr, Maslak P, Lai L, de Oliveira AR, Schwartz GK, Blundell ML, Altorki NK, Kelsen DP, Albino AP. The mutational status of p53 protein in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int J Cancer 1995; 64: 37–46.

    Article  PubMed  CAS  Google Scholar 

  43. Ko LJ, Prives C. P53: Puzzle and paradigm. Genes Dey 1996; 10: 1054–1072.

    Article  CAS  Google Scholar 

  44. Velculescu VE, El-Deiry WS. Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem 1996; 42: 858–868.

    PubMed  CAS  Google Scholar 

  45. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265: 1582–1584.

    Article  PubMed  CAS  Google Scholar 

  46. Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377: 646–649.

    Article  PubMed  CAS  Google Scholar 

  47. Ueba T, Nosaka T, Takahashi JA, Shibata F, Florkiewicz RZ, Vogelstein B, Oda Y, Kikuchi H, Hatanaka M. Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci USA 1994; 91: 9009–9013.

    Article  PubMed  CAS  Google Scholar 

  48. Mukhopadhyay D, Tsiokas L, Sukhatme VP. Wild-Type p53 and v-src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 1995; 55: 6161–6165.

    PubMed  CAS  Google Scholar 

  49. Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K. Comparison of VEGF, VEGF-B, VEGFC and ANG-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14: 2475–2483.

    Article  PubMed  CAS  Google Scholar 

  50. Volpert OV, Dameron KM, Bouck N. Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene 1997; 14: 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  51. Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, Fang B, Lee JJ, Roth JA. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 1998; 58: 2288–2292.

    PubMed  CAS  Google Scholar 

  52. Yang C, Cirielli C, Capogrossi MC, Passaniti A. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of prostatic tumor cells. Cancer Res 1995; 55: 4210–4213.

    PubMed  CAS  Google Scholar 

  53. Srivastava S, Katayose D, Tong YA, Craig CR, McLeod DG, Moul JW, Cowan KH, Seth P. Recombinant adenovirus vector expressing wild-type p53 is a potent inhibitor of prostate cancer cell proliferation. Urology 1995; 46: 843–848.

    Article  PubMed  CAS  Google Scholar 

  54. Liu TJ, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54: 3662–3667.

    PubMed  CAS  Google Scholar 

  55. Liu Ti, el-Naggar AK, McDonnell TJ, Steck KD, Wang M, Taylor DL, Clayman GL. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck. Cancer Res 1995; 55: 3117–3122.

    Google Scholar 

  56. Clayman GL, el-Naggar AK, Roth JA, Zhang WW, Goepfert H, Taylor DL, Liu TJ. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res 1995; 55: 1–6.

    PubMed  CAS  Google Scholar 

  57. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 1992; 89: 4495–4499.

    Article  PubMed  CAS  Google Scholar 

  58. Spitz FR, Nguyen D, Skibber JM, Cusack J, Roth JA, Cristiano RJ. In vivo adenovirusmediated p53 tumor suppressor gene therapy for colorectal cancer. Anticancer Res 1996; 16: 3415–3422.

    PubMed  CAS  Google Scholar 

  59. Harris MP, Sutjipto S, Wills KN, Hancock W, Cornell D, Johnson DE, Gregory RJ, Shepard HM, Maneval DC. Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein. Cancer Gene Ther 1996; 3: 121–130.

    PubMed  CAS  Google Scholar 

  60. Hamada K, Alemany R, Zhang WW, Hittelman WN, Lotan R, Roth JA, Mitchell MF. Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer. Cancer Res 1996; 56: 3047–3054.

    PubMed  CAS  Google Scholar 

  61. Fujiwara T, Grimm EA, Mukhopadhyay T, Cai DW, Owen-Schaub LB, Roth JA. A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res 1993; 53: 4129–4133.

    PubMed  CAS  Google Scholar 

  62. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54: 2287–2291.

    PubMed  CAS  Google Scholar 

  63. Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA. High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1994; 1: 5–13.

    PubMed  Google Scholar 

  64. Nielsen LL, Maneval DC. P53 tumor suppressor gene therapy for cancer. Cancer Gene Ther 1998; 5: 52–63.

    PubMed  CAS  Google Scholar 

  65. Hsiao M, Tse V, Carmel J, Tsai Y, Feigner PL, Haas M, Silverberg GD. Intracavitary liposome-mediated p53 gene transfer into glioblastoma with endogenous wild-type p53 in vivo results in tumor suppression and long-term survival. Biochem Biophys. Res Commun 1997; 233: 359–364.

    Article  PubMed  CAS  Google Scholar 

  66. Xu M, Kumar D, Srinivas S, Detolla LJ, Yu SF, Stass SA, Mixson AJ. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther 1997; 8: 177–185.

    Article  PubMed  CAS  Google Scholar 

  67. Seung LP, Mauceri HJ, Beckett MA, Hallahan DE, Hellman S, Weichselbaum RR. Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res 1995; 55: 55615565.

    Google Scholar 

  68. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  69. Kerr JF, Winterford CM, Harmon BV. Apoptosis. its significance in cancer and cancer therapy. Cancer 1994; 73: 2013–2026.

    Article  PubMed  CAS  Google Scholar 

  70. Lowe SW. Cancer therapy and p53. Curr Opin Oncol 1995; 7: 547–553.

    Article  PubMed  CAS  Google Scholar 

  71. Johnson P, Gray D, Mowat M, Benchimol S. Expression of wild-type p53 is not compatible with continued growth of p53-negative tumor cells. Mol Cell Biol 1991; 11: 1–11.

    PubMed  CAS  Google Scholar 

  72. Lowe SW, Bodis S, Bardeesy N, McClatchey A, Remington L, Ruley HE, Fisher DE, Jacks T, Pelletier J, Housman DE. Apoptosis and the prognostic significance of p53 mutation. Cold Spring Harb Symp Quant Biol 1994; 59: 419–426.

    Article  PubMed  CAS  Google Scholar 

  73. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T. P53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807–810.

    Article  PubMed  CAS  Google Scholar 

  74. Koechli O, Schaer GN, Seifert B, Hornung R, Haller U, Eppenberger U, Mueller H. Mutant p53 protein associated with chemosensitivity in breast cancer specimens. Lancet 1994; 344: 1647–1648.

    Article  PubMed  CAS  Google Scholar 

  75. Silber R, Degar B, Costin D, Newcomb EW, Mani M, Rosenberg CR, Morse L, Drygas JC, Canellakis ZN, Potmesil M. Chemosensitivity of lymphocytes from patients with B-cell chronic lymphocytic leukemia to chlorambucil, fludarabine, and camptothecin analogs. Blood 1994; 84: 3440–3446.

    PubMed  CAS  Google Scholar 

  76. Wu GS, El-Diery WS. P53 and chemosensitivity. Nature Med 1996; 2: 255–256.

    PubMed  CAS  Google Scholar 

  77. Lutzker SG, Levine M. A functionally inactive p53 protein in teratocarcinoma cells is activated by either DNA damage or cellular differentiation. Nature Med 1996; 2: 804–810.

    Article  PubMed  CAS  Google Scholar 

  78. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE. Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med 1996; 2: 811–814.

    Article  PubMed  CAS  Google Scholar 

  79. Lowe SW, Ruley HE, Jacks T, Housman DE. P53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–967.

    Article  PubMed  CAS  Google Scholar 

  80. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  PubMed  CAS  Google Scholar 

  81. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345–347.

    Article  PubMed  CAS  Google Scholar 

  82. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways [see comments]. Nature 1993; 362: 849–852.

    Article  PubMed  CAS  Google Scholar 

  83. Lee JM, Bernstein A. P53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 1993; 90: 5742–5746.

    Article  PubMed  CAS  Google Scholar 

  84. O’Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cell lines. Cancer Res 1993; 53: 4776–4780.

    PubMed  Google Scholar 

  85. Fan S, El-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ, Jr, Magrath I, Kohn KW, O’Connor PM. P53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 1994; 54: 5824–5830.

    PubMed  CAS  Google Scholar 

  86. Leith JT. Correspondence re: D.G. Brachman et al. Mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 1993; 53:3667–3669; Cancer Res 1994; 54: 5021.

    PubMed  CAS  Google Scholar 

  87. McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 1994; 54: 3718–3722.

    PubMed  CAS  Google Scholar 

  88. Balcer-Kubiczek EK, Yin J, Lin K, Harrison GH, Abraham JM, Meltzer SJ. P53 mutational status and survival of human breast cancer MCF-7 cell variants after exposure to X rays or fission neutrons. Radiat Res 1995; 142: 256–262.

    Article  PubMed  CAS  Google Scholar 

  89. Namba H, Hara T, Tukazaki T, Migita K, Ishikawa N, Ito K, Nagataki S, Yamashita S. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/CIP1 pathway in human thyroid cells. Cancer Res 1995; 55: 2075–2080.

    PubMed  CAS  Google Scholar 

  90. Siles E, Villalobos M, Valenzuela MT, Nunez MI, Gordon A, McMillan TJ, Pedraza V, Ruiz de Almodovar JM. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br J Cancer 1996; 73: 581–588.

    Article  PubMed  CAS  Google Scholar 

  91. Nguyen DM, Spitz FR, Yen N, Cristiano RJ, Roth JA. Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer. J Thorac Cardiovasc Surg 1996; 112:1372–1376; discussion 1376–1377.

    Google Scholar 

  92. Ogawa N, Fujiwara T, Kagawa S, Nishizaki M, Morimoto Y, Tanida T, Hizuta A, Yasuda T, Roth JA, Tanaka N. Novel combination therapy for human colon cancer with adenovirus-mediated wild-type p53 gene transfer and DNA-damaging chemotherapeutic agent. Int J Cancer 1997; 73: 367–370.

    Google Scholar 

  93. Blagosklonny MV, El-Deiry WS. In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug. Int J Cancer 67:386–392.

    Google Scholar 

  94. Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, Galloway DA. Loss of normal p53 function confers sensitization to taxol by increasing G2/M arrest and apoptosis. Nature Med 1996; 2: 72–79.

    Article  PubMed  CAS  Google Scholar 

  95. Hawkins DS, Demers GW, Galloway DA. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 1996; 56: 892–898.

    PubMed  CAS  Google Scholar 

  96. Gallardo D, Drazan KE, McBride WH. Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res 1996; 56: 4891–4893.

    PubMed  CAS  Google Scholar 

  97. Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA. Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 1996; 2: 1665–1671.

    PubMed  CAS  Google Scholar 

  98. Chang EH, Jang YJ, Hao Z, Murphy G, Rait A, Fee WE Jr, Sussman HH, Ryan P, Chiang Y, Pirollo KF. Restoration of the G1 checkpoint and the apoptotic pathway mediated by wild-type p53 sensitizes squamous cell carcinoma of the head and neck to radiotherapy. Arch Otolaryngol Head Neck Surg 1997; 123: 507–512.

    Article  PubMed  CAS  Google Scholar 

  99. Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, Chiang Y, Chang EH. P53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 1997; 14: 1735–1746.

    Article  PubMed  CAS  Google Scholar 

  100. Anderson RG, Kamen BA, Rothberg KG, Lacey SW. Potocytosis: Sequestration and transport of small molecules by caveolae. Science 1992; 255: 410–411.

    Article  PubMed  CAS  Google Scholar 

  101. Guy J, Drabek D, Antoniou M. Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol Biotechnol 1995; 3: 237–248.

    Article  PubMed  CAS  Google Scholar 

  102. Phillips SC. Receptor-mediated DNA delivery approaches to human gene therapy. Biologicals 1995; 23: 13–16.

    Article  PubMed  CAS  Google Scholar 

  103. Leamon CP, Low PS. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 1991; 88: 5572–5576.

    Article  PubMed  CAS  Google Scholar 

  104. Leamon CP, Low PS. Selective targeting of malignant cells with cytotoxin-folate conjugates. J Drug Target 1994; 2: 101–112.

    Article  PubMed  CAS  Google Scholar 

  105. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994; 269: 3198–3204.

    PubMed  CAS  Google Scholar 

  106. Boulikas T. Liposome DNA delivery and uptake by cells. Oncol Rep 1996; 3: 1–7.

    Google Scholar 

  107. Cheng PW. Receptor ligand-facilitated gene transfer: Enhancement of liposome-mediated gene transfer and expression by transferrin. Hum Gene Ther 1996; 7: 275–282.

    Article  PubMed  CAS  Google Scholar 

  108. Cristiano RJ, Curiel DT. Strategies to accomplish gene delivery via the receptor-mediated endocytosis pathway. Cancer Gene Ther 1996; 3: 49–57.

    PubMed  CAS  Google Scholar 

  109. Wong FM, Reimer DL, Bally MB. Cationic lipid binding to DNA: characterization of complex formation. Biochemistry 1996; 35: 5756–5763.

    Article  PubMed  CAS  Google Scholar 

  110. Fasbender AJ, Zabner J, Welsh MJ. Optimization of cationic lipid-mediated gene transfer to airway epithelia. Am J Physiol 1995; 269: L45–51.

    PubMed  CAS  Google Scholar 

  111. Aoki K, Yoshida T, Sugimura T, Terada M. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 1995; 55: 3810–3816.

    PubMed  CAS  Google Scholar 

  112. Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC. Systemic gene therapy: Biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA 1995; 92: 9742–9746.

    Article  PubMed  CAS  Google Scholar 

  113. Henderson GB, Tsuji JM, Kumar HP. Mediated uptake of folate by a high-affinity binding protein in sublines of L1210 cells adapted to nanomolar concentrations of folate. J Membr Biol 1998; 101: 247–258.

    Google Scholar 

  114. Antony AC. Folate receptors. Annu Rev Nutr 1996; 16: 501–521.

    Article  PubMed  CAS  Google Scholar 

  115. Anderson RGW. The link between clathrin-coated pits and receptor mediated endocytosis, in Protein Traffic in Parasites and Mammalian cells ( Lonsdale-Eccles JD, ed) Proceedings of a Workshop Held at the International Laboratory for Research on Animal Disease, Majestic Printing Works, Nairobi, Kenya, pp. 1989: 18–21.

    Google Scholar 

  116. Leamon CP, Low PS. Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells. Biochem J 1993; 291: 855–860.

    PubMed  CAS  Google Scholar 

  117. Kane MA, Portillo RM, Elwood PC, Antony AC, Kolhouse JF. The influence of extracellular folate concentration on methotrexate uptake by human KB cells. partial characterization of a membrane-associated methotrexate binding protein. J Biol Chem 1986; 261: 44–49.

    PubMed  CAS  Google Scholar 

  118. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991; 51: 5329–5338.

    PubMed  CAS  Google Scholar 

  119. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen, BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992; 52: 3396–3401.

    PubMed  CAS  Google Scholar 

  120. Holm J, Hansen SI, Sondergaard K, Hoier-Madsen M. The high-affinity folate binding protein in normal and malignant mammary gland tissue. Adv Exp Med Biol 1993; 338: 757–760.

    Article  PubMed  CAS  Google Scholar 

  121. Franklin WA, Waintrub M, Edwards D, Christensen K, Prendegrast P, Woods J, Bunn PA, Kolhouse JF. New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer 1994; 8 (suppl): 89–95.

    Article  CAS  Google Scholar 

  122. Mantovani LT, Miotti S, Menard S, Canevari S, Raspagliesi F, Bottini C, Bottero F, Colnaghi MI. Folate binding protein distribution in normal tissues and biological fluids from ovarian carcinoma patients as detected by the monoclonal antibodies MOV18 and MOV19. Eur J Cancer 1994; 30A: 363–369.

    Article  Google Scholar 

  123. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994; 73: 2432–2443.

    Article  PubMed  CAS  Google Scholar 

  124. Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RG. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem 1988; 263:13, 602–13, 609.

    Google Scholar 

  125. Gottschalk S, Cristiano RJ, Smith LC, Woo SL. Folate receptor mediated DNA delivery into tumor cells: Protosomal disruption results in enhanced gene expression. Gene Ther 1994; 1: 185–191.

    PubMed  CAS  Google Scholar 

  126. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995; 1233: 134–144.

    Article  PubMed  Google Scholar 

  127. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of Gallium-67-deferoxaminefolate. J Nucl Med 1996; 37: 1003–1008.

    PubMed  CAS  Google Scholar 

  128. Miyamoto T, Tanaka N, Eishi Y, Amagasa T. Transferrin receptor in oral tumors. Int J Oral Maxillofac Surg 1994; 23: 430–433.

    Article  PubMed  CAS  Google Scholar 

  129. Keer HN, Kozlowski JM, Tsai YC, Lee C, McEwan RN, Grayhack JT. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J Urol 1990; 143: 381–385.

    PubMed  CAS  Google Scholar 

  130. Inoue T, Cavanaugh PG, Steck PA, Brunner N, Nicolson GL. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J Cell Physiol 1993; 156: 212–217.

    Article  PubMed  CAS  Google Scholar 

  131. Trowbridge IS. Transferrin receptor as a potential therapeutic target. Prog Allergy 1988; 45: 121–146.

    PubMed  CAS  Google Scholar 

  132. Elliott RL, Elliott MC, Wang F, Head JF. Breast carcinoma and the role of iron metabolism. A cytochemical, tissue culture, and ultrastructural study. Ann NYAcad Sci 1993; 698: 159166.

    Google Scholar 

  133. Baselga J, Mendelsohn J. Receptor blockade with monoclonal antibodies as anti-cancer therapy. Pharmacol Ther 1994; 64: 127–154.

    Article  PubMed  CAS  Google Scholar 

  134. Hoogenboom HR, Raus JC, Volckaert G. Cloning and expression of a chimeric antibody directed against the human transferrin receptor. J Immunol 1990; 144: 3211–3217.

    PubMed  CAS  Google Scholar 

  135. Xu L, Pirollo KF, Chang EH. Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vitro. Hum Gene Ther 1997; 8: 467–475.

    Article  PubMed  CAS  Google Scholar 

  136. Xu L, Pirollo KF, Rait A, Murray AL, Chang EH. Systemic p53 gene therapy in combination with radiation results in human tumor regression. Tumor Targeting 1999; 4: 92–104.

    CAS  Google Scholar 

  137. Jung M, Notano V, Dritschilo A. Mutations in the p53 gene in radiation-sensitive and -resistant human squamous carcinoma cells. Cancer Res 1992; 52: 6390–6393.

    PubMed  CAS  Google Scholar 

  138. Kasid U, Pirollo K, Dritschilo A, Chang E. Oncogenic basis of radiation resistance. Adv Cancer Res 1993; 61: 195–233.

    Article  PubMed  CAS  Google Scholar 

  139. Gjerset RA, Turla ST, Sobol RE, Scalise JJ, Mercola D, Collins H, Hopkins PJ. Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Mol Carcinog 1995; 14: 275–285.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Chang, E.H., Xu, L., Pirollo, K.F. (2000). Targeted p53 Gene Therapy-Mediated Radiosensitization and Chemosensitization. In: Gutkind, J.S. (eds) Signaling Networks and Cell Cycle Control. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-218-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-218-0_29

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9695-6

  • Online ISBN: 978-1-59259-218-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics