Skip to main content

Human and Animal Studies of the Genetics of Osteoporosis

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 344 Accesses

Abstract

Osteoporosis is a disease characterized by an inadequate amount and/or faulty structure of bone, resulting in fractures from relatively minor trauma. Although, osteoporotic fractures are most commonly observed among the elderly, the pathogenesis of osteoporosis starts early in life and involves the interaction of multiple environmental and genetic factors (1,2). Considerable past research has centered on the influence of reproductive, nutritional and/or lifestyle factors on the development of osteoporosis. With the advent of new molecular genetic approaches, the focus of research has recently shifted towards genetic factors. Genetic epidemiological studies provide convincing descriptive data demonstrating population and ethnic differences. In addition, studies of familial aggregation, familial transmission patterns, and comparisons of twin concordance rates consistently identify a significant portion of the vulnerability to develop osteoporosis as being inherited. Almost certainly, the development of osteoporosis will be found to involve a complex interplay between both genetic and environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari S, Rizzoli R, Bonjour J-P. Heritable and nutritional influences on bone mineral mass. Aging Clin Exp 1998; 10: 205–213.

    CAS  Google Scholar 

  2. Eisman JA. Genetics of osteoporosis. Endocr Rev 1999; 20: 788–804.

    PubMed  CAS  Google Scholar 

  3. Lutz J. Bone mineral, serum calcium, and dietary intakes of mother/daughter pairs. Am J Clin Nutr 1986; 44: 99–106.

    PubMed  CAS  Google Scholar 

  4. Sowers MR, Boehnke M, Jannausch ML, Crutchfield M, Corton G, Burns TL. Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age. Calcif Tissue Int 1992; 50 (2): 110–114.

    PubMed  CAS  Google Scholar 

  5. Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res 1993; 8: 1–9.

    PubMed  CAS  Google Scholar 

  6. Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pourel J. Environmental and genetic factors affecting bone mass: similarity of bone density among members of healthy families. Arth Rheum 1995; 38: 61–67.

    CAS  Google Scholar 

  7. Evans RA, Marel GM, Lancaster EK, Kos S, Evans M. Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 1988; 109: 870–873.

    PubMed  CAS  Google Scholar 

  8. Seeman E, Hopper JL, Bach LA, Cooper ME, Parkinson E, McKay J, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989; 320: 554–558.

    PubMed  CAS  Google Scholar 

  9. Seeman E, Tsalamandris C, Formica C, Hopper JL, McKay J. Reduced femoral neck bone density in the daughters of women with hip fractures: the role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res 1994; 9: 739–743.

    PubMed  CAS  Google Scholar 

  10. Danielson ME, Cauley JA, Baker CE, Newman AB, Dorman JS, Towers JD, et al. Familial resemblance of bone mineral density (BMD) and calcaneal ultrasound attenuation: the BMD in mothers and daughters study. J Bone Miner Res 1999; 14 (1): 102–110.

    PubMed  CAS  Google Scholar 

  11. Rubin LA, Hawker GA, Peltekova VD, Fielding LJ, Ridout R, Cole DEC. Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res 1999; 14: 633–643.

    PubMed  CAS  Google Scholar 

  12. Soroka SB, Barrett-Connor E, Edelstein SL, Kritz-Siverstein D. Family history of osteoporosis and bone mineral density at the axial skeleton: The Rancho Bernardo study. J Bone Miner Res 1994; 9: 761–769.

    Google Scholar 

  13. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. Risk factors for hip fractures in white women. N Engl J Med 1995; 332: 767–773.

    PubMed  CAS  Google Scholar 

  14. Lonzer MD, Imrie R, Rogers D, Worley D, Licata A, Secic M. Effects of heredity, age, weight, puberty, activity, and calcium intake on bone mineral density in children. Clin Pediatr 1996, 35: 185–189.

    CAS  Google Scholar 

  15. Ferrari S, Rizzoli R, Slosman D, Bonjour J-P. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 1998; 83: 358–361.

    PubMed  CAS  Google Scholar 

  16. Spotila LD, Caminis J, Devoto M, Shimoya K, Sereda L, Ott J, et al. Osteopenia in 37 members of seven families: analysis based on a model of dominant inheritance. Mol Med 1996; 2: 313–324.

    PubMed  CAS  Google Scholar 

  17. Livshits G, Pavlovsky O, Kobyliansky E. Population biology of human aging: segregation analysis of bone age characteristics. Hum Biol 1996, 68: 539–554.

    Google Scholar 

  18. Livshits G, Karaski D, Pavlovsky O, Kobyliansky E. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum Biol 1999; 71: 155–172.

    PubMed  CAS  Google Scholar 

  19. Cardon LR, Garner C, Bennett ST, Mackay IJ, Edwards RM, Cornsih J, et al. Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 2000; 15: 1132–1137.

    PubMed  CAS  Google Scholar 

  20. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC. Genetic factors in determining bone mass. J Clin Invest 1973; 52: 2800–2808.

    PubMed  CAS  Google Scholar 

  21. Dequeker J, Nys J, Verstracten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone 1987; 8: 207–209.

    PubMed  CAS  Google Scholar 

  22. Moller M, Horsman A, Harvald B, Hauge M, Henningsen K, Nordin BE. Metacarpal morphometry in monozygotic dizygotic elderly twins. Calcif Tiss Int 1978; 25: 197–201.

    CAS  Google Scholar 

  23. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults: a twin study. J Clin Invest 1987; 80: 706–710.

    PubMed  CAS  Google Scholar 

  24. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC. Genetic determinants of bone mass in adult women: A reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991; 6: 561–567.

    PubMed  CAS  Google Scholar 

  25. Arden NK, Baker J, Hogg C, Baan K, Spector TD. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 1996; 11: 530–534.

    PubMed  CAS  Google Scholar 

  26. Christian JC, Yu PL, Slemenda CW, Johnston CC. Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet 1989; 44: 429–433.

    PubMed  CAS  Google Scholar 

  27. Slemenda CW, Christian JC, Reed T, Reister TK, Williams CJ, Johnston CCJ. Long-term bone loss in men: effects of genetic and environmental factors. Ann Intern Med 1992; 117: 286–291.

    PubMed  CAS  Google Scholar 

  28. Kelly PJ, Nguyen T, Hooper J, Pocock N, Sambrook P, Eisman J. Changes in axial bone density with age. J Bone Miner Res 1993; 8: 11–17.

    PubMed  CAS  Google Scholar 

  29. Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M. Genetic factors and osteoporotic fracture in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. Br Med J 1999; 319: 1334–1337.

    CAS  Google Scholar 

  30. MacGregor A, Sneider H, Spector TD. Genetic factors and osteoporotic fractures in elderly people: twin data support genetic contribution to risk of fracture. Br Med J 2000; 320: 1669.

    CAS  Google Scholar 

  31. Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA. Genetic factors in bone turnover. J Clin Endocrinol Metab 1991; 72: 808–813.

    PubMed  CAS  Google Scholar 

  32. Tokita A, Kelly PJ, Nguyen TV, Qi JC, Morrison NA, Risteli L, et al. Genetic influences on type I collagen synthesis and degradation: Further evidence for genetic regulation of bone turnover. J Clin Endocrinol Metab 1994; 78 (6): 1461–1466.

    PubMed  CAS  Google Scholar 

  33. Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD. Genetic influences on bone turnover in postmenopausal twins. J Clin Endocrinol Metab 1996; 81: 140–146.

    PubMed  CAS  Google Scholar 

  34. Livshits G, Yakovenko C, Kobyliansky E. Quantitative genetic analysis of circulating levels of biochemcial markers of bone fromation. Am J Hum Genet 2000; 94: 324–331.

    CAS  Google Scholar 

  35. Econs MJ, Speer MC. Genetic studies of complex diseases: let the reader beware. J Bone Miner Res 1996; 11: 1835–1840.

    PubMed  CAS  Google Scholar 

  36. Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996; 59: 983–989.

    PubMed  CAS  Google Scholar 

  37. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048.

    PubMed  CAS  Google Scholar 

  38. Risch N, Merikangas K. The future of genetic studies of complex human disease. Science 1996; 272: 1516–1517.

    Google Scholar 

  39. Prockop DJ. Genetic trail of osteoporosis: candidate genes versus genome screens? Small families versus large families? J Bone Miner Res 1999; 14: 2000–2001.

    PubMed  CAS  Google Scholar 

  40. Hui SL, Slemenda CW, Johnston CCJ. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81: 1804–1809.

    PubMed  CAS  Google Scholar 

  41. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, et al. Appendicular bone density and age predict hip fracture in women. JAMA 1990; 263: 665–668.

    PubMed  CAS  Google Scholar 

  42. Nguyen T, Sambrook P, Kelly P, Jones G, Lord S, Freund J, Eisman J. Prediction of osteoporotic fractures by postural instability and bone density. Br Med J 1993; 307: 1111–1115.

    CAS  Google Scholar 

  43. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989; 121: 185–199.

    PubMed  CAS  Google Scholar 

  44. Dietrich W, Katz H, Lincoln SE, Shin HS, Friedman J, Dracopoli N, et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 1992; 131: 423–447.

    PubMed  CAS  Google Scholar 

  45. Dietrich WF, Miller JC, Steen RG, Merchant M, Damron D, Nahf R, et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet 1994; 7: 220–245.

    PubMed  CAS  Google Scholar 

  46. Weeks DE, Lathrop GM. Polygenic disease: Methods for mapping complex disease traits. Trends Genet 1995; 11: 513–519.

    PubMed  CAS  Google Scholar 

  47. Schork N, Chakravarti A. A nonmathematical overview of modern gene mapping techniques applied to human diseases. In: Mockrin S, ed. Molecular Genetics and Gene Therapy of Cardiovascular Disease. Marcel Dekker, New York, 1996, pp. 79–109.

    Google Scholar 

  48. Schork NJ. Genetically complex cardiovascular traits: origins, problems, and potential solutions. Hypertension 1997; 29: 145–149.

    PubMed  CAS  Google Scholar 

  49. Schork NJ. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am J Hum Genet 1993; 53: 1306–1319.

    PubMed  CAS  Google Scholar 

  50. Schork NJ, Xu X. Sibpairs versus pedigrees: what are the advantages? Diabetes Reviews 1996; 5: 1–7.

    Google Scholar 

  51. Schork NJ, Nath SP, Lindpaintner K, Jacob HJ. Extensions of quantitative trait locus mapping in experimental organisms. Hypertension 1996; 28: 1104–1111.

    PubMed  CAS  Google Scholar 

  52. Kruglyak L, Lander ES. High-resolution genetic mapping of complex traits. Am J Hum Genet 1995; 56: 1212–1223.

    PubMed  CAS  Google Scholar 

  53. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1994; 367: 284–287.

    PubMed  CAS  Google Scholar 

  54. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, et al. Prediction of bone density from vitamin D receptor alleles. Nature 1997; 387: 106.

    CAS  Google Scholar 

  55. Hustmyer FG, Peacock M, Hui S, Johnston CC, Christian J. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest 1994; 94: 2130–2134.

    PubMed  CAS  Google Scholar 

  56. Peacock M, Hustmyer FG, Hui S, Johnston CCJ, Christian JC. Vitamin D receptor genotype and bone mineral density-evidence conflicts on link. Br Med J 1995; 311: 874–875.

    CAS  Google Scholar 

  57. Melhus H, Kindmark A, Am’er S, Wil’en B, Lindh E, Ljunghall S. Vitamin D receptor genotypes in osteoporosis. Lancet 1994; 344 (8927): 949–950.

    PubMed  CAS  Google Scholar 

  58. Yamagata Z, Miyamura T, lijima S, Asaka A, Sasaki M, Kato J, et al. Vitamin D receptor gene polymorphism and bone mineral density in healthy Japanese women. Lancet 1994; 344: 1027.

    PubMed  CAS  Google Scholar 

  59. Looney JE, Yoon HK, Fischer M, Farley SM, Farley JR, Wergedal JE, et al. Lack of a high prevalence of the BB vitamin D receptor genotype in severely osteoporotic women. J Clin Endocrinol Metab 1995; 80 (7): 2158–2162.

    PubMed  CAS  Google Scholar 

  60. Spector TM, Keen RW, Arden NK, Morrison NA, Major PJ, Nguyen TV, et al. Influence of vitamin D receptor genotype on bone mineral density in postmenopausal women: a twin study in Britain. Br Med J 1995; 310: 1357–1360.

    CAS  Google Scholar 

  61. Krall EA, Parry P, Lichter JB, Dawson-Hughes B. Vitamin D receptor alleles and rates of bone loss: influence of years since menopause and calcium intake. J Bone Miner Res 1995; 10: 978–984.

    PubMed  CAS  Google Scholar 

  62. Fleet JC, Harris SS, Wood RJ, Dawson-Hughes B. The Bsm I vitamin D receptor restriction fragment length polymorphism (BB) predicts low bone density in premenopausal black and white women. J Bone Miner Res 1995; 10.

    Google Scholar 

  63. Riggs BL, Nguyen TV, Melton LJr, Morrison NA, O’Fallon WM, Kelly PJ, et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 1995; 10 (6): 991–996.

    PubMed  CAS  Google Scholar 

  64. Garnero P, Borel O, Sornay-Rend E, Delmas PD. Vitamin D receptor gene polymorphisms do not predict bone turnover and bone mass in healthy premenopausal women. J Bone Miner Res 1995; 10: 1283–1288.

    PubMed  CAS  Google Scholar 

  65. Garnero P, Borel O, Sornay Rendu E, Arlot ME, Delmas PD. Vitamin D receptor gene polymorphisms are not related to bone turnover, rate of bone loss, and bone mass in postmenopausal women: the OFELY Study. J Bone Miner Res 1996; 11 (6): 827–834.

    PubMed  CAS  Google Scholar 

  66. Harris SS, Eccleshall TR, Gross C, Dawson-Hughes B, Feldman D. The vitamin D receptor start codon polymoprhism (FokI) and bone mineral density in premenopausal American black and white women. J Bone Miner Res 1997; 12: 1043–1048.

    PubMed  CAS  Google Scholar 

  67. Gennari L, Becherini L, Masi L, Mansani R, Gonnelli S, Cepollaro C, et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab 1998; 83: 939–944.

    PubMed  CAS  Google Scholar 

  68. Fountas L, Moutsatsou P, Kastanias I, Tamouridis N, Tzanela M, Anapliotou M, et al. The contribution of vitamin D receptor gene polymorphisms in osteoporosis and familial osteoporosis. Osteo Int1999; 10: 392–398.

    Google Scholar 

  69. Cooper GS, Umbach DM. Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 1996; 11: 1841–1849.

    PubMed  CAS  Google Scholar 

  70. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler M, Pike JW, Shine J, O’Malley BW. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 1988; 85: 3294–3298.

    PubMed  CAS  Google Scholar 

  71. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res 1996; 11 (12): 1850–1855.

    PubMed  CAS  Google Scholar 

  72. Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D. Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 1998; 13: 31–35.

    PubMed  CAS  Google Scholar 

  73. Econs MJ, Koller DL, Considine EL, Takacs I, Christian JC, Connally PM, et al. Association and sib pair linkage analysis studies between BMD and the vitamin D receptor (VDR). Bone 1998; 23: S271.

    Google Scholar 

  74. Prockop DJ, Constantinou CD, Dombrowski KE, Johima Y, Kadler KE, Kuivaniemi H, Tromp G, et al. Type I procollagen: The gene-protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connective tissue. Am J Med Genet 1989; 34: 60–67.

    PubMed  CAS  Google Scholar 

  75. Spotila LD, Constantinou CD, Sereda L, Ganguly A, Riggs BL, Prockop DJ. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta. Proc Natl Acad Sci USA 1991; 88: 5423–5427.

    PubMed  CAS  Google Scholar 

  76. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Spl binding site in the collagen type I alpha 1 gene. Nat Genet 1996; 14 (2): 203–205.

    PubMed  CAS  Google Scholar 

  77. Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FEA, Grant SFA, et al. Relation of the alleles of the collagen typelal gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 1998; 338: 1016–1021.

    PubMed  CAS  Google Scholar 

  78. McGuigan FEA, Reid DM, Ralston SH. Susceptibility to osteoporotic fracture is determined by allelic variation at the Spl site, rather than other polymorphic sites at the COL lA i locus. Osteoporos Int 2000; 11: 338–343.

    PubMed  CAS  Google Scholar 

  79. Langdahl BL, Ralston SH, Grant SFA, Eriksen EF. An Spl binding site polymorphism in the COL 1 A 1 gene predicts osteoporotic fractures in both men and women. J Bone Miner Res 1997;12 (Suppl).

    Google Scholar 

  80. Keen RW, Woodford-Richens KL, Grant SFA, Lanchbury JS, Ralston SH, Spector TD. Type I collagen gene polymorphism is associated with osteoporosis and fracture. J Bone Miner Res 1997; 12 (Suppl): S489.

    Google Scholar 

  81. Garnero P, Borel O, Grant SFA, Ralston SH, Delmas PD. Spl binding site polymorphism in the collagen type I al gene, peak bone mass, postmenopausal bone loss, and bone turnover: the OFELY study. J Bone Miner Res 1997; 12 (Suppl): S490.

    Google Scholar 

  82. Haughton MA, Gunnell AS, Grant SFA, Brown MA, Eisman JA. Linkage studies of the COL 1Al and VDR loci in the control of bone mineral density. Bone 1998; 23: S370.

    Google Scholar 

  83. Hustmyer FG, Liu G, Johnston CC, Christian J, Peacock M. Polymorphism at an Spl binding site of COL1A1 and bone mineral density in premenopausal female twins and elderly fracture patients. Osteoporos Int 1999; 9: 346–350.

    PubMed  CAS  Google Scholar 

  84. Styrkarsdottir U, Gudjonsdottir K, Johannsdottir VD, Jonasson K, Grant SFA, Thors H, et al. The Spl polymorphism in the COLIAI Gene is not associated with BMD or osteoporosis related fractures in the Icelandic population. J Bone Miner Res 2000; 15 (suppl 1): S363.

    Google Scholar 

  85. Heegaard A-M, Jorgensen HL, Vestergaard AW, Hassager C, Ralston SH. Lack of influence of collagen type la Spl binding site polymorphism on the rate of bone loss in a cohort of postmenopausal Danish women followed for 18 years. Calcif Tissue Int 2000; 66: 409–441.

    PubMed  CAS  Google Scholar 

  86. McLellan AR, Jagger C, Spooner R, Sutcliffe R, Harrison J, Shapiro D. Are COL 1 A 1 Spi polymorphisms important determinants of bone mineral density and osteoporosis in postmenopausal women in the UK? J Bone Miner Res 1997; 12: S119.

    Google Scholar 

  87. Liden M, Wilen B, Lunghall S, Melhus H. Polymorphism at the Spl binding site in the collagen type I alpha 1 gene does not predict bone mineral density in postmenopausal women in Sweden. Calcif Tissue Int 1998; 63: 293–295.

    PubMed  CAS  Google Scholar 

  88. Vandevyver C, Philippaerts L, Cassiman J-J, Raus J, Geusens P. Bone mineral density in postmenopausal women is not associated with type I colagen (COL-1A1 and COL-IA!) dimorphisms. J Bone Miner Res 1997; 12: S490.

    Google Scholar 

  89. Hustmyer FG, Liu G, Christian JC, Johnston CC, Peacock M. Is the polymorphism at the Spl binding site in the COL 1 Al gene associated with bone mineral density. J Bone Miner Res 1997; 12 (Suppl): S490.

    Google Scholar 

  90. Jagger C, Swan L, Harrison J, Rowan M, McColl J, Spooner R, Shapiro D, McLellan AR. Evidence that vitamin D receptor genotype, but not COLIA1 genotype may contribute to the heritability of bone mineral density: the Scottish Twin Study. Bone 1998; 23 (Suppl): S372.

    Google Scholar 

  91. Lim S-K, Li SZ, Won YJ, Shin W-Y, Lee HC, Huh KB. Lack of association between a polymorphic Sp1 binding site in collagen type 1 alpha 1 gene and osteoporosis in Korean. J Bone Miner Res 1997; 12 (Suppl): S491.

    Google Scholar 

  92. Nogues X, Garcia-Giral N, Enjuanes A, Grinberg D, Mellibovsky L, Minguez S,et al. Genetic study of bone mass determinants in perimenopausal Spanish women. Bone 1998; 23 (Suppl): S371.

    Google Scholar 

  93. Kobayashi S, Inoue S, Hosoi T, Ouchi Y, Shiraki M, Orimo H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J Bone Miner Res 1996; 11 (3): 306–311.

    PubMed  CAS  Google Scholar 

  94. Sowers MF, Aron D, Burns T, Clark K, Willing M. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 1997; 12 (Suppl): S 175.

    Google Scholar 

  95. Huang Q, Wang Q, Zhang L, Zhou Q, Lu J. Relationship between bone mineral density and polymorphism of the estrogen receptor gene in Chinese postmenopausal women. Bone 1998; 23 (Suppl): S370.

    Google Scholar 

  96. Nelson DA, Kleerekoper M. The search for the osteoporosis gene. J Clin Endocrinol Metab 1997;82(4):989–990.

    Google Scholar 

  97. Mahonen A, Turunen A-M, Kroger H, Maenpaa PH. Estrogen receptor gene polymorphism is associated with bone mineral density in perimenopausal Finnish women. J Bone Miner Res 1997; 12 (Suppl): S255.

    Google Scholar 

  98. Langdahl BL, Lokke E, Carstens M, Eriksen EF. Polymorphisms in the estrogen receptor gene show different distributions in osteoporotic patients and normal controls. J Bone Miner Res 1997; 12 (Suppl): S255.

    Google Scholar 

  99. Sikic-Klisovic E, Badenhop NE, Skugor M, Klisovic D, Ilich JZ, Landoll JD, et al. Estrogen receptor gene polymorphism differentiates bone mass in adult males more than in females. Bone 1998; 23 (Suppl): S370.

    Google Scholar 

  100. Becherini L, Gennari L, Mansani R, Masi L, Gonneli S, Colli E, et al. Estrogen receptor-a gene polymorphisms and osteoporosis: a large scale study on postmenopausal women. Bone 1998;23 (Suppl):SS269.

    Google Scholar 

  101. Zmuda JM, Cauley JA, Glynn NW, Lee M, Kuller LH, Ferrell RE. A common estrogen receptor gene variant is associated with hip bone density in older men. Bone 1998; 23 (Suppl): S269.

    Google Scholar 

  102. Salmen T, Heikkinen A-M, Mahonen A, Kroger K, Komulainen M, Saarikoski S, et al. Early postmenopausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: Effect of hormone replacement therapy. J Bone Miner Res 2000; 15: 315–321.

    PubMed  CAS  Google Scholar 

  103. Jorgensen HL, Heegaard AM, Bayer L, Hansen L, Hassager C. PvuII and Xba7 restriction fragment length polymorphism at the estrogen receptor (ER) locus and its relation to bone mineral density (BMD) and bone loss in postmenopausal Danish women. 1997; 12 (Suppl): S254.

    Google Scholar 

  104. Han KO, Moon EG, Kang YS, Chung HY, Min EH, Han WK. Nonassocation of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women. J Clin Endocrinol Metab 1997; 82: 991–995.

    PubMed  CAS  Google Scholar 

  105. Kindmark A, Carling T, Melhus H, Ljunghall S. Estrogen receptors and osteoporosis: Lack of association between disease and polymorphisms at three different loci. Bone 1998; 23 (Suppl): S369.

    Google Scholar 

  106. Vandevyver C, Vanhoof J, Declerck K, Stinissen P, Vandervorst C, Michiels L, et al. Lack of association between estrogen receptor genotypes and bone mineral density, fracture history or muscle strength in elderly women. J Bone Miner Res 1999; 14: 1576–1582.

    PubMed  CAS  Google Scholar 

  107. Mizunuma H, Hosoi T, Okano H, Soda M, Tokizawa T, Kagami I, Miyamoto S, et al. Estrogen receptor gene polymorphism and bone mineral density at the lumbar spine of pre-and postmenopausal women. Bone 1997; 21: 379–383.

    PubMed  CAS  Google Scholar 

  108. Kohlmeier M, Saupe J, Schaefer K, Asmus G. Bone fracture history and prospective bone fracture risk of hemodialysis patients are related to apolipoprotein E genotype. Calcif Tissue Int 1998; 62: 278–281.

    CAS  Google Scholar 

  109. Salamone LM, Cauley JA, Zmuda J, Pasagian-Macauley A, Epstein RS, Ferrell RE, et al. Apolipoprotein E gene polymorphism and bone loss: estrogen status modifies the influence of apolipoprotein E on bone loss. J Bone Miner Res 2000; 15: 308–314.

    CAS  Google Scholar 

  110. Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y. Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res 1997; 12: 1438–1445.

    CAS  Google Scholar 

  111. Heikkinen A-M, Kroger H, Niskanen L, Komulainen MH, Ryynanen M, Parviainen M, et al. Does apolipoprotein E genotype relate to BMD and bone markers in postmenopausal women? Maturitas 2000; 34: 33–41.

    CAS  Google Scholar 

  112. Murray RE, McGuigan F, Grant SF, Reid DM, Ralston SH. Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 1997; 21: 89–92.

    PubMed  CAS  Google Scholar 

  113. Takacs I, Koller DL, Peacock M, Christian JC, Evans WE, Hui SL, et al. Sib pair linkage and association studies between bone mineral density and the interleukin-6 gene locus. Bone 2000; 27: 169–173.

    PubMed  CAS  Google Scholar 

  114. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF. A sequence variation: 713–8de1C in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 1997; 20 (3): 289–294.

    PubMed  CAS  Google Scholar 

  115. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmell DB, Recker RR. Linkage of a gene causing high bone mass to human chromosome 11 (11g12–13). Am J Hum Genet 1997; 60: 1326–1332.

    PubMed  CAS  Google Scholar 

  116. Recker RR, Davies DK, Recker SM. Characterizing the phenotype in a kindred with autosomal dominant high bone mass. Bone 1998; 23 (Suppl): S274.

    Google Scholar 

  117. Gong Y, Vikkula M, Boon L, Liu J, Beighton P, Ramesar R, et al. Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12–13. Am J Hum Genet 1996; 59 (1): 146–51.

    PubMed  CAS  Google Scholar 

  118. Heaney C, Carmi R, Dushkin H, Sheffield V, Beier DR. Genetic mapping of recessive osteopetrosis to 11g12–13. Am J Hum Genet 1997;61 (Suppl):Al2.

    Google Scholar 

  119. Devoto M, Shimoya K, Caminis J, Ott J, Tenenhouse A, Whyte MP, et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 1998; 6: 151.

    PubMed  CAS  Google Scholar 

  120. Spotila LD, Devota M, Caminis J, Kosich R, Korkko J, Ott J, et al. Suggested linkage of low bone density to chromosome 1p36 is extended to a second cohort of sib pairs. Bone 1998; 23 (Suppl): 5277.

    Google Scholar 

  121. Koller DL, Rodriguez LA, Christian JC, Slemenda CW, Econs MJ, Hui SL, et al. Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11g12–13. J Bone Miner Res 1998; 13 (12): 1903–1908.

    PubMed  CAS  Google Scholar 

  122. Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, Parry P, et al. Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 2000; 85: 3116–3120.

    PubMed  CAS  Google Scholar 

  123. Niu T, Chen C, Cordell H, et al. A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 1999; 104: 226–233.

    PubMed  CAS  Google Scholar 

  124. Little RD, Carully JP, Del Mastro RG, Dupuis J, Osbourne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002; 70: 11–19.

    PubMed  CAS  Google Scholar 

  125. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107: 513–523.

    PubMed  CAS  Google Scholar 

  126. Deng HW, Xu FH, Conway T, Deng XT, Li JL, Davies KM, et al. Is population bone mineral density variation linked to the marker D11S987 on chromosome 11g12–13? Clin Endocrinol Metab 2001; 86: 3735–3741.

    CAS  Google Scholar 

  127. Flint J, Corley R. Do animal models have a place in the genetic analysis of quantitative human beavioural traits? J Mol Med 1996; 74: 515–521.

    PubMed  CAS  Google Scholar 

  128. Miller SC, Bowman BM, Jee WSS. Available animal models of osteopenia-small and large. Bone 1995; 17 (Suppl): 117S - 1235.

    PubMed  CAS  Google Scholar 

  129. Kimmel DB. Animal models for in vivo experimentation in osteoporosis research. In: Marcus R, ed. Osteoporosis. Academic Press, San Diego, CA, 1996, pp. 671–690.

    Google Scholar 

  130. Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinol 1998; 139: 663–670.

    CAS  Google Scholar 

  131. Bar-Shira-Maymon B, Coleman R, Cohen A, Steinhagen-Thiessen E, Slibermann M. Age-related loss in lumbar vertebrae of CW-1 female mice: a histomorphometric study. Calcif Tiss Int 1989; 44: 36–45.

    CAS  Google Scholar 

  132. Weiss A, Arbell I, Steinhagen-Thiessen E, Silbermann M. Structural changes in aging bone: osteopenia in the proximal femurs of female mice. Bone 1991; 12: 165–172.

    PubMed  CAS  Google Scholar 

  133. Kimmel DB. Quantitative histologic changes in the proximal tibial epiphyseal growth cartilage of aged female rats. Cells Mater 1992; 1 (Suppl): 11–18.

    Google Scholar 

  134. Schapira D, Laton-Miller R, Barzilai D, Silbermann M. The rat as a model for studies of the aging skeleton. Cells Mater 1992; 1 (Suppl): 181–188.

    Google Scholar 

  135. Li XJ, Jee WJS, Ke HZ, Mori S, Akamine T. Age-related changes of cancellous and cortical bone histomorphometry in female Sprague-Dawley rats. Cells Mater 1992; 1 (Suppl): 25–37.

    Google Scholar 

  136. Suzuki HK. Effects of estradiol-17-ß-n-valerate on endosteal ossification and linear growth in the mouse femur. Endocrinology 1958; 60: 743–747.

    Google Scholar 

  137. Edwards MW, Bain SD, Bailey MC, lantry MM, Howard GA. 17-ß-estradiol stimulation of endosteal bone formation in the ovariectomized mouse: an animal model for the evaluation of bone-targeted estrogens. Bone 1992; 13: 29–34.

    PubMed  CAS  Google Scholar 

  138. Donahue LR, Rosen CJ, Beamer WG. Reduced bone density in hypogonadal mice. J Bone Miner Res 1994; 9 (Suppl): S193.

    Google Scholar 

  139. Kalu DN. The ovariectomized rat as a a model of postmenopausal osteopenia. Bone Miner 1991; 15: 175–191.

    PubMed  CAS  Google Scholar 

  140. Wronski TJ. The ovariectomized rat as an animal model for postmenopausal bone loss. Cells Mater 1992; 1 (Suppl): 69–74.

    Google Scholar 

  141. Mosekilde L, Danielsen CC, Knudsen UB. The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 1993; 14: 1–6.

    PubMed  CAS  Google Scholar 

  142. Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, et al. Age-related changes in the senescence-accelerated mouse (SAM). Am J Pathol 1986; 125: 276–283.

    PubMed  CAS  Google Scholar 

  143. Tsuboyama T, Takahashi K, Matsushita M, Okumura H, Yamamuro T, Umezawa M, et al. Decreased endosteal formation during cortical bone modeling in SAM-P/6 mice with a low peak bone mass. Bone Miner 1989; 7: 1–12.

    PubMed  CAS  Google Scholar 

  144. Tsuboyama T, Matsushita M, Okumura H, Yamamuro T, Hanada K, Takeda T. Modification of strain-specific femoral bone density by bone marrow chimerism in mice: a study on the spontaneously osteoporotic mouse (SAM-P/6). Bone 1989; 10: 269–277.

    PubMed  CAS  Google Scholar 

  145. Takahashi K, Tsuboyama T, Matsushita M, Kasai R, Okumura H, Yamamuro T, et al. Modification of strain-specific femoral bone density by bone marrow-derived factors administered neonatally: A study on the spontaneously osteoporotic mouse (SAM-P/6). Bone Miner 1994; 23: 57–64.

    Google Scholar 

  146. Takahashi K, Tsuboyama T, Matsushita M, Kasai R, Okumura H, Yamamuro T, et al. Effective intervention of low peak bone mass and modeling in the spontaneous murine model of senile osteoporosis, SAM-P/6, by calcium supplement and hormone treatment. Bone 1994; 15: 209–215.

    PubMed  CAS  Google Scholar 

  147. Tsuboyama T, Takahashi K, Yamamuro T, Hosokawa M, Takeda T. Cross-mating study on bone mass in the spontaneously osteoporotic mouse (SAM-P/6). Bone Miner 1993; 23: 57–64.

    PubMed  CAS  Google Scholar 

  148. Jilka RL, Weinstein RS, Takahashi K, Parfitt MA, Manolagos SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 1996; 97: 1732–1740.

    PubMed  CAS  Google Scholar 

  149. Weinstein RS, Jilka RL, Parfitt AM, Manolagos SC. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinol 1997; 138: 4013–4021.

    CAS  Google Scholar 

  150. Schnitzler CM, Ripamonti U, Mesquita JM. Histomorphometry of iliac crest trabecular bone in adult male baboons in captivity. Calcif Tiss Int 1993; 52: 447–454.

    CAS  Google Scholar 

  151. Jayo MJ, Jerome CP, Lees CJ, Rankin SE, Weaver DS. Bone mass in female cynomolgus macaques: a cross-sectional and longitudinal study by age. Calcif Tiss Int 1994; 54: 231–236.

    CAS  Google Scholar 

  152. Pope NS, Gould KG, Anderson DC, Mann DR. Effects of age and sex on bone density in the rhesus monkey. Bone 1989; 10: 109–112.

    PubMed  CAS  Google Scholar 

  153. Jayo MJ, Rankin SE, Weaver DS, Carlson CS, Clarkson TB. Accuracy and precision of lumbar bone mineral content by DXA in live female monkeys. Calcif Tiss Int 1991; 49: 438–440.

    CAS  Google Scholar 

  154. Jerome C, Kimmel DB, McAlister JA, Weaver DS. Effects of ovariectomy on iliac trabecular bone in baboons (Papio anubis). Calcif Tiss Int 1986; 39: 206–208.

    CAS  Google Scholar 

  155. Miller C, Weaver D. Bone loss in ovariectomized monkeys. Calcif Tiss Int 1986; 38: 62–65.

    CAS  Google Scholar 

  156. Lundon K, Dumitriu M, Grynpas M. The long-term effect of ovariectomy on the quality and quantitiy of cancellous bone in young macaques. Bone Miner 1994; 24: 135–149.

    PubMed  CAS  Google Scholar 

  157. Aufdemorte TB, Fox WC, Miller D, Buffum K, Holt GR, Carey KD. A non-human primate model for the study of osteoporosis and oral bone loss. Bone 1993; 14: 581–586.

    PubMed  CAS  Google Scholar 

  158. Grynpas MD, Huckell CB, Reichs KJ, Derousseau CJ, Greenwood C, Kessler MJ. Effect of age and osteoarthritis on bone mineral in rhesus monkey vertebrae. J Bone Miner Res 1993; 8: 909–917.

    PubMed  CAS  Google Scholar 

  159. Carlson CS, Loeser RF, Jayo MJ, Weaver DS, Adams MR, Jerome CP. Osteoarthritis in cynomolgus macaques: a primate model of naturally occuring disease. J Orthop Res 1994; 12: 331–339.

    PubMed  CAS  Google Scholar 

  160. Kimmel DB, Lane NE, Kammerer CM, Stegman MR, Rice KS, Recker RR. Spinal pathology in adult baboons. J Bone Miner Res 1993; 8 (Suppl): S279.

    Google Scholar 

  161. Hughes KP, Kimmel DB, Kammerer CM, Stegman MR, Rice KS, Recker RR. Vertebral morphometry in adult female baboons. J Bone Miner Res 1994; 9 (Suppl): S209.

    Google Scholar 

  162. Orwoll ES, Oviatt SK, Mann T. The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 1990; 70: 1202–1207.

    PubMed  CAS  Google Scholar 

  163. Paigen K. A miracle enough: the power of mice. Nature Med 1995; 1: 215–220.

    PubMed  CAS  Google Scholar 

  164. Frankel WN. Taking stock of complex trait genetics in mice. Trends Genet 1995; 11: 471–477.

    PubMed  CAS  Google Scholar 

  165. Malakoff D. The rise of the mouse, biomedicine’s model mammal. Science 2000; 288: 248–253.

    PubMed  CAS  Google Scholar 

  166. Kaye M, Kusy RP. Genetic lineage, bone mass, and physical activity. Bone 1995; 17: 131–135.

    PubMed  CAS  Google Scholar 

  167. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ. Genetic variability in adult bone density among inbred strains of mice. Bone 1996; 18: 397–403.

    PubMed  CAS  Google Scholar 

  168. Rosen CJ, Dimai HP, Vereault D, Donahue LR, Beamer WG, Farley J, et al. Circulating and skeletal insulin-like growth factor-I (IGF-I) concentrations in two inbred strains of mice with different bone mineral densities. Bone 1997; 21: 217–223.

    PubMed  CAS  Google Scholar 

  169. Green MC. Catalogue of mutant genes and polymorphic loci. In: Searle M, ed. Genetic Variants and Strains of the Laboratory Mouse. Oxford University Press, Oxford, UK, 1989, pp. 12–403.

    Google Scholar 

  170. Green MC. Further morphological effects of the short-ear gene in the house mouse. J Morph 1951; 88: 1–2.

    Google Scholar 

  171. Green MC. Effects of the short-ear gene in the mouse on cartilage formation in healing bone fractures. J Exp Zool 1958; 137: 75–88.

    PubMed  CAS  Google Scholar 

  172. Mikiç B, van der Meulen MC, Kingsley DM, Carter DR. Long bone geometry and strength in adult BMP-5 deficient mice. Bone 1995; 16 (4): 445–454.

    PubMed  Google Scholar 

  173. Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, et al. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 1992; 71 (3): 399–410.

    PubMed  CAS  Google Scholar 

  174. Lohler J, Timpl R, Jaenisch R. Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell 1984; 38: 597–607.

    PubMed  CAS  Google Scholar 

  175. Bonadio J, Saunders TL, Tsai E, Goldstein SA, Morris-Wiman J, Brinkley L, et al. A transgenic mouse model of osteogenesis imperfecta type I. Proc Natl Acad Sci USA 1990; 87: 7145–7149.

    PubMed  CAS  Google Scholar 

  176. Khillan JS, Olsen AS, Kontsaari S, Sokolov B, Prockop DJ. Transgenic mice that express a mini-gene version of the human gene for type I procollagen (COLIA!) develop a phenotype resembling a lethal form of osteogenesis imperfecta. J Biol Chem 1991; 266: 23373–23379.

    PubMed  CAS  Google Scholar 

  177. Pereira RF, Hume EL, Halford KW, Prockop DJ. Bone fragility in transgenic mice expressing a mutated gene for type I procollagen (COL1A1) parallels the age-dependent phenotype of human osteogenesis imperfecta. J Bone Miner Res 1995; 10: 1837–1843.

    PubMed  CAS  Google Scholar 

  178. Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    PubMed  CAS  Google Scholar 

  179. Soriano P, Montgomery C, Geske R, Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    PubMed  CAS  Google Scholar 

  180. Wang Z, Ovitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF. Bone and hematopoietic defects in mice lacking c-fos. Nature 1992; 360: 741–745.

    PubMed  CAS  Google Scholar 

  181. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993; 74: 395–404.

    PubMed  CAS  Google Scholar 

  182. Klein RF, Mitchell SR, Phillips TJ, Belknap JK, Orwoll ES. Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 1998; 13: 1648–1656.

    PubMed  CAS  Google Scholar 

  183. Taylor BA. Recombinant inbred strains: Use in gene mapping. In: Morse HC, ed. Origins of Inbred Mice. Academic Press, New York, 1978, pp. 423–438.

    Google Scholar 

  184. Beamer WG, Shultz KL, Churchill GA, Frankel WN, Baylink DJ, Rosen CJ, et al. Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 1999; 10: 1043–1049.

    PubMed  CAS  Google Scholar 

  185. Benes H, Weinstein RS, Zheng W, Thaden JJ, Jilka RL, Manolagos SC, et al. Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 2000; 15: 626–633.

    PubMed  CAS  Google Scholar 

  186. Shimizu M, Higuchi K, Bennett B, Xia C, Tsuboyama T, Kasai S, et al. Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome 1999; 10 (2): 81–87.

    PubMed  CAS  Google Scholar 

  187. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998; 18: 19–24.

    PubMed  CAS  Google Scholar 

  188. Moreadith RW, Radford NB. Gene targeting in embryonic stem cells: the new physiology and metabolism. J Mol Med 1997; 75: 208–216.

    PubMed  CAS  Google Scholar 

  189. Porcu S, Kitamura M, Witkowska E, Zhang Z, Mutero A, Lin C, et al. The human beta globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 1997; 90: 4602–4609.

    PubMed  CAS  Google Scholar 

  190. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990; 234: 541–544.

    Google Scholar 

  191. Bailey DW. Recombinant inbred strains and bilineal congenic strains. In: Foster HL, Small JD, Fox JG, eds. The Mouse in Biomedical Research, Vol. I: History, Genetics, and Wild Mice. Academic Press, New York, 1981, pp. 223–239.

    Google Scholar 

  192. Dudek BC, Underwood K. Selective breeding, congenic strains, and other classical genetic approaches to the analysis of alcohol-related polygenic pleotropisms. Behav Genet 1993; 23: 179–190.

    PubMed  CAS  Google Scholar 

  193. Flaherty L. Congenic strains. In: Foster HL, Small JD, Fox JG, eds. The Mouse in Biomedical Research, Vol. I: History, Genetics, and Wild Mice. Academic Press, New York, 1981, pp. 215–222.

    Google Scholar 

  194. Lisitsyn NA, Segre JA, Kusumi K, Lisitsyn NM, Nadeau JH, Frankel WN, et al. Direct isolation of polymorphic markers linked to a trait by genetically directed representational difference analysis. Nature Genet 1994; 6: 57–63.

    PubMed  CAS  Google Scholar 

  195. Eddy DM. Common screening tests. In: Eddy DM, ed. Common Screening Tests. American College of Physicians, Philadelphia, PA, 1991.

    Google Scholar 

  196. Johnston CCJ, Cummings SR, Dawson-Hughes B, Lindsay R, Melton U, Slemenda CW. Physician’ s Guide to Prevention and Treatment of Osteoporosis. National Osteoporosis Foundation, Washington, DC, 1998, pp. 1–30.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klein, R.F., Foroud, T. (2003). Human and Animal Studies of the Genetics of Osteoporosis. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics