Skip to main content

Oncogenes as Targets for Cancer Vaccines

  • Chapter
Oncogene-Directed Therapies

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 121 Accesses

Abstract

It has been long known that the immune system interacts with tumor cells (1-12) and scientists have long believed that tumors carry surface molecules, antigens, that are recognized by the immune system and can induce a protective immune response. Advances in molecular biology and immunology in the past two decades have provided concrete evidence for the presence of these antigens, which are called tumor-associated antigens (TAA) and also provided the tools for the potential development of immunologic approaches to target cells carrying these antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uenishi T, Hirohashi K, Tanaka H, Ikebe T, Kinoshita H. Spontaneous regression of a large hepatocellular carcinoma with portal vein tumor thrombi: report of a case. Surg Today 2000; 30: 82–85.

    Article  PubMed  CAS  Google Scholar 

  2. Hachiya T, Koizumi T, Hayasaka M, et al. Spontaneous regression of primary mediastinal germ cell tumor. Jpn J Clin Oncol 1998; 28: 281–283.

    Article  PubMed  CAS  Google Scholar 

  3. Markowska J, Markowska A. Spontaneous tumor regression. Ginekol Pol 1998; 69: 39–44.

    PubMed  CAS  Google Scholar 

  4. Otley CC, Pittelkow MR. Skin cancer in liver transplant recipients. Liver Transpl 2000; 6: 253–262.

    PubMed  CAS  Google Scholar 

  5. Penn I. Overview of the problem of cancer in organ transplant recipients. Ann Transplant 1997; 2: 5–6.

    PubMed  CAS  Google Scholar 

  6. Konety BR, Tewari A, Howard RI, et al. Prostate cancer in the post-transplant population. Urologic Society for Transplantation and Vascular Surgery. Urology 1998; 52: 428–432.

    Article  PubMed  CAS  Google Scholar 

  7. Flattery MP. Incidence and treatment of cancer in transplant recipients. J Transpl Coord 1998; 8:105–110; quiz 111–112.

    Google Scholar 

  8. Sheil AG. Cancer in immune-suppressed organ transplant recipients: aetiology and evolution. Transplant Proc 1998; 30: 2055–2057.

    Article  PubMed  CAS  Google Scholar 

  9. Royal RE, Steinberg SM, Krouse RS, et al. Correlates of response to IL-2 therapy in patients treated for metastatic renal cancer and melanoma. Cancer J Sci Am 1996; 2: 91.

    PubMed  CAS  Google Scholar 

  10. Bourantas KL, Hatzimichael EC, Makis AC, et al. Prolonged interferon-alpha-2b treatment of hairy cell leukemia patients. Eur J Haematol 2000; 64: 350–351.

    Article  PubMed  CAS  Google Scholar 

  11. Parkinson DR, Sznol M. High dose interleukin-2 in the therapy of metastatic renal cell carcinoma. Semin Oncol 1995; 22: 61–66.

    PubMed  CAS  Google Scholar 

  12. Stadler WM, Vogelzang NJ. Low dose interleukin-2 in the treatment of metaststic renal call carcinoma. Semin Oncol 1995; 22: 67–73.

    PubMed  CAS  Google Scholar 

  13. Coley W. Treatment of inoperable malignant tumors with toxins of erysipelas and the bacillus prodigious. Trans Am Surg Assn 1894; 12: 183–212.

    Google Scholar 

  14. Nauts H. Beneficial effects of immunotherapy (bacterial toxins) on sarcoma of the soft tissue, other than lymphosarcoma. End results in 186 determinate cases with microscopic confirmation of diagnosis-49 operable, 137 inoperable. Cancer Research Institute, New York 1975.

    Google Scholar 

  15. Coley W. Cancer of the testis; containing a report of 64 cases, with special reference to 12 cases of cancer of the undescended testis. Trans South Surg Gyn Assn 1914; 63: 35–70.

    Google Scholar 

  16. Coley W. Primary neoplasms of the lymphatic glands including Hodgkin’s disease. Ann Surg 1916; 63: 35–70.

    Article  PubMed  CAS  Google Scholar 

  17. Coley W, Hoguet J. Melanotic cancer; with a report of ninety cases. Trans Am Surg Assn 1916; 34: 319–383.

    Google Scholar 

  18. Coley W. Multiple myeloma. Ann Surg 1931; 93: 77–89.

    Article  PubMed  CAS  Google Scholar 

  19. Coley W. Endothelioma, or Ewing’s tumor. Am J Surg 1935; 27: 7–18.

    Article  Google Scholar 

  20. Roitt BJ I, Male D. Immunology. Mosby International, London, 1998.

    Google Scholar 

  21. Prehn R and Main JM. Immunity to methycholanthrene-induced sarcomas. J Natl Cancer Inst 1957; 18: 769–778.

    PubMed  CAS  Google Scholar 

  22. Klein G, Sjogren HO, Klein E, Hellström KE. Demonstration of resistance against methycholanthrene-induced sarcomas in the primary autochthonous host. 1960; 20: 1561–1572.

    CAS  Google Scholar 

  23. Wilkinson KD. Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome [in process citation]. Semin Cell Dev Biol 2000; 11: 141–148.

    Article  Google Scholar 

  24. Rock KL, Rothstein L, Benacerraf B. Analysis of the association of peptides of optimal length to class I molecules on the surface of cells. Proc Natl Acad Sci USA 1992; 89: 8918–8922.

    Article  PubMed  CAS  Google Scholar 

  25. Brodsky FM, Lem L, Bresnahan PA. Antigen processing and presentation [see comments]. Tissue Antigens 1996; 47: 464–471.

    Article  PubMed  CAS  Google Scholar 

  26. Lurquin C, Van PA, et al. Structure of the gene of turn-transplantation antigen P9 IA: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell 1989; 58: 293–303.

    Article  PubMed  CAS  Google Scholar 

  27. De Plaen E, Lurquin C, Van PA, et al. Immunogenic (turn-) variants of mouse tumor P815: cloning of the gene of turn-antigen P91A and identification of the turn-mutation. Proc Natl Acad Sci USA 1988; 85: 2274–2278.

    Article  PubMed  Google Scholar 

  28. Davis MM, Chien Y. Topology and affinity of T-cell receptor mediated recognition of peptide-MHC complexes. Curr Opin Immunol 1993; 5: 45–49.

    Article  PubMed  CAS  Google Scholar 

  29. Hanau D, Saudrais C, Haegel-Kronenberger H, Bohbot A, De La Salle H, Salamero J. Fate of MHC class II molecules in human dendritic cells. Eur J Dermatol 1999; 9: 7–12.

    PubMed  CAS  Google Scholar 

  30. Batalia MA, Collins EJ. Peptide binding by class I and class II MHC molecules. Biopolymers 1997; 43: 281–302.

    Article  PubMed  CAS  Google Scholar 

  31. Wubbolts R, Neefjes J. Intracellular transport and peptide loading of MHC class II molecules: regulation by chaperones and motors. Immunol Rev 1999; 172: 189–208.

    Article  PubMed  CAS  Google Scholar 

  32. Pareja E, Tobes R, Martin J, Nieto A. The tetramer model: a new view of class II MHC molecules in antigenic presentation to T cells. Tissue Antigens 1997; 50: 421–428.

    Article  PubMed  CAS  Google Scholar 

  33. Solheim JC. Class I MHC molecules: assembly and antigen presentation. Immunol Rev 1999; 172: 11–19.

    Article  PubMed  CAS  Google Scholar 

  34. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  35. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995; 92: 432–436.

    Article  PubMed  CAS  Google Scholar 

  36. Ropke M, Hald J, Guldberg P, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA 1996; 93: 14704–14707.

    Article  PubMed  CAS  Google Scholar 

  37. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 1995; 92: 11993–11997.

    Article  PubMed  CAS  Google Scholar 

  38. Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med 1997; 185: 833–841.

    Article  PubMed  CAS  Google Scholar 

  39. Peace DJ, Chen W, Nelson H, Cheever MA. T cell recognition of transforming proteins encoded by mutated ras proto-oncogenes. J Immunol 1991; 146: 2059–2065.

    PubMed  CAS  Google Scholar 

  40. Yanuck M, Carbone DP, Pendleton DC, et al. A mutant p53 or ras tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T cells. Cancer Res 1993; 53: 3257–3261.

    PubMed  CAS  Google Scholar 

  41. Khleif SN, Abrams SI, Hamilton JM, et al. A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 1999; 22: 155–165.

    Article  PubMed  CAS  Google Scholar 

  42. Wolfel T, Hauer M, Schneider J, et al. A p161NK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 1995; 269: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  43. Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G. T-cell recognition of melanoma-associated antigens. J Cell Physiol 2000; 182: 323–331.

    Article  PubMed  CAS  Google Scholar 

  44. Kawakami Y, Robbins PF, Rosenberg SA. Human melanoma antigens recognized by T lymphocytes. Keio J Med 1996; 45: 100–108.

    Article  PubMed  CAS  Google Scholar 

  45. Worley BS, van den Broeke LT, Goletz TJ, et al. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res 2001; 61: 6868–6875.

    PubMed  CAS  Google Scholar 

  46. Nevins JR. Cell cycle targets of the DNA tumor viruses. Curr Opin Genet Dev 1994; 4: 130–134.

    Article  PubMed  CAS  Google Scholar 

  47. Levine AJ. The origins of the small DNA tumor viruses. Adv Cancer Res 1994; 65: 141–168.

    Article  PubMed  CAS  Google Scholar 

  48. Arvin AM, Mallory S, Moffat JF. Development of recombinant varicella-zoster virus vaccines. Contrib Microbiol 1999; 3: 193–200.

    Article  PubMed  CAS  Google Scholar 

  49. Liljeqvist S, Stahl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73: 1–33.

    Article  PubMed  CAS  Google Scholar 

  50. Restifo NP, Rosenberg SA. Developing recombinant and synthetic vaccines for the treatment of melanoma. Curr Opin Oncol 1999; 11: 50–57.

    Article  PubMed  CAS  Google Scholar 

  51. Rolph MS, Ramshaw IA. Recombinatn viruses as vaccines and immunological tools [see comments]. Curr Opin Immunol 1997; 9: 517–524.

    Article  PubMed  CAS  Google Scholar 

  52. Ciernik IF, Berzofsky JA, Carbone DP. Induction of cytotoxic Tlymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 1996; 156: 2369–2375.

    PubMed  CAS  Google Scholar 

  53. Romani N, Gruner S, Brand D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93.

    Article  PubMed  CAS  Google Scholar 

  54. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    Article  PubMed  CAS  Google Scholar 

  55. Takahashi H, Nakagawa Y, Yokomuro K, et al. Induction of CD8+ CTL by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. Int Immunol 1993; 5: 849–857.

    Article  PubMed  CAS  Google Scholar 

  56. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity [see comments]. J Exp Med 1996; 183: 283–287.

    Article  PubMed  CAS  Google Scholar 

  57. Mayordomo JI, Loftus DJ, Sakamoto H, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183: 1357–1365.

    Article  PubMed  CAS  Google Scholar 

  58. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 1996; 2: 52–58.

    Article  PubMed  CAS  Google Scholar 

  59. Mitsudomi T, Steinberg SM, Nau MM, et al. P53 or Ras gene mutations in non-small lung cancer cell line and their correlation with the presence of ras mutations and clinical features. Oncogene 1992; 7: 171–180.

    PubMed  CAS  Google Scholar 

  60. Mitsudomi T, Steinberg SM, Oie HK, et al. Ras gene mutation in non small cell lung cancer are associated with shortened survival irrespective of treatment intent. Cancer Res 1991; 51: 4999–5002.

    PubMed  CAS  Google Scholar 

  61. Peace DJ, Smith JW, Chen W, et al. Lysis of ras oncogene-transformed cells by specific cytotoxic T lymphocytes elicited by primary in vitro immunization with mutated ras peptide. J Exp Med 1994; 179: 473–479.

    Article  PubMed  CAS  Google Scholar 

  62. Peace DJ, Smith JW, Disis ML, Chen W, Cheever MA. Induction of T cells specific for the mutated segment of oncogenic P21ras protein by immunization in vivo with the oncogenic protein. J Immunother 1993; 14: 110–114.

    Article  CAS  Google Scholar 

  63. Abrams SI, Stanziale SF, Lunin SD, Zaremba S, Schlom J. Identification of overlapping epitopes in mutatnt ras oncogene peptides that activate CD4+ an CD8+ T cell responses. Eur J Immunol 1996; 26: 435–443.

    Article  PubMed  CAS  Google Scholar 

  64. Abrams SI, Dobrazanski MJ, Kantor JA, et al. Induction of murine T lymphocyte responses to epitopes of point mutated ras P21. American Association Of Cancer Research, Annual Meeting, Orlando, Florida, 1993.

    Google Scholar 

  65. Abrams SI, Dobrazanski MJ, Kantor JA, et al. Activation of murine CD+ T lumphocyte responses to epitopes of point mutated ras p21. Eur J Immunol 1995; 25: 2588–2597.

    Article  PubMed  CAS  Google Scholar 

  66. Fenton RG, Taub DD, Kwak LW, Smith MR, Longo DL. Cytotoxic T-cell response and in vivo protection against tumor cells harboring activated ras proto-oncogenes. JNatl Cancer bast 1993; 85: 1294–1302.

    Article  CAS  Google Scholar 

  67. Skipper J, Stauss HJ. Identification of two cytotoxic T lymphocyte-recognized epotopes in the ras protein. J Exp Med 1993; 177: 1493–1498.

    Article  PubMed  CAS  Google Scholar 

  68. Fossum B, Olsen AC, Thorsby E, Gaudernack G. CD8+ T cells from a patient with colon carcinoma, specific for a mutant p21 ras derived peptide (13Gly-Asp), are cytotoxic towards a carcinoma cell linerbouring the same mutation. Cancer Immunol Immunother 1995; 40: 165–172.

    PubMed  CAS  Google Scholar 

  69. Fossum B, Breivik J, Meling GI, et al. A K-ras 13 Gly-*Asp mutation is recognized by HLA-DQ7 restricted T cell in a patient with colorectal cancer: Modifying effect of DQ7 restricted T cell in a patient with colorectal cancer: Modifying effect of DQ7 on established cancer harboring this mutation. Int J Cancer 1994; 58: 506–511.

    Article  PubMed  CAS  Google Scholar 

  70. Fossum B, Gedde-Dahl T III, Breivik J, Eriksen JA, Spurkland A, Thorsby E, et al. p-21 ras-peptidespecific T-cell responses in a patient with colorectal cancer: CD4+ and CD8+ T cells recognize a peptide corresponding to a common mutation. Int J Cancer 1994; 56: 40–45.

    Article  PubMed  CAS  Google Scholar 

  71. Gedde-Dahl TI, Spurkland A, Eriksen JA, Thorsby E, Gaudernack G. Memory T cells of a patient with follicular thyroid carcinoma recognize pepides derived from mutated p21 ras. lot Immunol 1992; 4: 1331–1337.

    Google Scholar 

  72. Gedde-Dahl TI, Fossum B, Eriksen JA, Thorsby E, Guadernack G. T cell clones specific for p-21 ras-derived peptides: characterization of their fine specificity and HLA restriction. Eur J Immunol 1993; 23: 754–760.

    Article  PubMed  CAS  Google Scholar 

  73. Gedde-Dahl T III, Spurkland A, Fossum B, Wittinghofer A, Thorsby E, Gaudernack G. T cell epitopes encompassing the mutational hot spot position 61 of p21 ras. Promiscuity in ras peptide binding to HLA. Eur J Immunol 1994; 24: 410–414.

    Article  PubMed  CAS  Google Scholar 

  74. Smith MC, Pendleton CD, Maher VE, Kelley MJ, Carbone DP, Berzofsky JA. Oncogenic mutations in ras create HLA-A2.1 binding peptides but affect their extracellular antigen processing. Int Immunol 1997; 9: 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  75. Van Elsas A, Nijman HW, Van der Minne CE, et al. Induction and characterization of cytotoxic T-lymphocytes recognizing a mutated p21 Ras peptide presented by HLA-A-201. Int J Cancer 1995; 61: 389–396.

    Article  PubMed  Google Scholar 

  76. Abrams SI, Khleif SN, Bergmann-Leitner ES, Kantor JA, Chung Y, Hamilton JM, et al. Generation of Stable CD4+ and CD8+ T cell lines from patints immunized with mutated Ras oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol 1997; 182: 137–151.

    Article  PubMed  CAS  Google Scholar 

  77. Wojtowicz M, Hamilton M, Benrnstein S, et al. Clinical Trial of Mutant Ras Peptide Vaccination Along with IL-2 or GM-CSF. Proc Am Soc Clin Oncol 2000: 1818.

    Google Scholar 

  78. Gjertsen MK, Bjorheim J, Saeterdal I, Myklebust J, Gaudernack G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Valdependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 1997; 72: 784–790.

    Article  PubMed  CAS  Google Scholar 

  79. Tsang KY, Nieroda CA, DeFilippi R, et al. Induction of human cytotoxic T cell lines directed against point-mutated p21 ras-derived synthetic peptides. Vaccine Res 1994; 3: 183–193.

    CAS  Google Scholar 

  80. Gjertsen MK, Buanes T, Rosseland AR, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 2001; 92: 441–450.

    Article  PubMed  CAS  Google Scholar 

  81. Simon RM, Steinberg SM, Hamilton M, et al. Clinical trial designs for the early clinical development of therapeutic cancer vaccines. J Clin Oncol 2001; 19: 1848–1854.

    PubMed  CAS  Google Scholar 

  82. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    Article  PubMed  CAS  Google Scholar 

  83. El-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  PubMed  CAS  Google Scholar 

  84. Macleod KF, Sherry N, Hannon G, et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 1995; 9: 935–944.

    Article  PubMed  CAS  Google Scholar 

  85. Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D. Induction of WAF1/CIPI by a p53-independent pathway. Cancer Res 1994; 54: 3391–3395.

    PubMed  CAS  Google Scholar 

  86. Harris CC, Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 1993; 329: 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  87. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705–708.

    Article  PubMed  CAS  Google Scholar 

  88. Fearon ER, Vogelstein B. A Genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  89. Chiba I, Takahashi T, Nau MM, et al. Mutation in the p53 gene are frequent in primary resected non small lung cancer. Oncogene 1990: 1603–1610.

    Google Scholar 

  90. Teneriello MG, Ebina M, Linnoila RI, et al. p53 and Ki-ras gene mutations in epithelial ovarian neoplasms. Cancer Res 1993; 53: 3103–3108.

    PubMed  CAS  Google Scholar 

  91. Greenblatt MS, Grollman AP, Harris CC. Deletions and insertions in the p53 tumor supressor gene in human cancers: Confirmation of the DNA polymerase slippage/misalignment model. Cancer Res 1996; 56: 2130–2136.

    PubMed  CAS  Google Scholar 

  92. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4878.

    PubMed  CAS  Google Scholar 

  93. Oren M, Maltzman W, Levine AJ. Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1981; 1: 101–110.

    PubMed  CAS  Google Scholar 

  94. Noguchi Y, Chen YT, Old LJ. A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA 1994; 91: 3171–3175.

    Article  PubMed  CAS  Google Scholar 

  95. Ciernik IF, Berzofsky J, Carbone DP. Mutant oncopeptide immunization induces CTL specifically lysing tumor cells endogenously expressing the corresponding intact mutant p53. Hybridoma 1995; 14: 139–142.

    Article  PubMed  CAS  Google Scholar 

  96. Noguchi Y, Richards EC, Chen YT, Old LJ. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma. Proc Natl Acad Sci USA 1995; 92: 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  97. Gabrilovich DI, Cunningham HT, Carbone DP. IL-12 and mutant P53 peptide-pulsed dendritic cells for the specific immunotherapy of cancer. J Immunother Emphasis Tumor Immunol 1996; 19: 414–418.

    Article  PubMed  CAS  Google Scholar 

  98. Lacabanne V, Viguier M, Guillet JG, Choppin J. A wild-type p53 cytotoxic T cell epitope is presented by mouse hepatocarcinoma cells. Eur J Immunol 1996; 26: 2635–2639.

    Article  PubMed  CAS  Google Scholar 

  99. Roth J, Dittmer D, Rea D, Tartaglia J, Paoletti E, Levine Ai p53 as a target for cancer vaccines: recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor cell challenge. Proc Natl Acad Sci USA 1996; 93: 4781–4786.

    Article  PubMed  CAS  Google Scholar 

  100. Zeh H Jr, Leder GH, Lotze MT, et al. Flow-cytometric determination of peptide-class I complex formation. Identification of p53 peptides that bind to HLA-A2. Hum Immunol 1994; 39: 79–86.

    Article  PubMed  CAS  Google Scholar 

  101. Stuber G, Leder GH, Storkus WT, et al. Identification of wild-type and mutant p53 peptides binding to HLA-A2 assessed by a peptide loading-deficient cell line assay and a novel major histocompatibility complex class I peptide binding assay. Eur J Immunol 1994; 24: 765–768.

    Article  PubMed  CAS  Google Scholar 

  102. Houbiers JG, Nijman HW, van der Burg SH, et al. In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur J Immunol 1993; 23: 2072–2077.

    Article  PubMed  CAS  Google Scholar 

  103. Nijman HW, Houbiers JG, van der Burg SH, et al. Characterization of cytotoxic T lymphocyte epitopes of a self-protein, p53, and a non-self-protein, influenza matrix: relationship between major histocompatibility complex peptide binding affinity and immune responsiveness to peptides. J Immunother 1993; 14: 121–126.

    Article  CAS  Google Scholar 

  104. Gnjatic S, Bressac-de Paillerets B, Guillet JG, Choppin J. Mapping and ranking of potential cytotoxic T epitopes in the p53 protein: effect of mutations and polymorphism on peptide binding to purified and refolded HLA molecules. Eur J Immunol 1995; 25: 1638–1642.

    Article  PubMed  CAS  Google Scholar 

  105. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J. Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 1998; 160: 328–333.

    PubMed  CAS  Google Scholar 

  106. McCarty TM, Liu X, Sun JY, Peralta EA, Diamond DJ, Ellenhorn JD. Targeting p53 for adoptive T-cell immunotherapy. Cancer Res 1998; 58: 2601–2605.

    PubMed  CAS  Google Scholar 

  107. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  PubMed  CAS  Google Scholar 

  108. Kloetzer W, Kurzrock R, Smith L, et al. The human cellular abl gene product in the chronic myelogenous leukemia cell line K562 has an associated tyrosine protein kinase activity. Virology 1985; 140: 230–238.

    Article  PubMed  CAS  Google Scholar 

  109. Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 1988; 319: 990–998.

    Article  PubMed  CAS  Google Scholar 

  110. Chen W, Peace DJ, Rovira DK, You SG, Cheever MA. T-cell immunity to the joining region of p210BCR-ABL protein. Proc Natl Acad Sci USA 1992; 89: 1468–1472.

    Article  PubMed  CAS  Google Scholar 

  111. Chen W, Qin H, Reese VA, Cheever MA. CTLs specific for bcr-abl joining region segment peptides fail to lyse leukemia cells expressing p210 bcr-abl protein. J Immunother 1998; 21: 257–268.

    Article  PubMed  CAS  Google Scholar 

  112. Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC. Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide. Blood 1996; 88: 3522–3527.

    PubMed  CAS  Google Scholar 

  113. ten Bosch GJ, Kessler JH, Joosten AM, et al. A BCR-ABL oncoprotein p210b2a2 fusion region sequence is recognized by HLA-DR2a restricted cytotoxic T lymphocytes and presented by HLA-DR matched cells transfected with an Ii(b2a2) construct. Blood 1999; 94: 1038–1045.

    PubMed  Google Scholar 

  114. Greco G, Fruci D, Accapezzato D, et al. Two brc-abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia 1996; 10: 693–699.

    PubMed  CAS  Google Scholar 

  115. Bocchia M, Wentworth PA, Southwood S, et al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 1995; 85: 2680–2684.

    PubMed  CAS  Google Scholar 

  116. Bocchia M, Korontsvit T, Xu Q, et al. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 1996; 87: 3587–3592.

    PubMed  CAS  Google Scholar 

  117. Pinilla-Ibarz J, Cathcart K, Korontsvit T, et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000; 95: 1781–1787.

    PubMed  CAS  Google Scholar 

  118. Goletz TJ, Zhan S, Pendleton CD, Heiman LJ, Berzofsky J. Cytotoxic T Cell responses against the EWS/FLI-1 Ewing sarcoma fusion protein and the PAX/FKHR alveolar rhabdomyosarcoma fusion protein. Proc Am Assoc Cancer Res 1996: 3243.

    Google Scholar 

  119. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087–4091.

    PubMed  CAS  Google Scholar 

  120. Maguire HC Jr, Greene MI. The neu (c-erbB-2) oncogene. Semin Oncol 1989; 16: 148–155.

    PubMed  CAS  Google Scholar 

  121. Looi LM, Cheah PL. C-erbB-2 oncoprotein amplification in infiltrating ductal carcinoma of breast relates to high histological grade and loss of oestrogen receptor protein. Malays J Pathol 1998; 20: 19–23.

    PubMed  CAS  Google Scholar 

  122. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG. Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 2000; 62: 245–252.

    Article  PubMed  CAS  Google Scholar 

  123. Lachman LB, Rao XM, Kremer RH, Ozpolat B, Kiriakova G, Price JE. DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 2001; 8: 259–268.

    Article  PubMed  CAS  Google Scholar 

  124. Chen Y, Emtage P, Zhu Q, et al. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther 2001; 8: 316–323.

    Article  PubMed  CAS  Google Scholar 

  125. Foy TM, Bannink J, Sutherland RA, et al. Vaccination with Her-2/neu DNA or protein subunits protects against growth of a Her-2/neu-expressing murine tumor. Vaccine 2001; 19: 2598–2606.

    Article  PubMed  CAS  Google Scholar 

  126. Wei WZ, Shi WP, Galy A, et al. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 1999; 81: 748–754.

    Article  PubMed  CAS  Google Scholar 

  127. Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, Kaumaya PT. Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res 2000; 60: 3782–3789.

    PubMed  CAS  Google Scholar 

  128. Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA. In vitro generation of human cytolytic T-cell specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res 1994; 54: 1071–1076.

    PubMed  CAS  Google Scholar 

  129. Fisk B, Blevins TL, Wharton JT, et al. Identification of an immunodominent peptide of HER-2 neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocytes lines. J Exp Med 1995; 181: 2109–2117.

    Article  PubMed  CAS  Google Scholar 

  130. Ikuta Y, Okugawa T, Furugen R, et al. A HER2/NEU-derived peptide, a K(d)-restricted murine tumor rejection antigen, induces HER2-specific HLA-A2402-restricted CD8(+) cytotoxic T lymphocytes. Mt J Cancer 2000; 87: 553–558.

    CAS  Google Scholar 

  131. Peiper M, Goedegebuure PS, Izbicki JR, Eberlein TJ. Pancreatic cancer associated ascites-derived CTL recognize a nine-amino-acid peptide GP2 derived from HER2/neu. Anticancer Res 1999; 19: 2471–2475.

    PubMed  CAS  Google Scholar 

  132. Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER- 2/neu+ tumors. Cancer Res 1998; 58: 4902–4908.

    PubMed  CAS  Google Scholar 

  133. Tuttle TM, Anderson BW, Thompson WE, et al. Proliferative and cytokine responses to class II HER2/neu-associated peptides in breast cancer patients. Clin Cancer Res 1998; 4: 2015–2024.

    PubMed  CAS  Google Scholar 

  134. Kono K, Rongcun Y, Charo J, et al. Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. Int J Cancer 1998; 78: 202–208.

    Article  PubMed  CAS  Google Scholar 

  135. Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999; 5: 1289–1297.

    PubMed  CAS  Google Scholar 

  136. Knutson KL, Schiffman K, Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER- 2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 2001; 107: 477–484.

    Article  PubMed  CAS  Google Scholar 

  137. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  138. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–937.

    Article  PubMed  CAS  Google Scholar 

  139. Nindl I, Rindfleisch K, Lotz B, Schneider A, Durst M. Uniform distribution of HPV 16 E6 and E7 variants in patients with normal histology, cervical infra-epithelial neoplasia and cervical cancer. Int J Cancer 1999; 82: 203–207.

    Article  PubMed  CAS  Google Scholar 

  140. Kadish AS, Ho GY, Burk RD, et al. Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7: outcome of HPV infection and associated neoplasia. J Natl Cancer Inst 1997; 89: 1285–1293.

    Article  PubMed  CAS  Google Scholar 

  141. Chen L, Thomas EK, Hu SL, et al. Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci USA 1991; 88: 110–114.

    Article  PubMed  CAS  Google Scholar 

  142. Tsukui T, Hildesheim A, Schiffman MH, et al. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res 1996; 56: 3967–3974.

    PubMed  CAS  Google Scholar 

  143. Feltkamp MG, Smits HL, Vierboom MP, et al. Vaccination with cytotoxic T lymphocyte epitope containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  PubMed  CAS  Google Scholar 

  144. Evans EM, Man S, Evans AS, Borysiewicz LK. Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 1997; 57: 2943–2950.

    PubMed  CAS  Google Scholar 

  145. Kast WM, Brant RM, Drijfhout JW, et al. Human Leukocyte antigen-A2.1 restricted candidate cytotoxic T lymphocyte epitopes of human papillomaviris the 16 E6 and E7 proteins identified by using the processing-defective human cell line T2. Immunotherapy 1993; 14: 115–120.

    Article  CAS  Google Scholar 

  146. Kast WM, Brandt RM, Sidney J, et al. Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 1994; 152: 3904–3912.

    PubMed  CAS  Google Scholar 

  147. Ressing ME, Sette A, Brandt RM, et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA- A*0201-binding peptides. J Immunol 1995; 154: 5934–5943.

    PubMed  CAS  Google Scholar 

  148. Chen L, Mizuno MT, Singhal MC, et al. Induction of cytotoxic T lymphocytes specific for syngeneic tumor expressing the E6 protein of human papillomavirus type 16. J Immunol 1992; 148: 2617–2621.

    PubMed  CAS  Google Scholar 

  149. Alexander M, Salgaller ML, Celis E, et al. Generation of tumor-specific cytolytic T lymphocytes from peripheral blood of cervical cancer patients by in vitro stimulation with a synthetic human papillomavirus type 16 E7 epitope. Am J Obstet Gynecol 1996; 175: 1586–1593.

    Article  PubMed  CAS  Google Scholar 

  150. Wojtowicz M, Hamilton JM, Khong H, et al. Vaccination of cervical cancer patients with papilloma virus type 16 E6 and E7 Peptides. American Society of Clinical Oncology, Atlanta, GA, 1999.

    Google Scholar 

  151. Muderspach L, Wilczynski S, Roman L, et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive [in process citation]. Clin Cancer Res 2000; 6: 3406–3416.

    PubMed  CAS  Google Scholar 

  152. Kadish AS, Ho G, Wang Y, et al. Antigen-specific cell mediated immunity in phase I dose-escalation trial of single doses of Hspe7 in healthy volunteers. Thirty-Sixth Annual Meeting of the American Society for Clinical Oncology, New Orleans, LA, 2000. Vol. 19.

    Google Scholar 

  153. Palefsky JM, Goldstone LS, Boux LJ, Neefe JR. Pathological response to treatment with HspE7 in anal dysplasia of multiple HPV types. Cancer Vaccine 2000, New York, NY, 2000.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc. Totowa, NJ

About this chapter

Cite this chapter

Khleif, S.N., Lucci, J.A. (2003). Oncogenes as Targets for Cancer Vaccines. In: Rak, J. (eds) Oncogene-Directed Therapies. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-313-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-313-2_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9738-0

  • Online ISBN: 978-1-59259-313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics