Skip to main content

Innate Immune Signaling During Phagocytosis

  • Chapter
Innate Immunity

Part of the book series: Infectious Disease ((ID))

  • 371 Accesses

Abstract

Phagocytosis of pathogens is a primitive, general, effective innate immune mechanism of host defense in mammals that also initiates the highly specific adaptive immune response (1). Phagocytosis as a mechanism of innate immune defense has been appreciated since the late 19th century, when Eli Metchnikov first proposed that mobile phagocytic cells survey tissues for foreign particles and engage in pitched battles with potential pathogens (2). In our current view of the process, we understand that specialized professional phagocytes including macrophages, neutrophils, and dendritic cells seek out invading pathogens and then bind, internalize, kill, and degrade them (1). During this process, phagocytes are stimulated to produce cytokines and chemokines that influence the recruitment and activation of additonal cells of the innate and adaptive immune systems, and they upregulate cell surface molecules required for efficient presentation of antigenic pathogen-derived peptides. For several decades we have understood that particle internalization and the elicitation of inflammatory responses can be uncoupled, leading to the hypothesis that the two systems function independently. With our current understanding of the molecular mechanisms regulating particle internalization and the induction of inflammatory responses, it is now clear that there is much overlap in the molecules utilized for both processes and that there is likely to be crosstalk between the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999;17:593–623.

    PubMed  CAS  Google Scholar 

  2. Stossel TP. The early history of phagocytosis. In: Gordon S (ed.). Phagocytosis: The Host. Stamford CT: JAI Press, 1999, pp. 3–18.

    Google Scholar 

  3. Ernst JD. Bacterial inhibition of phagocytosis. Cell Microbiol 2000;2:379–386.

    PubMed  CAS  Google Scholar 

  4. Greenberg S. Modular components of phagocytosis. J Leukoc Biol 1999;66:712–717.

    PubMed  CAS  Google Scholar 

  5. Allen LA, Aderem A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 1996;184:627–637.

    PubMed  CAS  Google Scholar 

  6. Ravetch JV, Clynes RA. Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 1998;16:421–432.

    PubMed  CAS  Google Scholar 

  7. Daeron M. Fc receptor biology. Annu Rev Immunol 1997;15:203–234.

    PubMed  CAS  Google Scholar 

  8. Ross GD. Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol 2000;20:197–222.

    PubMed  CAS  Google Scholar 

  9. Blystone SD, Brown EJ. Integrin receptors of phagocytes. In Phagocytosis: The Host. S. Gordon, editor. Stamford, CT: JAI Press, 1999;103–147.

    Google Scholar 

  10. Ueda T, Rieu P, Brayer J, Arnaout MA. Identification of the complement iC3b binding site in the beta 2 integrin CR3 (CD 11b/CD 18). Proc Natl Acad Sci USA 1994;91:10680–10684.

    PubMed  CAS  Google Scholar 

  11. Xia Y, Ross GD. Generation of recombinant fragments of CD1 lb expressing the functional beta-glucan-binding lectin site of CR3 (CD 11 b/CD 18). J Immunol 1999;162:7285–7293.

    PubMed  CAS  Google Scholar 

  12. Dib K. BETA 2 integrin signaling in leukocytes. Front Biosci 5:D438-D451.

    Google Scholar 

  13. Berger M, O’Shea J, Cross AS, et al. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J Clin Invest 1984;74:1566–1571.

    PubMed  CAS  Google Scholar 

  14. Sengelov H, Kjeldsen L, Diamond MS, Springer TA, Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest 1993;92:1467–1476.

    PubMed  CAS  Google Scholar 

  15. Jones SL, Knaus UG, Bokoch GM, Brown EJ. Two signaling mechanisms for activation of alphaM beta2 avidity in polymorphonuclear neutrophils. J Biol Chem 1998;273:10556–10566.

    PubMed  CAS  Google Scholar 

  16. Wright SD, Griffin FM, Jr. Activation of phagocytic cells’ C3 receptors for phagocytosis. J Leukoc Biol 1985;38:327–339.

    PubMed  CAS  Google Scholar 

  17. Wright SD, Craigmyle LS, Silverstein SC. Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J Exp Med 1983;158:1338–1343.

    PubMed  CAS  Google Scholar 

  18. Pommier CG, Inada S, Fries LF, et al. Plasma fibronectin enhances phagocytosis of opsonized particles by human peripheral blood monocytes. J Exp Med 1983;157:1844–1854.

    PubMed  CAS  Google Scholar 

  19. Caron E, Self AJ, Hall A. The GTPase Rapl controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 2000;10:974–978.

    PubMed  CAS  Google Scholar 

  20. Lowell CA, Fumagalli L, Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 1996;133:895–910.

    PubMed  CAS  Google Scholar 

  21. Yan SR, Huang M, Berton G. Signaling by adhesion in human neutrophils: Activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen. J Immunol 1997;158:1902–1910.

    PubMed  CAS  Google Scholar 

  22. Fernandez R, Suchard SJ. Sky activation is required for spreading and H2O2 release in adherent human neutorphils. J Immunol 1998;160:5154–5162.

    PubMed  CAS  Google Scholar 

  23. Chimini G, Chavrier P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2000;2:E191–196.

    Google Scholar 

  24. Allen LA, Aderem A. Mechanisms of phagocytosis. Curr Opin Immunol 1996;8:36–40.

    PubMed  CAS  Google Scholar 

  25. May RC, Caron E, Hall A, Machesky LM. Involvement of the Arp2/3 complex in phagocytosis mediated by FcgammaR or CR3. Nat Cell Biol 2000;2:246–248.

    PubMed  CAS  Google Scholar 

  26. Cox D, Dale BM, Kashiwada M, Helgason CD, Greenberg S. A regulatory role for Src homology 2 domain-containing inositol 5′-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD 11b/CD 18). J Exp Med 2001;193:61–71.

    PubMed  CAS  Google Scholar 

  27. Blystone SD, Graham IL, Lindberg FP, Brown EJ. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J Cell Biol 1994;127:1129–1137.

    PubMed  CAS  Google Scholar 

  28. Blystone SD, Lindberg FP, LaFlamme SE, Brown EJ. Integrin beta 3 cytoplasmic tail is necessary and sufficient for regulation of alpha 5 beta 1 phagocytosis by alpha v beta 3 and integrinassociated protein. J Cell Biol 1995;130:745–754.

    PubMed  CAS  Google Scholar 

  29. Frazier WA, Gao AG, Dimitry J, et al. The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J Biol Chem 1999;274:8554–8560.

    PubMed  CAS  Google Scholar 

  30. Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 2001;11:130–135.

    PubMed  CAS  Google Scholar 

  31. Demeure CE, Tanaka H, Mateo V, et al. CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J Immunol 2000;164:2193–2199.

    PubMed  CAS  Google Scholar 

  32. Armant M, Avice MN, Hermann P, et al. CD47 ligation selectively downregulates human interleukin 12 production. J Exp Med 1999;190:1175–1182.

    PubMed  CAS  Google Scholar 

  33. Oldenborg PA, Gresham HD, Lindberg FP. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J Exp Med 2001;193:855–862.

    PubMed  CAS  Google Scholar 

  34. Albert ML, Pearce SF, Francisco LM, et al. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998;188:1359–1368.

    PubMed  CAS  Google Scholar 

  35. Fadok VA, Warner ML, Bratton DL, Henson PM. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 1998;161:6250–6257.

    PubMed  CAS  Google Scholar 

  36. Di Carlo FJ, Fiore JV. On thecomposition of zymosan Science 1958;127:756–757.

    Google Scholar 

  37. Lipke PN, Ovalle R. Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 1998;180:3735–3740.

    PubMed  CAS  Google Scholar 

  38. Ezekowitz RA, Sastry K, Bailly P, Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 1990;172:1785–1794.

    PubMed  CAS  Google Scholar 

  39. Kruskal BA, Sastry K, Warner AB, Mathieu CE, Ezekowitz RA. Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from themannose receptor. J Exp Med 1992;176:1673–1680.

    PubMed  CAS  Google Scholar 

  40. Sung SS, Nelson RS, Silverstein SC. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol 1983;96:160–166.

    PubMed  CAS  Google Scholar 

  41. Goldman R. Characteristics of the beta-glucan receptor of murine macrophages. Exp Cell Res 1988;174:481–490.

    PubMed  CAS  Google Scholar 

  42. Janusz MJ, Austen KF, Czop JK. Isolation of soluble yeast beta-glucans that inhibit human monocyte phagocytosis mediated by beta-glucan receptors. J Immunol 1986;137:3270–3276.

    PubMed  CAS  Google Scholar 

  43. Giaimis J, Lombard Y, Fonteneau P, et al. Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. J Leukoc Biol 1993;54:564–571.

    PubMed  CAS  Google Scholar 

  44. Ross GD, Cain JA, Lachmann PJ. Membrane complement receptor type three (CR3) has lectinlike properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol 1985;134:3307–3315.

    PubMed  CAS  Google Scholar 

  45. Ross GD, Thompson RA, Walport MJ, et al. Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1. Blood 1985;66:882–890.

    PubMed  CAS  Google Scholar 

  46. Platt N, Haworth R, da Silva RP, Gordon S. Scavenger receptors and phagocytosis of bacteria and apoptotic cells. In Phagocytosis: The Host. S. Gordon, editor. Stamford, CT: JAI Press. 1999;71–85.

    Google Scholar 

  47. Peiser L, Gough PJ, Kodama T, Gordon S. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect Immun 2000;68:1953–1963.

    PubMed  CAS  Google Scholar 

  48. Thomas CA, Li Y, Kodama T, et al. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000;191:147–156.

    PubMed  CAS  Google Scholar 

  49. Elomaa O, Kangas M, Sahlberg C, et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 1995;80:603–609.

    PubMed  CAS  Google Scholar 

  50. van der Laan LJ, Dopp EA, Haworth R, et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 1999;162:939–947.

    PubMed  Google Scholar 

  51. Placecanda A, Paulauskis J, Al-Mutairi E, et al. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 1999;189:1497–1506.

    Google Scholar 

  52. Franc NC, Heitzler P, Ezekowitz RA, White K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 1999;284:1991–1994.

    PubMed  CAS  Google Scholar 

  53. Crowley MT, Costello PS, Fitzer-Attas CJ, et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med 1997;186:1027–1039.

    PubMed  CAS  Google Scholar 

  54. Kusner DJ, Hall CF, Schlesinger LS. Activation of phospholipase D is tightly coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan by human macrophages. J Exp Med 1996;184:585–595.

    PubMed  CAS  Google Scholar 

  55. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol 1998;10:205–219.

    PubMed  CAS  Google Scholar 

  56. Allen LH, Aderem A. A role for MARCKS, the alphs isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995;182:829–840.

    PubMed  CAS  Google Scholar 

  57. Melendez AJ, Harnett MM, Allen JM. Differentiation-dependent switch in protein kinase C isoenzyme activation by FcgammaRl, the human high-affinity receptor for immunoglobulin G. Immunology 1999;96:457–464.

    PubMed  CAS  Google Scholar 

  58. Zheng L, Zomerdijk TP, Aarnoudse C, van Furth R, Nibbering PH. Role of protein kinase C isozymes in Fc gamma receptor-mediated intracellular killing of Staphylococcus aureus by human monocytes. J Immunol 1995;155:776–784.

    PubMed  CAS  Google Scholar 

  59. Zheleznyak A, Brown EJ. Immunoglobulin-mediated phagocytosis by human monocytes requires protein kinase C activation. Evidence for protein kinase C translocation to phagosomes. J Biol Chem 1992;267:12042–12048.

    PubMed  CAS  Google Scholar 

  60. Aderem A. The MARCKS brothers: a family of protein kinase C substrates. Cell 1992;71:713–716.

    PubMed  CAS  Google Scholar 

  61. Shapira L, Takashiba S, Champagne C, Amar S, Van Dyke TE. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J Immunol 1992;153:1818–1824.

    Google Scholar 

  62. Kovacs EJ, Radzioch D, Young HA, Varesio L. Differential inhibition of IL-1 and TNF-alpha mRNA expression by agents which block second messenger pathways in murine macrophages. J Immunol 1988;141:3101–3105.

    PubMed  CAS  Google Scholar 

  63. Huwiler A, Pfeilschifter J. A role for protein kinase C-alpha in zymosan-stimulated eicosanoid synthesis in mouse peritoneal macrophages. Eur J Biochem 1993;217:69–75.

    PubMed  CAS  Google Scholar 

  64. Giroux M, Descoteaux A. Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha J Immunol 2000;165:3985–3991.

    PubMed  CAS  Google Scholar 

  65. St-Denis A, Chano F, Tremblay P, St-Pierre Y, Descoteaux A. Protein kinase C-alpha modulates lipopolysaccharide-induced functions in a murine macrophage cell line. J Biol Chem 1998;273:32787–32792.

    PubMed  CAS  Google Scholar 

  66. St-Denis A, Caouras V, Gervais F, Descoteaux A. Role of protein kinase C-alpha in the control of infection by intracellular pathogens in macrophages. J Immunol 1999;163:5505–5511.

    PubMed  CAS  Google Scholar 

  67. Larsen EC, DiGennaro JA, Saito N, et al. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol 2000;165:2809–2817.

    PubMed  CAS  Google Scholar 

  68. Botelho RJ, Teruel M, Dierckman R, et al. Localized biphasic changes in phosphatidylinositol4,5-bisphosphate at sites of phagocytosis. J Cell Biol 2000;151:1353–1368.

    PubMed  CAS  Google Scholar 

  69. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999;68:965–1014.

    PubMed  CAS  Google Scholar 

  70. Lennartz MR. Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem Cell Biol 1999;31:415–430.

    PubMed  CAS  Google Scholar 

  71. Celli J, Oliver M, Finlay BB. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J 2001;20:1245–1258.

    PubMed  CAS  Google Scholar 

  72. Araki N, Johnson MT, Swanson JA. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 1996;135:1249–1260.

    PubMed  CAS  Google Scholar 

  73. Gold ES, Underhill DM, Morrissette NS, et al. Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 1999;190:1849–1856.

    PubMed  CAS  Google Scholar 

  74. Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac 1-dependent pathway. Nat Immunol 2000;1:533–540.

    PubMed  CAS  Google Scholar 

  75. Buscher D, Hipskind RA, Krautwald S, Reimann T, Baccarini M. Ras-dependent and -independent pathways target the mitogen-activated protein kinase network in macrophages. Mol Cell Biol 1995;15:466–475.

    PubMed  CAS  Google Scholar 

  76. Monick MM, Carter AB, Gudmundsson G, et al. A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 1999;162:3005–3012.

    PubMed  CAS  Google Scholar 

  77. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res 2000;261:1–12.

    PubMed  CAS  Google Scholar 

  78. Caron E, Hall A. Identification of two distinct mechanicms of phagocytosis controlled by different Rho GTPases. Science 1998;282:1717–1721.

    PubMed  CAS  Google Scholar 

  79. Massol P, Montcourrier P, Guillemot JC, Chavrier P. Fc receptor-mediated phagocytosis requires CDC42 and Racl. EMBO J 1998;17:6219–6229.

    PubMed  CAS  Google Scholar 

  80. Guillen N, Boquet P, Sansonetti P. The small GTP-binding protein RacG regulates uroid formation in the protozoan parasite Entamoeba histolytica. J Cell Sci 1998;111:1729–1739.

    PubMed  CAS  Google Scholar 

  81. Cox D, Chang P, Zhang Q, et al. Requirements for both Racl and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 1997;186:1487–1494.

    PubMed  CAS  Google Scholar 

  82. Von Pawel-Rammingen U, Telepnev MV, Schmidt G, et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 2000;36;737–748.

    Google Scholar 

  83. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase- activating protein for Rho GTPases. J Biol Chem 1999;274:36369–36372.

    PubMed  CAS  Google Scholar 

  84. Gresham HD, Graham IL, Anderson DC, Brown EJ. Leukocyte adhesion-deficient neutrophils fail to amplify phagocytic function in response to stimulation. Evidence for CD1 lb/CD 18dependent and -independent mechanisms of phagocytosis. J Clin Invest 1991;88:588–597.

    PubMed  CAS  Google Scholar 

  85. Graham IL, Lefkowith JB, Anderson DC, Brown EJ. Immune complex-stimulated neutrophil LTB4 production is dependent on beta 2 integrins. J Cell Biol 1993;120:1509–1517.

    PubMed  CAS  Google Scholar 

  86. Leusen JHW, Verhoeven AJ, Roos D. Interactions between the components of the human NADPH oxidase: a review about the intrigues in the phox family. Front Biosci 1996;1:72–90.

    Google Scholar 

  87. DeLeo FR, Allen LA, Apicella M, Nauseef WM. NADPH oxidase activation and assembly during phagocytosis. J Immunol 1999;163:6732–6740.

    PubMed  CAS  Google Scholar 

  88. Segal AW, Wientjes F, Stockely RW, Dekker LV. Components and organization of the NADPH oxidase of phagocytic cells. In Phagocytosis: The Host. S. Gordon, editor. Stamford CT: JAI Press, 1999;441–483.

    Google Scholar 

  89. Diebold BA, Bokoch GM. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2001;2:211–215.

    PubMed  CAS  Google Scholar 

  90. Berton G, Laudanna C, Sorio C, Rossi F. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp 150/95, but not CR3, are able to stimulate the respiraroty burst of human neutrophils. J Cell Biol 1992;116:1007–1017.

    PubMed  CAS  Google Scholar 

  91. Serrander L, Larsson J, Lundqvist H, et al. Particles binding beta(2)-integrins mediate intracellular production of oxidative metabolites in human neutrophils independently of phagocytosis. Biochim Biophys Acta 1999;1452:133–144.

    PubMed  CAS  Google Scholar 

  92. Morrissette NS, Gold ES, Guo J, et al. Isolation and characterization of monoclonal antibodies directed against novel components of macrophage phagosomes. J Cell Sci 1999;112:4705–4713.

    PubMed  CAS  Google Scholar 

  93. Grogan A, Reeves E, Keep N, et al. Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J Cell Sci 1997;110:3071–3081.

    PubMed  CAS  Google Scholar 

  94. Wright SD, Silverstein SC. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 1983;158:2016–2023.

    PubMed  CAS  Google Scholar 

  95. Yamamoto K, Johnston RB, Jr. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 1984;159:405–416.

    PubMed  CAS  Google Scholar 

  96. Berton G, Gordon S. Modulation of macrophage mannosyl-specific receptors by cultivation on immobilized zymosan. Effects on superoxide-anion release and phagocytosis. Immunology 1983;49:705–715.

    PubMed  CAS  Google Scholar 

  97. Stahl PD, Ezekowitz RA. The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 1998;10:50–55.

    PubMed  CAS  Google Scholar 

  98. Fraser IP, Ezekowitz RA. Mannose receptor and phagocytosis. In Phagocytosis: The Hose. S. Gordon, editor. Stamford, CT: JAI Press, 1999;87–101.

    Google Scholar 

  99. Astarie-Dequeker C, N’Diaye EN, Le Cabec V, et al. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 1999;67:469–477.

    PubMed  CAS  Google Scholar 

  100. Laudanna C, Melotti P, Bonizzato C, et al. Ligation of members of the beta 1 or the beta 2 subfamilies of integrins by antibodies triggers eosinophil respiratory burst and spreading. Immunology 1993;80:273–280.

    PubMed  CAS  Google Scholar 

  101. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll- like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000;165:3541–3544.

    PubMed  CAS  Google Scholar 

  102. Zarewych DM, Kindzelskii AL, Todd RE 3rd, and Petty HR. LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J Immunol 1996;156:430–433.

    PubMed  CAS  Google Scholar 

  103. Perera PY, Mayadas TN, Takeuchi O, et al. CD1 l b/CD 18 acts in concert with CD14 and Tolllike receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducibel gene expression. J Immunol 2001;166:574–581.

    PubMed  CAS  Google Scholar 

  104. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natal Acad Sci USA 2000;97:13766–13771.

    CAS  Google Scholar 

  105. Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999;401:811–815.

    PubMed  CAS  Google Scholar 

  106. Yamamoto Y, Klein TW, Friedman H. Involvement of mannose receptor in cytokine interleukinlbeta (IL- lbeta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1 beta (MIP-1 beta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun 1997;65:1077–1082.

    PubMed  CAS  Google Scholar 

  107. Shibata Y, Metzger WJ, Myrvik QN. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. J Immunol 1997;159:2462–2467.

    PubMed  CAS  Google Scholar 

  108. Garner RE, Rubanowice K, Sawyer RT, Hudson JA. Secretion of TNF-alpha by alveolar macrophages in response to Candida albicans mannan. J Leukoc Biol 1994;55:161–168.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Underhill, D.M. (2003). Innate Immune Signaling During Phagocytosis. In: Ezekowitz, R.A.B., Hoffmann, J.A. (eds) Innate Immunity. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-320-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-320-0_19

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9746-5

  • Online ISBN: 978-1-59259-320-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics