Skip to main content

Cerebral Mechanisms of Analgesia and Anesthesia in Humans Elucidated by In Vivo Brain Imaging

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 319 Accesses

Abstract

Although general anesthetics and opioids have been extensively used in human medicine, the neural mechanisms involved in their mechanism of action remains largely unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferreira, S. H. and Nakamura, M. (1979) Prostaglandin hyperalgesia: the peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 18, 191–200.

    Article  PubMed  CAS  Google Scholar 

  2. Joshi, G. P., McCarrol, S., O’Brien, T., and Lenane, P. (1993) Intraarticular analgesia following knee arthroscopy. Anesth. Analg. 76, 333–336.

    PubMed  CAS  Google Scholar 

  3. Yaksh, T. L. (1997) Pharmacology and mechanisms of opioid analgesic activity. Acta. Anaesthesiol. Scand. 41, 94–111.

    Article  PubMed  CAS  Google Scholar 

  4. Melzack, R. and Casey, K. L. (1968) Sensory, motivational, and central control determinants of pain, The Skin Senses A New Conceptual Model. Edited by Kenshalo, D. Springfield, IL Charles C. Thomas, pp. 423–439.

    Google Scholar 

  5. Tanelian, D. L., Kosek, P., Mody, I., and Maclver, M. B. (1993) The role of the GABA, receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776.

    Google Scholar 

  6. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng, S. C. and Brunner, E. A. (1985) Inducing anesthesia with a GABA analog, THIP. Anesthesiology 63, 147–151.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, S. C. and Brunner, E. A. (1984) Anesthetic effects on GABA binding. Anesthesiology 61, A326.

    Google Scholar 

  9. Jones, M. V., Brooks, P. A., and Harrison, N. L, (1992) Enhancement of y-aminobutyric acid-activated Cl-currents in cultured rat hippocampal neurones by three volatile anesthetics. J. Physiol. 449, 279–293.

    Google Scholar 

  10. Zimmerman, S. A., Jones, M. V., and Harrison, N. L, (1994) Potentiation of gamma-aminobutyric acid A receptor Cl-current correlates with in vivo anesthetic potency. J. Pharmacol. Exp. Ther. 270, 987–991.

    PubMed  CAS  Google Scholar 

  11. Hales, T. G., Jones, M. V., and Harrison, N. L. (1992) Evidence for subunit dependent direct activation of the GABA„ receptor by isoflurane. Anesthesiology 77, A698.

    Article  Google Scholar 

  12. Yang, J. S. J., Isenberg, K. E., and Zorumski, C. F. (1992) Volatile anesthetics gate a chloride current in postnatal rat hippocampal neurons. FASEB J. 6, 914–918.

    PubMed  CAS  Google Scholar 

  13. Wakamori, M., Ikemoto, Y., and Akaike, N. (1991) Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J. Neurophysiol. 66, 2014–2021.

    PubMed  CAS  Google Scholar 

  14. Lin, L. H., Chen, L. L., Zirrolli, J. A., and Harris, R. A, (1992) General anesthetics potentiate y-aminobutyric acid, receptors expressed by Xenopus oocytes: lack of involvement of intracellular calcium. J. Pharmacol. Exp. Ther. 263, 569–578.

    PubMed  CAS  Google Scholar 

  15. Longoni, B. and Olsen, R. W. (1992) Studies on themechanism of interaction of anesthetics with GABA, receptors. Adv. Biochem. Psychopharmacol. 47, 365–378.

    PubMed  CAS  Google Scholar 

  16. Longoni, B., Demontis, G. C., and Olsen, R. W. (1993) Enhancement of GABA, receptor function and binding by the volatile anesthetic halothane. J. Pharmacol. Exp. Ther. 266, 153–159.

    PubMed  CAS  Google Scholar 

  17. Harris, B., Wong, G., and Skolnick, P. (1992) Volatile anesthetics and barbiturates exhibit neurochemical similarities at GABA, receptors. Anesthesiology 77, A697.

    Article  Google Scholar 

  18. Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E. (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-n-glucose: Validation of method. Ann. Neurol. 6, 371–388.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, S. C., Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C. J., and Kuhl, D. E. (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238, E69 - E82.

    PubMed  CAS  Google Scholar 

  20. Sokoloff, L., Reivich, M., Kennedy, C., et al. (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916.

    Article  PubMed  CAS  Google Scholar 

  21. Reivich, M., Alavi, A., Wolf, A., et al. (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J. Cereb. Blood Flow Metab. 5, 179–192.

    Article  PubMed  CAS  Google Scholar 

  22. Mraovitch, S., Calando, Y., Pinard, E., Pearce, W. J., and Seylaz, J. (1992) Differential cerebrovascular and metabolic responses in specific neural systems elicited from the centromedian-parafascicular complex. Neuroscience 49, 451–466.

    Article  PubMed  CAS  Google Scholar 

  23. Kety, S. S. and Schmidt, C. F. (1948) The nitrous oxide method for quantitative determination of cerebral blood flow in man; theory, procedure and normal values. J. Clin. Invest. 27, 476–483.

    Article  PubMed  CAS  Google Scholar 

  24. Herscovitch, P., Markham, J., and Raichle, M. E. (1983) Brain blood flow measured with intravenous H215O. I. Theory and error analysis. J. Nucl. Med.14, 782–789.

    Google Scholar 

  25. Quarles, R., Mintun, M., Larson, K., Markham, J., MacLeod, A., and Raichle, M. (1993) Measurement of regional cerebral blood flow with positron emission tomography: a comparison of [150] water to [11C] butanol with distributed-parameter and compartmental models. J. Cereb. Blood Flow Metab. 13, 733–747.

    Article  PubMed  CAS  Google Scholar 

  26. Koeppe, R. A., Holthoff, V. A., Frey, K. A., Kilbourn, M. R., and Kuhl, D. E. (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J. Cereb. Blood Flow Metab. 11, 735–744.

    Article  PubMed  CAS  Google Scholar 

  27. Farde, L., Nordstrom, A.-L., Wiesel, F.-A., Pauli, S., Halldin, C., and Sedvall, G. (1992) Positron emission tomo-graphic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch. Gen. Psychiatry 49, 538–544.

    Article  PubMed  CAS  Google Scholar 

  28. Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872.

    Article  CAS  Google Scholar 

  29. Mansfield, P. (1977) Multi-planar image formation using NMR spin echos. J. Phys. C. 10, L55 - L58.

    Article  CAS  Google Scholar 

  30. Buckner, R. L., Bandettini, P. A., O’Craven, K. M., et al. (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14,878–14, 883.

    Google Scholar 

  31. Stein, E. A., Risinger, R., and Bloom, A. S. (1999) Functional MRI in pharmacology, Functional MRL Moonen, C. T. W. and Bandettini, P. A. (eds.). Berlin, Springer pp. 525–538.

    Google Scholar 

  32. Leslie, R. A. and James, M. F. (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol. Sci. 21, 314–318.

    Article  PubMed  CAS  Google Scholar 

  33. Kenshalo, D. R., Jr. and Isensee, O. (1983) Responses of primate SI cortical neurons to noxious stimuli. J. Neurophysiol. 50, 1479–1496.

    PubMed  Google Scholar 

  34. Greenspan, J. D. and Winfield, J. A. (1992) Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 58, 29–39.

    Article  Google Scholar 

  35. Sikes, R. W. and Vogt, B. A. (1992) Nociceptive neurons in area 24b of rabbit anterior cingulate cortex. J. Neurophysiol. 68, 1720–1732.

    PubMed  CAS  Google Scholar 

  36. Corkin, S. (1980) A prospective study of cingulotomy, The Psychosurgery Debate: Scientific, Legal, and Ethical Perspectives. Valenstein, E. S. (ed.). San Francisco: Freeman, pp. 164–204.

    Google Scholar 

  37. Jones, A. K. P., Brown, W. D., Friston, K. J., Qi, L. Y., and Frackowiak, R. S. (199la) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc. R. Soc. Lond. B. 244, 39–44.

    Google Scholar 

  38. Coghill, R. C., Talbot, J. D., Evans, A. C., et al. (1994) Distributed processing of pain and vibration by the human brain. J. Neurosci. 14, 4095–4108.

    PubMed  CAS  Google Scholar 

  39. Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C., and Duncan, G. H. (1991) Multiple representations of pain in human cerebral cortex. Science 251, 1355–1358.

    Article  PubMed  CAS  Google Scholar 

  40. Casey, K. L., Minoshima, S., Berger, K. L., Koeppe, R. A., Morrow, T. J., and Frey, K. A. (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J. Neurophysiol. 71, 802–807.

    PubMed  CAS  Google Scholar 

  41. Svensson, P., Minishima, S., Beydoun, A., Morrow, T. J. and Casey, K. L. (1997) Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol 78, 450–460.

    PubMed  CAS  Google Scholar 

  42. Derbyshire, S. W. G., Jones, A. K. P., Gyulai, F., Clark, S., Townsend, D., and Firestone, L. L. (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73, 431–445.

    Article  PubMed  CAS  Google Scholar 

  43. Davis, K. D., Wood, M. L., Crawley, A. P., and Mikulis, D. J. (1995) fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 7, 321–325.

    Google Scholar 

  44. Oshiro, Y., Fuijita, N., Tanaka, H., Hirabuki, N., Nakamura, H., and Yoshiya, I. (1998) Functional mapping of pain-related activation with echo-planar MRI: significance of the SII-insular region. Neuroreport 9, 2285–2289.

    Article  PubMed  CAS  Google Scholar 

  45. Becerra, L. R., Breiter, H. C., Stojanovic, M., et al. (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn. Reson. Med. 41, 1044–1057.

    Article  PubMed  CAS  Google Scholar 

  46. Davis, K. D., Kwan, C. L., Crawley, A. P., and Mikulis, D. J. (1998) Event-related fMRI of pain: entering a new era in imaging pain. Neuroreport 9, 3019–3023.

    Article  PubMed  CAS  Google Scholar 

  47. Hui, K. K., Liu, J., Makris, N., et al. (2000) Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum. Brain Mapp. 9, 13–25.

    Article  PubMed  CAS  Google Scholar 

  48. Jones, A. K. P., Friston, K. J., Qi, L. Y., et al. (1991b) Sites of action of morphine in the brain. Lancet 338, 825.

    Article  PubMed  CAS  Google Scholar 

  49. Firestone, L. L., Gyulai, F., Mintun, M., Adler, L. J., Urso, K., and Winter, P. (1996) Human brain activity response to fentanyl imaged by positron emission tomography. Anesth. Analg. 82, 1247–1251.

    Google Scholar 

  50. Gyulai, F., Firestone, L. L., Mintun, M., and Winter, P. (1996) In Vivo Imaging of human limbic responses to nitrous oxide inhalation. Anesth. Analg. 83, 291–298.

    PubMed  CAS  Google Scholar 

  51. Zuniga, J. R., Joseph, S. A., and Knigge, K. M. (1987) The effects of nitrous oxide on the central endogenous proopiomelanocortin system in the rat. Brain Res. 420, 57–65.

    Article  PubMed  CAS  Google Scholar 

  52. Chapman, C. R. and Benidetti, C. (1979) Nitrous oxide effects on cerebral evoked potential to pain: Partial reversal with a narcotic antagonist. Anesthesiology 51, 135–138.

    Article  PubMed  CAS  Google Scholar 

  53. Adler, L. J., Gyulai, F. E., Diehl, D. J., Mintun, M. A., Winter, P. M., and Firestone, L. L. (1997) Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesth. Analg. 84, 120–126.

    PubMed  CAS  Google Scholar 

  54. Gyulai, F. E., Firestone, L. L., Mintun, M. A., and Winter, P. M. (1997a) In vivo imaging of nitrous oxide-induced changes in cerebral activation during noxious heat stimuli. Anesthesiology 86, 538–548.

    Article  PubMed  CAS  Google Scholar 

  55. Alkire, M. T., Haier, R. J., Barker. S. J., Shah, N. K., Wu, J. C., and Kao, Y. J. (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82, 393–407.

    CAS  Google Scholar 

  56. Alkire, M. T., Haier, R. J., Shah, N. K., and Anderson, C. T. (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86, 549–557.

    Article  PubMed  CAS  Google Scholar 

  57. Alkire, M. T., Pomfrett, C. J. D., Haie, R. J., et al. (1999) Functional brain imaging during anesthesia in humans. Anesthesiology 90, 701–709.

    Article  PubMed  CAS  Google Scholar 

  58. Gyulai, F., Firestone, L., Mintun, M., Price, J., and Winter, P. (1997b) Dose-dependent effects of isoflurane on GABA,, receptor conformation in vivo in humans. Anesthesiology 87, A612.

    Article  Google Scholar 

  59. Schwartz, W. J., Smith, C. B., Davidsen, L., et al. (1979) Metabolic mapping of functional activity in the hypothalamoneurohypophysial system of the rat. Science 205, 723–725.

    Article  PubMed  CAS  Google Scholar 

  60. Bottlaender, M., Brouillet, E., Varastet, M., et al. (1994) In vivo high intrinsic efficacy of triazolam: a positron emission tomography study in nonhuman primates. J. Neurochem. 61, 1102–1111.

    Google Scholar 

  61. Kapur, S., Remington, G., Jones, C., Wilson, A., DaSilva, J., Houle, S., and Zipursky, R. (1996) High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am. J. Psychiatry 153, 948–950.

    PubMed  CAS  Google Scholar 

  62. Galynker, I., Schlyer, D. J., Dewey, S. L., et al. (1996) Opioid receptor imaging and displacement studies with [6–0[11C]methyl]buprenorphine in baboon brain. Nucl. Med. Biol. 23, 325–331.

    Article  PubMed  CAS  Google Scholar 

  63. Frost, J. J., Douglass, K. H., Mayberg, H. S., et al. (1989) Multicompartmental analysis of [11C]-carfentanyl binding to opiate receptors in humans measured by positron emission tomography. J. Cereb. Blood Flow Metab. 9, 398–409.

    Article  PubMed  CAS  Google Scholar 

  64. Breiter, H. C., Gollub, R. L., Weisskoff, R. M., et al. (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19, 591–611.

    Article  PubMed  CAS  Google Scholar 

  65. Antognini, J. F., Buonocore, M. H., Disbrow, E. A., and Carstens, E. (1997) Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci. 61, L349 — L354.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gyulai, F., Firestone, L. (2003). Cerebral Mechanisms of Analgesia and Anesthesia in Humans Elucidated by In Vivo Brain Imaging. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics