Skip to main content

Genetic Approaches to Recombinant Protein Production in Mammalian Cells

  • Chapter
Handbook of Industrial Cell Culture

Abstract

Genetically engineered mammalian cells play an essential role in many processes, from basic research to high-throughput screening and pharmaceutical protein production. In basic research, mammalian cells serve to study gene function and mechanisms of regulation. Important health-related applications include drug screening and production of secreted, pharmaceutically active proteins. The reason that mammalian cells are preferred is the close relationship to cells and their products in the human body. In particular, mammalian cells have the unique capability to authentically process, fold, and modify secreted human proteins. The resulting products are free of microbial contaminants, thereby minimizing the risk of immunogenic and inflammatory responses, respectively. In addition, human-like modifications extend the in vivo lifetime of therapeutic proteins. This translates into therapeutic products that are safe and highly active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hauser, H. and Wagner, R., eds. (1997) Mammalian Cell Biotechnology in Protein Production, W. DeGruyter, New York, pp. 1–190.

    Book  Google Scholar 

  2. Kozak M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208.

    Article  CAS  Google Scholar 

  3. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  CAS  Google Scholar 

  4. Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  CAS  Google Scholar 

  5. Shockett, P. E., Difilippantonio, M., Hellman, N., and Schatz, D. G. (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  CAS  Google Scholar 

  6. A-Mohammadi, S. and Hawkins, R. E. (1998) Efficient transgene regulation from a single tetracycline-controlled positive feedback regulatory system. Gene Ther. 5, 76–84.

    Article  CAS  Google Scholar 

  7. Strathdee, C. A., McLeod, M. R., and Hall, J. R. (1999) Efficient control of tetracycline-responsive gene expression from an autoregulated bi-directional expression vector. Gene 229, 21–29.

    Article  CAS  Google Scholar 

  8. Unsinger, J., Kröger, A., Hauser, H., and Wirth, D. (2001) Retroviral vectors for transduction of an autoregulated bidirectional expression cassette. Mol. Ther. 4, 484–489.

    Article  CAS  Google Scholar 

  9. Fussenegger, M., Morris, R. P., Fux, C., Rimann, M., von Stockar, B., Thompson, C. J., et al. (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 18, 1203–1208.

    Article  CAS  Google Scholar 

  10. Eilers, M., Picard, D., Yamamoto, K. R., and Bishop, J. (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68.

    Article  CAS  Google Scholar 

  11. Braselmann, S., Graninger, P., and Busslinger, M. (1993) A selective transcriptional induction system for mammalian cells based on Ga14-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–1661.

    Article  CAS  Google Scholar 

  12. Wang, Y., O’Malley, Jr., B. W., Tsai, S. Y., and O’Malley, B. W. (1994) Proc. Natl. Acad. Sci. USA 91, 8180–1884.

    Article  CAS  Google Scholar 

  13. Burcin, M. M., O’Malley, B. W., and Tsai, S. Y. (1998) A regulatory system for target gene expression. Front. Biosci. 3, 1–7.

    Google Scholar 

  14. No, D., Yao, T. P., and Evans, R. M. (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351.

    Article  CAS  Google Scholar 

  15. Kaufman, R. (1990) Vectors used for expression in mammalian cells. Methods Enzymol. 185, 487–512.

    Article  CAS  Google Scholar 

  16. Boshart, M., Weber, F., Jahn, G., Dorsch-Häsler, K., Fleckenstein, B., and Schaffner, W. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530.

    Article  CAS  Google Scholar 

  17. Bell, A. C. and Felsenfeld, G. (2001) Gene regulation: insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291, 447–450.

    Article  CAS  Google Scholar 

  18. Bode, J., Benham, C., Knopp, A., and Mielke, C. (2000) Transcriptional augmentation: modulation of gene expression by Scaffold/matrix attached regions (S/MAR elements). Crit. Rev. Eukaryot. Gene Expr. 10, 73–90.

    Article  CAS  Google Scholar 

  19. Fiering, S., Whitelaw, E., and Martin, D. I. K. (2000) To be or not to be active: the stochastic nature of enhancer action. Bioessays 22, 381–387.

    Article  CAS  Google Scholar 

  20. Ogbourne, S. and Antalis, T. M. (1998) Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem. J. 331, 1–14.

    CAS  Google Scholar 

  21. Bode, J., Schlake, M., Ríos-Ramírez, M., Mielke, C., Stengert, M., Kay, V., et al. (1995) Scaffold/matrix-attached regions: structural properties creating transcriptioally active loci, in Structural and Functional Organization of the Nuclear Matrix (International Review of Cytology). (Berezney, R. and Jeon, K. W., eds.), Academic Press, San Diego, CA, pp. 389–453.

    Google Scholar 

  22. Bell, A. C. and Felsenfeld, G. (1999) Stopped at the border: boundaries and insulators. Curr. Opin. Genet. Dev. 9, 191–198.

    Article  CAS  Google Scholar 

  23. Li, Q. L., Harju, S., and Peterson, K. R. (1999) Locus control regions — coming of age at a decade plus. Trends Genet. 15, 403–408.

    Article  Google Scholar 

  24. Dorner, A. J., Wasley, L. C., and Kaufman, R. J. (1989) Increased synthesis of secreted proteins induces expression of glucose- regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264, 20,602–20,607.

    CAS  Google Scholar 

  25. Kaufman, R. J., Wasley, L. C., Spiliotes, A. J., Gossels, S. D., Latt, S. A., Larsen, G. R., et al. (1985) Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 5, 1750–1759.

    CAS  Google Scholar 

  26. Looney, J. E. and Hamlin, J. L. (1987) Isolation of the amplified dihydrofolate reductase domain from methotrexate-resistant Chinese hamster ovary cells. Mol. Cell. Biol. 7, 569–577.

    CAS  Google Scholar 

  27. Brown, M. E., Renner, G., Field R. P., and Hassell, T. (1992) Process development for the production of recombinant antibodies using the glutamine-synthetase (GS) system. Cytotechnology 9, 231–236.

    Article  CAS  Google Scholar 

  28. Cappechi, M. R. (1990) Gene targeting: how efficient can you get? Nature 348, 109.

    Article  Google Scholar 

  29. Kilby, N. J., Snaith, M. R., and Murray, J. A. H. (1993) Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421.

    Article  CAS  Google Scholar 

  30. Baer, A. and Bode, J. (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotechnol. 12, 473–480.

    Article  CAS  Google Scholar 

  31. Klehr-Wirth, D., Kuhnert, F., and Hauser, H. (1997) Generation of mammalian cells with conditional expression of cre recombinase. Technical Tips online, T40067., URL: http://tto.trends.com.

  32. Kühn, R., Rajewski, K., and Müller, W. (1995) Inducible gene targeting in mice. Science 269, 1427.

    Article  Google Scholar 

  33. Metzger, D., Clifford, J., Chiba, H., and Chambon, P. (1995) Conditonal site-specific recombination in mamalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92, 6991–6995.

    Article  CAS  Google Scholar 

  34. Kellendonk, D., Tronche, F., Monaghan, A. P., Angrand, P. O., Stewart, F., and Schütz, G. (1996) Regulation of cre recombinase activity by the synthetic steroid RU486. Nucleic Acids Res. 24, 1404–1411.

    Article  CAS  Google Scholar 

  35. Schlake, T. and Bode, J. (1994) Use of mutated Flp recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12,746–12,751.

    CAS  Google Scholar 

  36. Lee, G., Kim, S., Lee, G. K. M., and Park, J. (2000) An engineered lox sequence containing part of a long terminal repeat of HIV-1 permits cre recombinase-mediated excision. Biochem. Cell Biol. 78, 653–658.

    CAS  Google Scholar 

  37. Seibler, J. and Bode, J. (1997) Double-reciprocal crossover mediated by Flp recombinase. A concept and an assay. Biochemistry 36, 1740–1747.

    Article  CAS  Google Scholar 

  38. Seibler, J., Schübeler, D., Fiering, S., Groudine, M., and Bode, J. (1998) DNA cassette exchange in ES cells mediated by Flp recombinase: an efficient strategy for repeated modification of tagged loci by marker-free constructs. Biochemistry 37, 6229–6234.

    Article  CAS  Google Scholar 

  39. Verhoeyen, E., Hauser, H., and Wirth, D. (1998) Efficient targeting of retrovirally FRT-tagged chromosomal loci. Techn. Tips online T01515 URL: http://tto.trends.com.

    Google Scholar 

  40. Schübeler, D., Maass, K., and Bode, J. (1998) Retargeting of retroviral integration sites for the pedictable expression of transgenes and the analysis of cis-acting sequences. Biochemistry 37, 11,907–11,914.

    Article  Google Scholar 

  41. Verhoeyen, E., Hauser, H., and Wirth, D. (2001) Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement. Hum. Gene Ther. 12, 933–944.

    Article  CAS  Google Scholar 

  42. Müller, P., Oumard, A., Wirth, D., Kröger, A., and Hauser, H. (2001) Polyvalent vectors for coexpression of multiple genes, in Plasmids for Therapy and Vaccination (Schleef, M., ed.), Wiley-VCH, Weinheim, pp. 119–136.

    Chapter  Google Scholar 

  43. Martinez-Salas, E. (1999) Internal ribosome entry site biology and its use in expression vectors. Curr. Opin. Biotechnol.10, 458–464.

    Article  CAS  Google Scholar 

  44. Jackson, R. J. and Kaminski, A. (1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.

    CAS  Google Scholar 

  45. Sachs, A. B., Sarnow, P., and Hentze, M. W. (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838.

    Article  CAS  Google Scholar 

  46. Pelletier, J. and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.

    Article  CAS  Google Scholar 

  47. Pestova, T. V., Hellen, C. U. T., and Shatsky, I. N. (1996) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosome entry. Mol. Cell. Biol. 16, 6859–6869.

    CAS  Google Scholar 

  48. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643.

    CAS  Google Scholar 

  49. Oumard, A., Hennecke, M., Hauser, H., and Nourbakhsh, M. (2000) Translation of NRF mRNA is mediated by highly efficient internal ribosome entry. Mol. Cell. Biol. 20, 2755–2759.

    Article  CAS  Google Scholar 

  50. Chappell, S. A., Edelman, G. M., and Mauro, V. P. (2000) A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc. Natl. Acad. Sci. USA 97, 1536–1541.

    Article  CAS  Google Scholar 

  51. Dirks, W., Schaper, F., Kirchhoff, S., Morelle, C., and Hauser, H. (1994) A multifunctional vector family for gene expression in mammalian cells. Gene 149, 387–388.

    Article  CAS  Google Scholar 

  52. Dirks, W., Wirth, M., and Hauser, H. (1993) Dicistronic units for gene expression in mammalian cells. Gene 128, 247–249.

    Article  CAS  Google Scholar 

  53. Zitvogel, L., Tahara, H., Cai, Q., Storkus, W. J., Muller, G., Wolf, S. F., et al. (1994) Construction and Characterization of retroviral vectors expressing biologically active human interleukin-12. Human Gene Ther. 5, 1493–1506.

    Article  CAS  Google Scholar 

  54. Fussenegger, M., Mazur, X., and Bailey J. E. (1998) pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotechnol. Bioeng. 51, 1–10.

    Google Scholar 

  55. Schirmbeck, R., von Kampen, J., Metzger, K., Wild, J., Grüner, B., Schleef, M., et al. (1999) DNA-based vaccination with polycistronic expression plasmids. Methods in Molecular Medicine 29, 313–322.

    Google Scholar 

  56. Kwissa, M., Unsinger, J., Schirmbeck, R., Hauser, H., and Reimann, J. (2000) Polyvalent DNA vaccines with bidirectional promoters. J. Mol. Med. 78, 495–506.

    Article  CAS  Google Scholar 

  57. Mielke, C., Tümmler, M, Schübeler, D., von Hoegen, I., and Hauser, H, (2000) Stabilized, long-term expression of heteromeric proteins from tricistronic mRNA. Gene 254, 1–8.

    Article  CAS  Google Scholar 

  58. Attal, J., Theron, M. C., and Houdebine, L. M. (1999) The optimal use of IRES (internal ribosome entry site) in expression vectors, Genet. Anal. 15, 161–165.

    Article  CAS  Google Scholar 

  59. Hennecke, M., van Kampen, J., Metzger, K., Schirmbeck, R., Reimann, J., and Hauser, H. (2001) The strength of IRES-driven translation of bicistronic expression vectors depends on the composition of the mRNA. Nucleic Acids Res. 29, 3327–3334.

    Article  CAS  Google Scholar 

  60. Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606.

    Article  CAS  Google Scholar 

  61. Liljestrom, P. (1994) Alphavirus expression systems. Curr. Opin. Biotechnol. 5, 495–500.

    Article  CAS  Google Scholar 

  62. Johnston, R. E. and Peters, C. J. (1996) Alphaviruses, in Fields Virology (Fields B. N., Knipe D. M., Howley P. M., eds.), Lippincott-Raven: Philadelphia, PA, pp. 842–898.

    Google Scholar 

  63. Strauss, J. H. and Strauss, E. G. (1994) The alphavirus: gene expression, replication and evolution. Microbiol. Rev. 58, 491–562.

    CAS  Google Scholar 

  64. Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. L. (1997) Replicon helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 39, 389–401.

    Article  Google Scholar 

  65. Berglund, P. M., Sjoberg, M., Garoff, H., Atkins, G. J., Sheahan, B. J., and Liljestrom, P. (1993) Semiliki Forest virus expression systems: production of conditionally infectious recombinant particles. Bio-technology11, 916–920.

    CAS  Google Scholar 

  66. Schlesinger, S. (1993) Alphaviruses-vectors for the expression of heterologous genes. Trends Biotechnol. 11, 18–22.

    Article  CAS  Google Scholar 

  67. Schlesinger, S. (1995) RNA viruses as vectors for the expression of heterologous proteins. Mol. Biotechnol. 3, 155–165.

    Article  CAS  Google Scholar 

  68. Wahlfors, J. J., Zullo, S. A., Nelson, D. M., and Morgan, R. A. (2000) Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther. 7, 472–480.

    Article  CAS  Google Scholar 

  69. Herweijer, H., Latendresse, J. S., Williams, P., Zhang, G., Danko, J., Schlesinger, S., et al. (1995) A plasmid-based self amplifying [Sindbis] virus vector. Hum. Gene Ther. 6, 1161–1167.

    Article  CAS  Google Scholar 

  70. Dubensky, T.W., Driver, D. A., Polo, J. M., Belli, B. A., Latham, E. M., Ibnaez, C. E., et al. (1996) Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70, 508–519.

    CAS  Google Scholar 

  71. Perri, S., Driver, D. A., Gardner, J. P., Sherrill, S., Belli, B. A., Dubensky, T. W., et al. (2000) Replicon vectors derived from Sindbis Virus and Semliki forest virus that establish persistent replication in host cells. J. Virol. 74, 9802–9807.

    Article  CAS  Google Scholar 

  72. Tubulekas, I., Berglund, P., Fleeton, M., and Liljeström, P. (1997) Alphavirus expression vectors and their use as recombinant vaccines: a minireview. Gene 190, 191–195.

    Article  CAS  Google Scholar 

  73. Horwitz, M. S. (1996) Adenoviruses, in Fields Virology (Fields, B. N., Knipe, D. M., and Howley, P. M., eds.), Lippincott-Raven: Philadelphia, PA, pp. 2149–2171

    Google Scholar 

  74. Romano, G., Micheli, P., Pacilio, C., and Giordano, A. (2000) Latest developments in gene transfer technology: achievments, perspectives, and controversies over therapeutic applications. Stem Cells 18, 19–39.

    Article  CAS  Google Scholar 

  75. Hitt, M., Bett, A. J., Prevec, L., and Graham, F. L. (1994) Construction and propagation of human adenovirus vectors, in Cell Biology: A Laboratory Handbook. Academic Press, San Diego, CA, pp. 479–490.

    Google Scholar 

  76. Kochanek, S., Clemens, P. R., Mitani, K., Chen, H. H., Chan, S., and Caskey, C. T. (1996) A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expression both full length dystrophin and β-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736.

    Article  CAS  Google Scholar 

  77. Fisher, K. J., Choi, H., Burda, J., Chen, S. J., and Wilson, J. M. (1996) Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. J. Virol. 217, 11–22.

    Article  CAS  Google Scholar 

  78. Kitamura, T., Onishi, M., Kinoshita, S., Shibuya, A., Miyajima, A., and Nolan, G. P. (1995) Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. USA 92, 9146–9150.

    Article  CAS  Google Scholar 

  79. Walther, W. and Stein, U. (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60, 249–271.

    Article  CAS  Google Scholar 

  80. Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A., and Collins, M. K. (1995) High titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.

    CAS  Google Scholar 

  81. Chong, H. and Vile, R. C. (1996) Replication-competent retrovirus produced by a “splitfunction” third generation amphotropic packaging cell line. Gene Ther. 3, 624–629.

    CAS  Google Scholar 

  82. Palù, G., Parolin, C., Takeuchi, Y., and Pizzato, M. (2000) Progress with retroviral gene vectors. Rev. Med. Virol. 10, 185–202.

    Article  Google Scholar 

  83. Emerman, M., and Temin, H. M. (1986) Comparison of a promoter suppression in avian and murine retrovirus vectors. Nucleic Acids Res. 14, 9381–9396.

    Article  CAS  Google Scholar 

  84. Yu, S. F., von Ruden, T., Kantoff, P. W., Garber, C., Seiberg, M., Ruther, U., et al. (1995) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Bio-technology 13, 389–392.

    Google Scholar 

  85. Bode, J., Fetzer, C. P., Nehlsen, K., Scinteie, M., Hinrichsen, B., Baiker, A., et al. (2001) The hitchhiking principle: Optimization episomal vectors for the use in gene therapy and biotechnology. Gene Ther. Mol. Biol. 6, 33–46.

    Google Scholar 

  86. Van Craenenbroeck, K., Vanhoenacker, P., Duchau, H., and Haegeman, G. (2000) Molecular integrity and usefulness of episomal expression vectors derived form BK and Epstein-Barr virus. Gene 253, 293–301.

    Article  Google Scholar 

  87. Tan, B. T., Wu, L., and Berk, A. (1999) An Adenovirus-Epstein-Barr virus hybrid vector that stably transforms cultured cells with high efficiency. J. Virol. 73, 7582–7589.

    CAS  Google Scholar 

  88. Leblois, H., Roche, C., Falco, D., Orsini, P., Yeh, P., and Perricaudet, M. (2000) Stable transduction of actively dividing cells via a novel adenoviral/episomal vector. Molecular Therapy 1, 314–322.

    Article  CAS  Google Scholar 

  89. Krougliak, V. A., Krougliak, N., and Eisensmith, R. C. (2000) Stabilization of transgenes delivered by recombinant adenovirus vectors through extrachromosomal replication. J. Gene. Med. 3, 51–58.

    Article  Google Scholar 

  90. Feng, M., Jackson, W. H., Goldman, C. K., Rancourt, C., Wang, M., Dusing, S. K., et al. (1997) Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector. Nat. Biotechnol. 15, 866–870.

    Article  CAS  Google Scholar 

  91. Zheng, C., Baum, B. J., Iadarola, M. J., and O’Connell, B. C. (2000) Genomic integration and gene expression by a modified adenoviral vector. Nat. Biotechnol. 18, 176–180.

    Article  CAS  Google Scholar 

  92. Umaña, P. and Bailey, J. E. (1997) A mathematical model of N—linked glycoform biosynthesis. Biotechnol. Bioeng. 55, 890–908.

    Article  Google Scholar 

  93. Minch, S. L., Kallio, P. T., and Bailey, J. E. (1995) Tissue plasminogen activator coexpressed in Chinese hamster ovary cells with alpha(2,6)—sialyltransferase contains NeuAc alpha(2,6) Gal beta(1,4)Glc-N-AcR linkages. Biotechnol. Prog. 11, 348–351.

    Article  CAS  Google Scholar 

  94. Elbein, A. (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J. 5, 3055–3063.

    CAS  Google Scholar 

  95. Grabenhorst, E., Costa, J., and Conradt, H. S. (1997) in Animal Cell Technology (Carrondo, M. J. T., Griffiths, B., and Moreira, J. L. P., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 481–487.

    Google Scholar 

  96. Grabenhorst, E., Hoffmann, A., Nimtz, M., Zettlmeissl, G., and Conradt, H. S. (1994) Construction of stable BHK-21 cells coexpressing human secretory glycoproteins and human Gal(beta 1–4)GlcNAc-R alpha 2,6-sialyltransferase alpha 2,6-linked NeuAc is preferentially attached to the Gal(beta 1–4)G1cNAc(beta 1–2)Man(alpha 1–3)-branch of diantennary oligosaccharides from secreted recombinant beta-trace protein. Eur. J. Biochem. 232, 718–725.

    Google Scholar 

  97. Sburlati, A., Umaña, P., Prati, E. G. P., and Bailey, J. E. (1998) Synthesis of bisected glycoforms of recombinant IFN-beta by overexpression of beta-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol. Prog. 14, 189–192.

    Article  CAS  Google Scholar 

  98. Li, E., Gibson, R., and Kornfeld, S. (1980) Structure of an unusual complex-type oligosaccharide isolated from Chinese hamster ovary cells. Arch. Biochem. Biophys. 199, 393–399.

    Article  CAS  Google Scholar 

  99. Costa, J., Grabenhorst, E., Nimtz, M., and Conradt, H. S. (1996) Stable expression of the Golgi form and secretory variants of human fucosyltransferase III from BHK-21 cells. Purification and characterization of an engineered truncated form from the culture medium. J. Biol. Chem. 272, 11,613–11,621.

    Google Scholar 

  100. Suzuki, E. and Ollis, D. F. (1990) Enhanced antibody production at slowed growth rates: experimental demonstration and a simple structured model. Biotechnol. Prog. 6, 231–236.

    Article  CAS  Google Scholar 

  101. Franek, F. and Dolnikova, J. (1991) Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: effect of nutrient concentration. Cytotechnology 7, 33–38.

    Article  CAS  Google Scholar 

  102. Al-Rubeai, M., Emery, A. N., Chalder, S., and Jan, D. C. (1992) Specific monoclonal antibody productivity and the cell cycle—comparisons of batch, continuous and perfusion cultures. Cytotechnology 9, 85–97.

    Article  CAS  Google Scholar 

  103. Kirchhoff, S., Schaper, F., and Hauser, H. (1993) Interferon regulatory factor 1 (IRF-1) mediates cell growth inhibition by transactivation of downstream target genes. Nucl. Acids Res. 21, 2881–2889.

    Article  CAS  Google Scholar 

  104. Kirchhoff, S., Koromilas, A., Schaper, F., Grashoff, M., Sonenberg, N., and Hauser, H. (1995) IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 11, 439–445.

    CAS  Google Scholar 

  105. Köster, M., Kirchhoff, S., Schaper, F., and Hauser, H. (1995) Proliferation control of mammalian cells by the tumor suppressor IRF-1. Cytotechnology 18, 67–75.

    Article  Google Scholar 

  106. Köster, M., Kirchhoff, S., Schaper, F., and Hauser, H. (1995) Proliferation control of mammalian cells by the tumor suppressor IRF-1, in Animal Cell Technology: Developments Towards the 21st Century (Beuvery, C., Griffiths, B., and Zeijlemaker, W. P., eds.) Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 33–44

    Google Scholar 

  107. Carvalhal, A. V., Moreira, J. L., Müller, P. P., Hauser, H., and Carrondo, M. J. T. (1998) Cell growth inhibition by the IRF-1 system, in New Developments and New Applications in Animal Cell Technology (Merten, O.-W., Perrin, P, and Griffiths, B., eds.), Kluwer Academic Publishers, pp. 215–217.

    Google Scholar 

  108. Schaper, F., Kirchhoff, S., Posern, G., Köster, M., Oumard, A., Sharf, R., et al. (1998) Functional domains of Interferon Regulatory Factor 1 (IRF-1). Biochemical J. 335, 147–157.

    CAS  Google Scholar 

  109. Kirchhoff, S., Wilhelm, D., Angel, P., and Hauser, H. (1999) NFKB activation is required for IRF-1 mediated IFN-β. Eur. J. Biochem. 261, 546–554.

    Article  CAS  Google Scholar 

  110. Kirchhoff, S., Oumard, A., Nourbakhsh, M., Levi, B.-Z., and Hauser, H. (2000) Interplay between repressing and activating domains defines the transcriptional activity of IRF-1. Eur. J. Biochem. 267, 6753–6761.

    Article  CAS  Google Scholar 

  111. Müller, P. P., Carvalhal, A. V., Moreira, J. L., Geserick, C., Schroeder, K., Carrondo, M. J. T., et al. (1999) Development of an IRF-1-based proliferation control system, in Cell Engineering 1 (Al-Rubeai, M., Betenbaugh, M., Hauser, H., Jenkins, N., MacDonald, C., Merten, A.-W., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 220–238.

    Chapter  Google Scholar 

  112. Kröger, A., Köster, M., Schroeder, K., Hauser, H., and Mueller, P. P. (2002) Activities of IRF-1. J. Interferon and Cytokine Res. 22, 5–14.

    Article  Google Scholar 

  113. Geserick, C., Bonarius, H. P. J., Kongerslev, L., Hauser, H., and Müller, P. P. (2000) Enhanced productivity during controlled proliferation of BHK cells in continuously perfused bioreactors. Biotech. Bioeng. 69, 266–274.

    Article  CAS  Google Scholar 

  114. Müller, P. P., Kirchhoff, S., and Hauser, H. (1998) Sustained expression in proliferation controlled BHK-21 cells, in New developments and new applications in animal cell technology (Merten, O.-W., Perrin, P, and Griffiths, B., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 209–214.

    Google Scholar 

  115. Kirchhoff, S., Kröger, A., Cruz, H., Tümmler, M., Schaper, F., Köster, M., et al. (1996) Regulation of cell growth by IRF-1 in BHK-21 cells. Cytotechnology 22, 147–156.

    Article  CAS  Google Scholar 

  116. Geserick, C., Schroeder, K., Bonarius, H., Kongerslev, L., Schlenke, P., Hauser, H., et al. (1999) Recombinant pharmaceutical protein overexpression in an IRF-1 proliferation controlled production system, in Animal Cell Technology: Products from Cells, Cells as Products (Bernard, A., Griffiths, B., Nod, W., and Wurm, F. eds.), Kluwer Academic Publishers, The Netherlands, pp. 3–10.

    Google Scholar 

  117. Carvalhal, A. V., Moreira, J. L., Cruz, H., Mueller, P. P., Hauser, H., and Carrondo, M. J. T. (2000) Manipulation of culture conditions for BHK cell growth inhibition by IRF-1 activation. Cytotechnology 32, 135–145.

    Article  CAS  Google Scholar 

  118. Müller, P. P., Grabenhorst, E., Conradt, H. S., and Hauser, H. (1999) Recombinant glycoprotein product quality in proliferation controlled BHK-21 cells. Biotechnol. Bioeng. 65, 529–536.

    Article  Google Scholar 

  119. Schroeder, K., Koschmieder, S., Ottmann, O. G., Hoelzer, D., Hauser, H., and Mueller, P. P. (2002) Genetic proliferation control facilitates the handling of a human stromal feeder cell line during coccultivation with hematopoietic progenitor cells. Biotechnol. Bioeng. 78, 346–352.

    Article  CAS  Google Scholar 

  120. Fussenegger, M., Schlatter, S., Dätwyler, D., Mazur, X., and Bailey, J. E. (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16, 468–472.

    Article  CAS  Google Scholar 

  121. Fussenegger, M. and Bailey, J. E. (1998) Molecular regulation of cell-cycle progression and apoptosis in mammalian cells: implication for biotechnology. Biotechnol. Prog. 14, 807–833.

    Article  CAS  Google Scholar 

  122. Mercille, S. and Massie, B. (1999) Apoptosis-resistant E1B-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions. Biotechnol. Bioeng. 63, 529–543.

    Article  CAS  Google Scholar 

  123. Cotter, T. G. and Al-Rubeai, M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 13, 150–155.

    Article  CAS  Google Scholar 

  124. Perreault, J. and Lemieux, R. (1993) Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas. Cytotechnology 13, 99–105.

    Article  CAS  Google Scholar 

  125. Singh, R. P., Emery, A. N., and Al-Rubeai, M. (1996) Enhancement of survivability of mammalian cells by overexpression of the apoptosis-suppressor gene bcl-2. Biotechnol. Bioeng. 52, 166–175.

    Article  CAS  Google Scholar 

  126. Chung, J. D., Sinskey, A. J., and Stephanopoulos, G. (1998) Growth factor and bcl-2 mediated survival during abortive proliferation of hybridoma cell line. Biotechnol. Bioeng. 57, 164–171.

    Article  CAS  Google Scholar 

  127. Simpson, N. H., Milner, A. E., and Al-Rubeai, M. (1997) Prevention of hybridoma cell death by bcl-2 during suboptimal culture conditions. Biotechnol. Bioeng. 54, 1–16.

    Article  CAS  Google Scholar 

  128. Huang, D. C. S., Cory, S., and Strasser, A. (1997) Bcl-2, Bcl-XL and adenovirus protein E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 14, 405–414.

    Article  CAS  Google Scholar 

  129. Terada, S., et al. (1997) Anti-apoptotic genes, bag-1 and bc1–2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotechnology 25, 17–23.

    Article  CAS  Google Scholar 

  130. Zanghi, J. A., Fussenegger, M., and Bailey, J. E. (1999) Serum protects protein—free competent Chinese hanster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnol. Bioeng. 5, 573–582.

    Google Scholar 

  131. Mastrangelo, A. J., Hardwick, M. J., Zou, S., and Betenbaugh, M. J. (2000) Part 2. Overexpression of bc1–2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol. Bioeng. 67, 555–564.

    Article  CAS  Google Scholar 

  132. Vives, J., Juanola, S., Gabernet, C., Prats, E., Cairo, J. J., Cornudella, L., et al. (2001) Genetic strategies for apoptosis protection and hybridoma cells based on overexpression of cellular and viral proteins, in Animal Cell Technology: From Target to Market (Lindner-Olsson, E., et al., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 230–233.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mueller, P.P., Wirth, D., Unsinger, J., Hauser, H. (2003). Genetic Approaches to Recombinant Protein Production in Mammalian Cells. In: Vinci, V.A., Parekh, S.R. (eds) Handbook of Industrial Cell Culture. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-346-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-346-0_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-315-2

  • Online ISBN: 978-1-59259-346-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics