Skip to main content

Ischemia-Modified Albumin, Free Fatty Acids, Whole Blood Choline, B-Type Natriuretic Peptide, Glycogen Phosphorylase BB, and Cardiac Troponin

  • Chapter
Cardiac Markers

Part of the book series: Pathology and Laboratory Medicine ((PLM))

Abstract

There is increasing need to make accurate early diagnosis and rule out acute coronary syndromes (ACS) in patients who present to the emergency department (ED) with chest pain. Accurate diagnosis will reduce the number of inappropriate management decisions, and the number of malpractice lawsuits relating to these decisions. Early diagnosis will facilitate faster entry to treatment protocols such as anticoagulant and antiplatelet therapies resulting in reduced morbidity, mortality, and hospital length of stay. Rapid rule-out of ischemia will facilitate discharge of patients at no or low risk for cardiovascular complications and alleviate the diminishing resources available to EDs. Although the presence of ST-segment depressions on the electrocardiogram (ECG) is evidence of ischemia, the ECG is nondiagnostic in the majority of unstable angina patients. Radionuclide imaging is a sensitive marker for ischemia, but is expensive and requires a high degree of technical expertise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation 2000; 102: 1216–1220.

    Article  PubMed  CAS  Google Scholar 

  2. Ishikawa Y, Saffitz JE, Mealman TL, Grace AM, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma. Clin Chem 1997; 43: 467–475.

    PubMed  CAS  Google Scholar 

  3. Wu AHB, Ford L. Release of biochemical markers in acute coronary syndromes: ischemia or only necrosis? Clin Chim Acta 1999; 284: 161–171.

    Article  PubMed  CAS  Google Scholar 

  4. Bar-Or D, Lau E, Rao N, Bampos N, Winkler J, Curtis CG. Reduction in cobalt binding capacity of human albumin with myocardial ischemia. Annual Meeting of the American College of Emergency Physicians, 1999.

    Google Scholar 

  5. BarOr D, Lau E, Winkler J. A novel assay for the cobalt-albumin binding and its potential as a marker for myocardial ischemia: a preliminary report. J Emerg Med 2000; 19: 311–315.

    Article  CAS  Google Scholar 

  6. BarOr D, Winkler J, VanBenthuysen K, Harris L, Lau E, Hetzel F. Reduced cobalt binding of human albumin with transient myocardial ischemia following elective percutaneous transluminal coronary angioplasty compared to CK-MB, myoglobin and troponin I. Am Heart J 2001; 141: 985–991.

    Article  CAS  Google Scholar 

  7. Cobbe SM, Poole-Wilson PA. The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol 1980; 12: 745–760.

    Article  PubMed  CAS  Google Scholar 

  8. Levine RL. Ischemia: from acidosis to oxidation. FASEB J 1993; 7: 1242–1246.

    PubMed  CAS  Google Scholar 

  9. Wardman P, Candeias LP. Fenton Centennial Symposium. Fenton chemistry: an introduction. Radiat Res 1996; 145: 523–531.

    Article  PubMed  CAS  Google Scholar 

  10. Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem 1983; 137: 119–124.

    Article  PubMed  CAS  Google Scholar 

  11. Marx G, Chevion M. Site-specific modification of albumin by free radicals. Biochem J 1985; 236: 397–400.

    Google Scholar 

  12. McCord JM. Oxygen-derived free radicals in post-ischemic tissue injury. N Engl J Med 1985; 312: 159–163.

    Article  PubMed  CAS  Google Scholar 

  13. Halliwell B, Gutteridge JMG. Free Radicals in Biology and Medicine. New York: Oxford University Press, 1999, p. 45.

    Google Scholar 

  14. Laussac JP, Sarkar B. Characterization of the copper (II)- and nickel (II)- transport site of human serum albumin. Studies of copper (II) and nickel (II) binding to peptide 1–24 of human serum albumin by 13C and 1H NMR spectroscopy. Biochemistry 1984; 23: 2832–2838.

    Article  PubMed  CAS  Google Scholar 

  15. Bal W, Christodoulou J, Sadler P, Tucker A. Multi-metal binding site of serum albumin. J Inorgan Biochem 1998; 70: 33–39.

    Article  CAS  Google Scholar 

  16. Glennon JD, Sarkar B. Nickel (II) transport in human blood serum. Studies of nickel (II) binding to human albumin and to native-sequence peptide, and ternary-complex formation with L-histidine. Biochem J 1982; 203: 15–23.

    PubMed  CAS  Google Scholar 

  17. Mohanakrishnan P, Chignell CF, Cox RH. Chloride ion nuclear magnetic resonance spectroscopy probe studies of copper and nickel binding to serum albumins J Pharmaceut Sci 1985; 74: 61–62.

    CAS  Google Scholar 

  18. BarOr D, Curtis G, Rao N, Bampos N, Lau E. Characterization of the Co’ and Niz+ binding amino-acid residues of the N-terminus of human albumin Eur J Biochem 2001; 268: 42–47.

    Article  CAS  Google Scholar 

  19. Masuoka J, Hegenauer J, Van Dyke BR, Saltman P. Intrinsic stoichiometric equilibrium constants for the binding of zinc (II) and copper (II) to the high affinity site of serum albumin. J Biol Chem 1993; 268: 21533–21537.

    PubMed  CAS  Google Scholar 

  20. Nandedkar AK, Hong MS, Friedberg F. Coz+ binding by plasma albumin Biochem Med 1974; 9: 177–183.

    Article  PubMed  CAS  Google Scholar 

  21. Painter PC, Branham E, Morris D, et al. Analytical studies of an assay to detect myocardial ischemia. Clin Chem 2000; 47: A75.

    Google Scholar 

  22. Sinha MK, Gaze DC, Collinson PO, Kaski JC. A novel assay for the detection of ischaemia in percutaneous coronary artery intervention by assessment of the albumin cobalt binding (ACB) test. AHA Meeting on Cardiac Ischemia, Seattle, WA:2001.

    Google Scholar 

  23. Apple FS, Quist HE, Otto AP, Mathews WE, Murakami MM. Release characteristics of cardiac biomarkers and ischemia-modified albumin as measured by the albumin cobalt-binding test after a marathon race. Clin Chem 2002; 48: 1097–1100.

    PubMed  CAS  Google Scholar 

  24. Christenson RL, Duh SH, Sanhai WR, et al. Characteristics of an albumin cobalt binding test for assessment of acute coronary syndrome patients: a multicenter study. Clin Chem 2001; 47: 464–470.

    PubMed  CAS  Google Scholar 

  25. Wu AHB, Morris DL, Fletcher DR, Apple FS, Christenson RH, Painter PC. Analysis of the Albumin Cobalt Binding (ACBTm) test as an adjunct to cardiac troponin I for the early detection of acute myocardial infarction. Cardiovasc Toxicol 2001; 1: 147–152.

    Article  PubMed  CAS  Google Scholar 

  26. Morris DL, Fletcher DR, Apple FS, et al. The Albumin Cobalt Binding test (ACB Test) as an adjunct to troponin for early diagnosis of acute myocardial infarction. Eur Heart J 2001; 22 (Suppl); P608.

    Google Scholar 

  27. Heller GV, Cyr G, Storrow AB, et al. The Albumin Cobalt Binding test (ACBTM Test) to diagnose ischemia in patients with symptoms of coronary artery disease. Clin Chem 2001; 47 (S6): A205.

    Google Scholar 

  28. Sinha MK, Gaze DC, Collinson PO, Kaski JC. The Albumin Cobalt Binding (ACB) test diagnoses cardiac ischaemia in patients with non-ST-elevation chest pain in the emergency department. Presented at the AHA Meeting on Cardiac Ischemia, Seattle, WA, 2001.

    Google Scholar 

  29. Sinha MK, Gaze DC, Collinson PO, Kaski JC. Ischemia Modified Albumin (IMATM): a marker of ischaemia in patients presenting to the emergency department with chest pain. Presented at the Ninth International Conference on Emergency Medicine, Edinburgh, UK, 2002.

    Google Scholar 

  30. Kurien VA, Oliver MF. A metabolic cause of arrhythmias. Lancet 1970; 1: 813–815.

    Article  PubMed  CAS  Google Scholar 

  31. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid concentration as a positive risk factor for sudden death in the population. Circulation 2001; 104: 756–761.

    Article  PubMed  CAS  Google Scholar 

  32. Kleinfeld AM, Prothro D, Brown DL, Dais RC, Richieri GV, DeMaria A. Increases in serum unbound free fatty acid concentrations following coronary angioplasty. Am J Cardiol 1996; 78: 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  33. Kleinfeld AM, Kleinfeld KJ, Adams JE. Serum concentrations of unbound free fatty acids reveal high sensitivity for early detection of AMI in patient samples from the TIMI II Trial (abstract). J Am Coll Cardiol 2002; 39 (Suppl): 312A.

    Article  Google Scholar 

  34. Richieri GV, Kleinfeld AM. Unbound free fatty acid concentrations in human serum. J Lipid Res 1995; 36: 229–240.

    PubMed  CAS  Google Scholar 

  35. Morris AJ, Frohman MA, Engebrecht J. Measurement of phospholipase D activity. Analyt Biochem 1997; 252: 1–9.

    Article  PubMed  CAS  Google Scholar 

  36. Chiang TM. Activation of phospholipase D in human platelets by collagen and thrombin and its relationship to platelet aggregation. Biochim Biophys Acta 1994; 1224: 147–155.

    Article  PubMed  CAS  Google Scholar 

  37. Martinson EA, Scheible S, Greinacher A, Presek P. Platelet phospholipase D is activated by protein kinase C via an integrin alpha IIb beta 3-independent mechanism. Biochem J 1995; 310 (Pt 2): 623–628.

    PubMed  CAS  Google Scholar 

  38. Martinson EA, Scheible S, Marx-Grunwitz A, Presek P. Secreted ADP plays a central role in thrombin-induced phospholipase D activation in human platelets. Thromb Haemost 1998; 80: 976–981.

    PubMed  CAS  Google Scholar 

  39. Gomez-Munoz A, Martens JS, Steinbrecher UP. Stimulation of phospholipase D activity by oxidized LDL in mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol 2000; 20: 135–143.

    Article  PubMed  CAS  Google Scholar 

  40. Williger BT, Ho WT, Exton JH. Phospholipase D mediates matrix metalloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells. J Biol Chem 1999; 274: 735–738.

    Article  PubMed  CAS  Google Scholar 

  41. Cox DA, Cohen ML. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. Am J Physiol 1996; 271 (4 Pt 2): H1706 - H1710.

    PubMed  CAS  Google Scholar 

  42. Cox DA, Cohen ML. Relationship between phospholipase D activation and endothelial vasomotor dysfunction in rabbit aorta. J Pharmacol Exp Ther 1997; 283: 305–311.

    PubMed  CAS  Google Scholar 

  43. Garcia JG, Fenton JW, Nataraj an V. Thrombin stimulation of human endothelial cell phospholipase D activity. Regulation by phospholipase C, protein kinase C, and cyclic adenosine 3’5’-monophosphate. Blood 1992; 79: 2056–2067.

    PubMed  CAS  Google Scholar 

  44. O’Brien KD, Pineda C, Chiu WS, Bowen R, Deeg MA. Glycosylphosphatidylinositol-specific phospholipase D is expressed by macrophages in human atherosclerosis and colocalizes with oxidation epitopes. Circulation 1999; 99: 2876–2882.

    Article  PubMed  Google Scholar 

  45. Houle MG, Bourgoin S. Regulation of phospholipase D by phosphorylation-dependent mechanisms. Biochim Biophys Acta 1999; 1439: 135–149.

    Article  PubMed  CAS  Google Scholar 

  46. Kurz T, Schneider I, Tolg R, Richardt G. Alpha 1-adrenergic receptor-mediated increase in the mass of phosphatidic acid and 1,2-diacylglycerol in ischemic rat heart. Cardiovasc Res 1999; 42: 48–56.

    Article  PubMed  CAS  Google Scholar 

  47. Barry WH. Mechanisms of myocardial cell injury during ischemia and reperfusion. J Card Surg 1987; 2: 375–383.

    Article  PubMed  CAS  Google Scholar 

  48. Deves R, Krupka RM. The comparative specificity of the inner and outer substrate transfer sites in the choline carrier of human erythrocytes. J Membr Biol 1984; 80: 71–80.

    Article  PubMed  CAS  Google Scholar 

  49. Danne O, Möckel M, Lueders C, Muegge C, Zschunke GA, Lufft H, Mueller CH, Frei U. Prognostic implications of whole blood choline levels in acute coronary syndromes. Am J Cardiol 2003; in press.

    Google Scholar 

  50. Mizuno K, Satomura K, Miyamoto A, et al. Angioscopic evaluation of coronary-artery thrombi in acute coronary syndromes. N Engl J Med 1992; 326: 287–291.

    Article  PubMed  CAS  Google Scholar 

  51. Mizuno K, Arakawa K, Isojima K, et al. Angioscopy, coronary thrombi and acute coronary syndromes. Biomed Pharmacother 1993; 47: 187–191.

    Article  PubMed  CAS  Google Scholar 

  52. Haft JI, Goldstein JE, Niemiera ML. Coronary arteriographic lesion of unstable angina. Chest 1987; 92: 609–612.

    Article  PubMed  CAS  Google Scholar 

  53. Ambrose JA. Plaque disruption and the acute coronary syndromes of unstable angina and myocardial infarction: if the substrate is similar, why is the clinical presentation different? J Am Coll Cardiol 1992; 19: 1653–1658.

    Article  PubMed  CAS  Google Scholar 

  54. Jones AW, Shukla SD, Geisbuhler BB. Stimulation of phospholipase D activity and phosphatidic acid production by norepinephrine in rat aorta. Am J Physiol 1993; 264 (3 Pt 1): C609 - C616.

    PubMed  CAS  Google Scholar 

  55. Davies MJ, Thomas AC, Knapman PA, Hangartner JR. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation 1986; 73: 418–427.

    Article  PubMed  CAS  Google Scholar 

  56. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699–708.

    Article  PubMed  CAS  Google Scholar 

  57. Tateishi J, Masutani M, Ohyanagi M, Iwasaki T. Transient increase in plasma brain (B-type) natriuretic peptide after percutanoues transluminal coronary angioplasty. Clin Cardiol 2000; 23: 776–780.

    Article  PubMed  CAS  Google Scholar 

  58. Sabatine MS, Morrow DA, De Lemos JA, et al. Elevation of B-type natriuretic peptide in the setting of myocardial ischemia. Circulation 2001; 104: II - 485.

    Google Scholar 

  59. Mair J. Glycogen phosphorylase isoenzyme BB to diagnose ischaemic myocardial damage. Clin Chim Acta 1998; 272: 79–86.

    Article  PubMed  CAS  Google Scholar 

  60. Rabitzsch G, Mair J, Lechleitner P, et al. Isoenzyme BB of glycogen phosphorylase b and myocardial infarction. Lancet 1993 Apr 17; 341: 1032–1033.

    Article  Google Scholar 

  61. Rabitzsch G, Mair J, Lechleitner P, et al Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin Chem 1995; 41: 966–978.

    PubMed  CAS  Google Scholar 

  62. Mair P, Mair J, Krause EG, Balogh D, Puschendorf B, Rabitzsch G. Glycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur J Clin Chem Clin Biochem 1994; 32: 543–547.

    PubMed  CAS  Google Scholar 

  63. Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol Cell Biochem 1996; 160–161: 289–295.

    Article  Google Scholar 

  64. Lang K, Borner A, Figulla HR. Comparison of biochemical markers for the detection of minimal myocardial injury: superior sensitivity of cardiac troponin-T ELISA. J Intern Med 2000; 247: 119–123.

    Article  PubMed  CAS  Google Scholar 

  65. Jaffe AS, Ravkilde J, Roberts R, et al. It’s time for a change to a troponin standard. Circulation 2000; 102: 1216–1220.

    Article  PubMed  CAS  Google Scholar 

  66. Ishikawa Y, Saffitz JE, Mealman TL, Grace AM, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma. Clin Chem 1997; 43: 467–475.

    PubMed  CAS  Google Scholar 

  67. Katus HG, Remppis A, Scheffold T. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; 67: 1360–1367.

    Article  PubMed  CAS  Google Scholar 

  68. Dean KJ. Biochemistry and molecular biology of troponins I and T. In: Cardiac Markers. Wu AHB, ed. Totowa, NJ: Humana Press, 1998, pp. 193–204.

    Chapter  Google Scholar 

  69. Sobel BE, LeWinter MM. Ingenuous interpretation of elevated blood levels of macromolecular markers of myocardial injury: a recipe for confusion. J Am Coll Cardiol 2000; 35: 1355–1358.

    Article  PubMed  CAS  Google Scholar 

  70. Feng YJ, Chen C, Fallon JT, Ma L, Waters DD, Wu AHB. Comparison of cardiac troponin I, creatine kinase-MB, and myoglobin for detection of acute myocardial necrosis in a swine myocardial ischemic model. Am J Clin Pathol 1998; 110: 70–77.

    PubMed  CAS  Google Scholar 

  71. Hamm CW, Ravkilde J, Gerhardt W, Jorgensen P, Peheim E, Ljungdahl L. The prognostic value of serum troponin T in unstable angina. N Engl J Med 1992; 327: 146–150.

    Article  PubMed  CAS  Google Scholar 

  72. Wu AHB. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression (editorial). Crit Care Med 2001; 27: 959–960.

    CAS  Google Scholar 

  73. Parker MM, Shelhamer JH, Bachrach SL, et al. Profound but reversible myocardial depression in aptients with septic shock. Ann Intern Med 1984; 100: 483–490.

    Article  PubMed  CAS  Google Scholar 

  74. Ellrod AG, Riedinger MS, Kimchi A, et al. Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 1985; 110: 402–409.

    Article  Google Scholar 

  75. ver Elst KM, Spapen HD, Nguyen DN, et al. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 2000; 46: 650–657.

    Google Scholar 

  76. Ammann P, Fehr T, Minder EI, et al. Elevation of troponin I in sepsis and septic shock. Crit Care Med 2001; 29: 965–969.

    Article  Google Scholar 

  77. Brett J, Gewrlach H, Nawroth P, et al. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med 1989; 169: 1977–1991.

    Article  PubMed  CAS  Google Scholar 

  78. Suleiman MS, Lucchetti V, Caputo M, Angelini GD. Short periods of regional ischaemia and reperfusion provoke release of troponin I from the human hearts. Clin Chim Acta 1999; 284: 25–30.

    Article  PubMed  CAS  Google Scholar 

  79. Colantonio DA, Pickett W, Brison RJ, Collier CE, Van Eyk JE. Detection of cardiac troponin I early after onset of chest pain in six patients. Clin Chem 2002; 48: 668–671.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, A.H.B. et al. (2003). Ischemia-Modified Albumin, Free Fatty Acids, Whole Blood Choline, B-Type Natriuretic Peptide, Glycogen Phosphorylase BB, and Cardiac Troponin. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics