Skip to main content

Animal Models for Assessing the Contribution of Stem Cells to Liver Development

  • Chapter
Stem Cells Handbook
  • 366 Accesses

Abstract

A lineage progression from small undifferentiated cells to bipotent cells expressing both biliary and hepatocytic products to unipotent mature hepatocyte or bile duct cells has been identified by a number of laboratories during liver development or in response to injury or carcinogenesis. This leads to a multitiered system of cell renewal designed to provide alternative pathways to liver regeneration that will ensure retention of the reestablishment of liver functionality even when mature hepatocytes and ductal cells have been severely compromised. Recent experiments indicate that the small undifferentiated liver progenitor cell (LPC) may actually be bone marrow derived. Selective activation of LPCs may be accomplished in rodents by combining agents or events that activate proliferation with those that inhibit hepatocyte proliferation. Different injury or carcinogenesis regimens applied to rodents appear to activate the liver lineage cells at different levels including small intraportal undifferentiated cells, bipotent ductal cells, and small hepatocytes. Early lineage (oval) cells also are seen in the livers of humans with chronic liver injury or carcinogen exposure and are a consistent feature of viral hepatocarcinogensis in both animals and humans. Experimental models of chemical hepatocarcinogenesis also implicate LPCs as the cells of origin of hepatocellular carcinoma. Identification of the potential of a cell using transplantation into the liver has been complicated by several confounding factors, but it has been shown that adult hepatocytes have the capacity to replace extensively damaged liver tissue by undergoing a number of cell divisions. This clearly shows that the mature hepatocyte is capable of sustained symmetric divisions, but the proliferation capacity of putative LPCs has not been determined in this fashion. Future directions in using proliferation of endogenous or transplanted stem cells for replacement or gene therapy seem boundless, but much more needs to be known about the liver stem cell lineage and how to control its potential in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhurst, B., Croager, E. J., et al. (2001) A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology 34(3):519–522.

    Article  PubMed  CAS  Google Scholar 

  • Allison, J. P., Hixson, D. C., et al. (1982) Monoclonal Antibodies as Probes of Surface Antigenic Alterations During Experimental Carcinogenesis in the Rat. Elsevier, Amsterdam.

    Google Scholar 

  • Arber, N., Zajicek, G., et al. (1988) The streaming liver II. Hepatocyte life history. Liver 8:80–87.

    PubMed  CAS  Google Scholar 

  • Baumann, U., Crosby, H., et al. (1999) Expression of the stem cell factor receptor c-kit in normal and diseased pediatric liver: identification of a human hepatic progenitor cell? Hepatology 30(1):112–117.

    Article  PubMed  CAS  Google Scholar 

  • Bennoun, M., Rissel, M., et al. (1993) Oval cell proliferation in early stages of hepatocarcinogenesis in Simian Virus 40 large T transgenic mice. Am. J. Pathol. 143:1326–1336.

    PubMed  CAS  Google Scholar 

  • Betto, H., Kaneda, K., et al. (1996) Development of intralobular bile ductules after spontaneous hepatitis in Long-Evans mutant rats. Lab. Invest. 75(1):43–53.

    PubMed  CAS  Google Scholar 

  • Bisgaard, H., Nagy, C. P., et al. (1996) Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology 23:62–70.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, F. M. and Bucher, N. L. (1996) Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93(6):2348–2352.

    Article  PubMed  CAS  Google Scholar 

  • Boylan, J. and Gruppuso, P. (1994) In vitro and in vivo regulation of hepatic mitogen-activated protein kinases in fetal rats. Am. J. Physiol. 267:G1078–G1086.

    Google Scholar 

  • Bralet, M. P., Branchereau, S., et al. (1994) Cell lineage study in the liver using retroviral mediated gene transfer: evidence against the streaming of hepatocytes in normal liver. Am. J. Pathol. 144:896–905.

    PubMed  CAS  Google Scholar 

  • Bralet, M.-P., Calise, D., et al. (1996) In vivo cell lineage analysis during chemical hepatocarcinogenesis using retroviral-mediated gene transfer. Lab. Invest. 74(5):871–881.

    PubMed  CAS  Google Scholar 

  • Cabrera, J. A., Wilson, J. M., et al. (1996) Targeted retroviral gene transfer into the rat biliary tract. Somatic Cell. Mol. Genet. 22(1):21–29.

    Article  CAS  Google Scholar 

  • Cardiff, R. and Aguilar-Cardova, E (1988) Proto-neoplasia revisited: the molecular biology of mouse mammary hyperplasia. Anticancer Res. 8:925–933.

    PubMed  CAS  Google Scholar 

  • Cassell, H. S., Price, P., et al. (1998) The association between murine cytomegalovirus induced hepatitis and the accumulation of oval cells. Int. J. Exp. Pathol. 79(6):433–441.

    Article  PubMed  CAS  Google Scholar 

  • Chandar, N. and Lombardi, B. (1988) Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcino genesis 9:259–263.

    Article  CAS  Google Scholar 

  • Chenn, A. and McConnell, S. K. (1995) Cleavage orientation and the asymmetric inheritance of Notchl immunoreactivity in mammalian neurogenesis. Cell 82(4):631–641.

    Article  PubMed  CAS  Google Scholar 

  • Coburn, M. C., Hixson, D. C., et al. (1994) In vitro immune responsiveness of rats lacking active Dipeptidylpeptidase IV. Cell. Immunol. 158:269–280.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M. T. and Porter, T. D. (2000) Mutagenicity of nitrosamines in methyltransferase-deficient strains of salmonella. Mutat. Res. 454:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Counts, J. L., Sarmiento, J. I., et al. (1996) Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17(6):1251–1257.

    Article  PubMed  CAS  Google Scholar 

  • Crosby, H. A., Hubscher, S. G., Joplin, R. E., et al. (1998) Immunolocalization of OV-6, a putative progenitor cell marker in human fetal and disease pediatric liver. Hepatology 28:980–985.

    Article  PubMed  CAS  Google Scholar 

  • Curran, T. R. J., Bahner, R. I., et al. (1993) Mitogen-independent DNA synthesis by fetal rat hepatocytes in primary culture. Exp. Cell Res. 209:53–57.

    Article  PubMed  CAS  Google Scholar 

  • Dabeva, M. D. and Shafritz, D. A. (1993) Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am. J. Pathol. 143:1606–1620.

    PubMed  CAS  Google Scholar 

  • Dabeva, M. D., Hwang, S.-G., et al. (1997) Differentiation of pancreatic epithelial progenitor cells into hepatocytes following transplantation into rat liver. Proc. Natl. Acad. Sci. USA 94:7356–7361.

    Article  PubMed  CAS  Google Scholar 

  • Dabeva, M. D., Petkov, P. M., et al. (2000) Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am. J. Pathol. 156(6):2017–2031.

    Article  PubMed  CAS  Google Scholar 

  • Degawa, M., Miura, S., et al. (1995) Altered expression of hepatic CYPIA enzymes in rat hepatocarcinogenesis. Jpn. J. Cancer Res. 86(6):535–539.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, W. and Isom, H. (1998) Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 28(4):1134–1146.

    Article  PubMed  CAS  Google Scholar 

  • Diwan, B. A., Ward, J. M., et al. (1997) Promotion by Helicobacter hepaticus-induced hepatitis of hepatic tumors initiated by Nnitrosodimethylamine in male A/JCr mice. Toxicol. Pathol. 25(6): 597–605.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Malagon, H. and Gaytan-Graham, S. (2001) Hepatocellular carcinoma: an update. Ultrastruct. Pathol. 25(6):497–516.

    Article  PubMed  CAS  Google Scholar 

  • Dumble, M. L., Croager, E. J., et al. (2002) Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis 23(3):435–445.

    Article  PubMed  CAS  Google Scholar 

  • Dunsford, H. A., Sell, S., et al. (1990) Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res. 50(11):3400–3407.

    PubMed  CAS  Google Scholar 

  • Elmore, L. W. and Sirica, A. E. (1992) Sequential appearance of intestinal mucosal cell types in the right and caudate liver lobes of furan treated rats. Hepatology 16:1220–1226.

    PubMed  CAS  Google Scholar 

  • Engelhardt, N. V., Factor, V. M., et al. (1990) Common antigens of mouse oval and biliary epithelial cells: expression on newly formed hepatocytes. Differentiation 45(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  • Evarts, R. P., Nagy, P., et al. (1989) In vivo differentiation of rat liver oval cells into hepatocytes. Cancer Res. 49(6):1541–1547.

    PubMed  CAS  Google Scholar 

  • Evarts, R. P., Hu, Z., et al. (1996) Precursor-product relationship between oval cells and hepatocytes: comparison between tritiated thymidine and bromodeoxyuridine as tracers. Carcinogenesis 17:2143–2151.

    Article  PubMed  CAS  Google Scholar 

  • Factor, V. M., Radaeva, S. A., et al. (1994) Origin and fate of oval cells in Dipin-induced hepatocarinogenesis in the mouse. Am. J. Pathol. 145(2):409–422.

    PubMed  CAS  Google Scholar 

  • Fallon, M., Nathanson, M., et al. (1995) Altered expression and function of hepatocyte gap junctions after commmon bile duct ligation in the rat. Am. J. Pathol. 268:C1186–C1194.

    Google Scholar 

  • Farber, E. (1992) On cells of origin of liver cell cancer. In: The Role of Cell Types in Hepatocarcinogenesis. (Sirica, A. E., ed.), CRC, Boca Raton, FL, pp. 1–28.

    Google Scholar 

  • Faris, R. A. and Hixson, D. C. (1989) Selective proliferation of chemically altered rat liver epithelial cells following hepatic transplantation. Transplantation 48(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  • Faris, R. A., Monfils, B. A., et al. (1991) Antigenic relationship between oval cells and a subpopulation of hepatic foci, nodules, and carcinomas induced by the “resistant hepatocyte” model system. Cancer Res. 51(4):1308–1317.

    PubMed  CAS  Google Scholar 

  • Fausto, N. (1990) Hepatocyte differentiation and liver progenitor cells. Curr. Opin. Cell Biol. 2:1036–1042.

    Article  PubMed  CAS  Google Scholar 

  • Fausto, N. (1997) Hepatocytes break the rules of senescence in serial transplantation studies: is there a limit to their replicative capacity? Am. J. Pathol. 151(5):1187–1189.

    PubMed  CAS  Google Scholar 

  • Fukushima, S., Hirose, M., et al. (1981) Inhibitory effect of 4,4′-diaminodiphenylmethane on liver, kidney and bladder carcinogenesis in rats ingesting N-ethyl-N-hydroxyethylnitrosamine or N-butyl-N-(4-hydroxybutyl) nitros-amine. Carcinogenesis 2(10): 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Gerlyng, P., Grotmol, T., et al. (1994) Flow cytometric investigation of a possible precursor-product relationship between oval cells and parenchymal cells in the rat liver. Carcinogenesis 15:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Gindi, T., Ghazarian, D. M. D., et al. (1994) An origin of presumptive preneoplastic foci and nodules from hepatocytes in chemical carcinogenesis in rat liver. Cancer Lett. 83:75–80.

    Article  PubMed  CAS  Google Scholar 

  • Golding, M., Sarraf, C. E., et al. (1995) Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology 22:1243–1253.

    PubMed  CAS  Google Scholar 

  • Gordon, G. J., Coleman, W., Grisham, J. W., et al. (2000a) Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. Am. J. Pathol. 157(3):771–786.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, G. J., Coleman, W. B., Hixson, D. C., Grisham, J. W. (2000b) Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am. J. Pathol. 156(2):607–619.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, J. (1994) Migration of hepatocytes along hepatic plates and stem cell-fed hepatocyte lineages. Am. J. Pathol. 144(5):849–854.

    PubMed  CAS  Google Scholar 

  • Grisham, J. W. (1980) Cell types in long-term propagable cultures of rat liver. Ann. NY Acad. Sci. 349:128–137.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, J. W. and Porta, E. A. (1964) Origin and fate of proliferated hepatic ductal cells in the rat: electron microscopic and autoradiographic studies. Exp. Mol. Pathol. 3:242–261.

    Article  Google Scholar 

  • Gupta, S., Rajvanshi, P., et al. (2000) Cell transplantation causes loss of gap junctions and activates GGT expression permanently in host liver. Am. J. Physiol. Gastrointest. Liver Physiol. 279(4):G815–G826.

    Google Scholar 

  • Hafenrichter, D. G., Ponder, K. P., et al. (1994a) Liver-directed gene therapy: evaluation of liver specific promoter elements. J. Surg. Res. 56(6):510–517.

    Article  PubMed  CAS  Google Scholar 

  • Hafenrichter, D. G., Wu, X., et al. (1994b) Quantitative evaluation of liver-specific promoters from retroviral vectors after in vivo transduction of hepatocytes. Blood 84(10):3394–3404.

    PubMed  CAS  Google Scholar 

  • Hagiwara, A., Matsuda, T., et al. (1996) Dose-related increased in quantitative values for altered hepatocytic foci and cytochrome P-450 levels in the livers of rats exposed to phenobarbital in a medium-term bioassay. Cancer Lett. 110:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Hanski, C., Zimmer, T., et al. (1986) Increased activity of dipeptidyl peptidase IV in serum of hepatoma-bearing rats coincides with the loss of the enzyme from the hepatoma plasma membrane. Experientia 42:826–828.

    Article  PubMed  CAS  Google Scholar 

  • Haruna, Y., Saito, K., et al. (1996) Identification of bipotential progenitor cells in human liver development. Hepatology 23(3):476–481.

    Article  PubMed  CAS  Google Scholar 

  • He, X. Y., Smith, G. J., et al. (1994) Short-term diethylnitrosamine-induced oval cell responses in three strains of mice. Pathology 26(2):154–160.

    Article  PubMed  CAS  Google Scholar 

  • Hixson, D. C. and Allison, J. P. (1985) Monoclonal antibodies recognizing oval cells induced in the liver of rats by N-2-fluorenylacetamide or ethionine in a choline-deficient diet. Cancer Res. 45(8): 3750–3760.

    PubMed  CAS  Google Scholar 

  • Hixson, D. C. and Fowler, L. C. (1997). Development and phenotypic heterogeneity of intrahepatic biliary epithelial cells. In: Biliary and Pancreatic Ductal Epithelium. (Sirica, A. E. and Longnecker, D. S. eds.), Marcel Dekker, NY, pp. 1–40.

    Google Scholar 

  • Hixson, D. C., Faris, R. A., et al. (1992). Antigenic clues to liver development, renewal and carcinogenesis. In: The Role of Cell Types in Hepatocarcinogenesis. (Sirica, A. E., ed.), CRC, Boca Raton, FL, pp. 151–182.

    Google Scholar 

  • Hixson, D. C., Affigne, S., et al. (1996) Delineation of antigenic pathways of ethionine induced liver cancer in the rat. Pathobiology 64:79–90.

    Article  PubMed  CAS  Google Scholar 

  • Hixson, D. C., Brown, J., et al. (2000) Differentiation status of rat ductal cells and ethionine-induced hepatic carcinomas defined with surfacereactive monoclonal antibodies. Exp. Mol. Pathol. 68:152–169.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R. M. (1984) Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim. Biophys. Acta 738:49–87.

    PubMed  CAS  Google Scholar 

  • Hsia, C. C., Evarts, R. P., et al. (1992) Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. Hepatology 16(6):1327–1333.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, J. M., Buckley, M. T., et al. (1982) Liver cell membrane alloantigens as cellular markers in genotypic mosiac rat livers undergoing chemically-induced hepatocarcinogenesis. Cancer Res. 42:227–236.

    PubMed  CAS  Google Scholar 

  • Iannaccone, P. (1987) The study of mammalian organogenesis by mosaic pattern analysis. Cell Differ. 21:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, S. and Morimoto, C. (1999) CD26/Dipeptidyl peptidase IV in context: the different roles of a multifunctional ectoenzyme in malignant transformation. J. Exp. Med. 190:301–305.

    Article  PubMed  CAS  Google Scholar 

  • Kanz, M., Kaphalia, L., et al. (1992) Methylene dianiline: acute toxicity and effects on biliary function. Tox. App. Pharm. 117:88–97.

    Article  CAS  Google Scholar 

  • Khokha, M. K., Landini, G., et al. (1994) Fractal geometry in rat chimeras demonstrates that a repetitive cell division program may generate liver parenchyma. Devel. Biol. 165:545–555.

    Article  CAS  Google Scholar 

  • Knoblich, J. A., Jan, L. Y., et al. (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377(6550):624–627.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, H. and Reid, L. M. (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class 1 antigen. Proc. Natl. Acad. Sci. USA 97:12,132–12,137.

    Article  Google Scholar 

  • Laconi, E., Oren, R., et al. (1998) Long-term, near total liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am. J. Pathol. 153:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Laconi, S., Pillai, S., et al. (2001) Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine. Am. J.Pathol. 158(2):771–777.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. H., Ilic, Z., et al. (1996) Cell kinetics of repair after allyl alcoholinduced liver necrosis in mice. Int. J. Exp. Pathol. 77(2):63–72.

    Article  PubMed  CAS  Google Scholar 

  • Lemire, J. M., Shiojiri, N., et al. (1991) Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine. Am. J. Pathol. 139(3):535–552.

    PubMed  CAS  Google Scholar 

  • Lenzi, R., Liu, M. H., et al. (1992) Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis: evidence for a biliary epithelial nature of oval cells. Lab. Invest. 66(3):390–402.

    PubMed  CAS  Google Scholar 

  • Lin, Y.-Z., Brunt, E. M., et al. (1995) Ras-transduced diethylnitrosaminetreated hepatocytes develop into cancer of mixed phenotype in vivo. Cancer Res. 55:5242–5250.

    CAS  Google Scholar 

  • Lombardi, B. (1971) Effects of choline deficiency on rat hepatocytes. Fed. Proc. 30(1):139–142.

    PubMed  CAS  Google Scholar 

  • Lombardi, B., Ove, P., et al. (1985) Endogenous hepatic growth-modulating factors and effects of a choline-devoid diet and of phenobarbital on hepatocarcinogenesis in the rat. Nutr. Cancer 7(3):145–154.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, B. and Shinozuka, H. (1979) Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet. Int. J. Cancer 23:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Lowes, K., Brennan, B., et al. (1999) Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am. J. Pathol. 154:537–541.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, C., Walker, S., et al. (2000) Effect of changes in expression of the amphotropic retroviral receptor PiT-2 on transduction efficiency and viral titer: implications for gene therapy. Hum. Gene Ther. 11(4):587–595.

    Article  PubMed  CAS  Google Scholar 

  • Medvinsky, A. and Dzierzak, E. (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906.

    Article  PubMed  CAS  Google Scholar 

  • Mello, C. C., Schubert, C., et al. (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382(6593):710–712.

    Article  PubMed  CAS  Google Scholar 

  • Michalopoulos, G. K., Bowen, W. C., et al. (2001) Histological organization in hepatocyte organoid cultures. Am. J. Pathol. 159(5):1877–1887.

    Article  PubMed  CAS  Google Scholar 

  • Mignon, A., Guidotti, J. E., et al. (1998) Selective repopulation of normal mouse liver by Fas/CD95-resistant hepatocytes. Nat. Med. 4:1185–1188.

    Article  PubMed  CAS  Google Scholar 

  • Nakae, D., Yoshiji, H., et al. (1992) High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats. Cancer Res. 52:5042–5045.

    PubMed  CAS  Google Scholar 

  • Novikoff, P. M. and Yam, A. (1998) Stem cells and rat liver carcinogenesis: contributions of confocal and electron microsccopy. J. Histochem. Ctochem. 46:613–626.

    Article  CAS  Google Scholar 

  • Oren, R., Dabeva, M. D., et al. (1999) Restoration of serum albumin levels in nagase analbuminemic rats by hepatocyte transplantation. Hepatology 29:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Overturf, K., Al-Dhalimy, M., et al. (1996) Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 12(3):266–273.

    Article  PubMed  CAS  Google Scholar 

  • Overturf, K., Al-Dhalimy, M., et al. (1999) The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am. J. Pathol. 155:2135–2143.

    Article  PubMed  CAS  Google Scholar 

  • Petell, J. K., Quaroni, A., et al. (1990) Alteration in the regulation of plasma membrane glycoproteins of the hepatocyte during ontogeny. Exp. Cell Res. 187:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B. E. (2001) Hepatic “stem” cells: coming full circle. Blood Cells Mol. Dis. 27(3):590–600.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B. E., Zajac, V. F., et al. (1997) Bile ductular damage induced by methylene dianiline inhibits oval cell activation. Am. J. Pathol. 151 (4):905–909.

    PubMed  CAS  Google Scholar 

  • Pitot, H. C., Campbell, H. A., et al. (1989) Critical parameters in the quantitation of the stages of initiation, promotion, and progression in one model of hepatocarcinogenesis n the rat. Toxicol. Pathol. 17(4):594–612.

    PubMed  CAS  Google Scholar 

  • Ponder, K. P. (1996) Analysis of liver development, regeneration, and carcinogenesis by genetic marking studies. FASEB J. 10(7):673–682.

    PubMed  CAS  Google Scholar 

  • Ponder, K. P., Dunbar, R. P., et al. (1991) Evaluation of relative promoter strength in primary hepatocytes using optimized lipofection. Hum. Gene Ther. 2(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  • Rajvanshi, P., Kerr, A., et al. (1996) Studies of liver repopulation using the dipeptidyl peptidase IV-deficient rat and other rodent recipients: cell size and stucture relationships regulate capacity for increased transplanted hepatocyte mass in the liver lobule. Hepatology 23(3): 482–496.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, J. K., Rao, M. S., et al. (1991) Pancreatic hepatocytes: an in vivo model for cell lineage in pancreas of adult rat. Dig. Dis. Sci. 36(4):502–509.

    Article  PubMed  CAS  Google Scholar 

  • Rhim, J. A., Sandgren, E. P., et al. (1994) Replacement of diseased mouse liver by hepatic cell transplantation. Science 263:1149–1152.

    Article  PubMed  CAS  Google Scholar 

  • Rhim, J. A., Sandgren, E. P., et al. (1995) Complete reconstruction of mouse liver with xenogeneic hepatocytes. Proc. Natl. Acad. Sci. USA 92(May):4942–4946.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, C. and Bank, A. (1996) Developmental-stage-specific expression and regulation of an amphotropic retroviral receptor in hematopoietic cells. Mol. Cell. Biol. 16(8):4240–4247.

    PubMed  CAS  Google Scholar 

  • Ring, J. A., Ghabrial, H., et al. (1999) Fetal hepatic drug elimination. Pharmacol. Ther. 84:429–445.

    Article  PubMed  CAS  Google Scholar 

  • Rushmore, T. H., Farber, E., et al. (1986) A choline-devoid diet, carcinogenic in the rat, induces DNA damage and repair. Carcinogenesis 7(10):1677–1680.

    Article  PubMed  CAS  Google Scholar 

  • Sandhu, J. S., Petkov, P. M., et al. (2001) Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am. J. Pathol. 159(4):1323–1334.

    Article  PubMed  CAS  Google Scholar 

  • Sarraf, C., Lalani, E.-N., et al. (1994) Cell behavior in the Acetylamninofluorene-treated regenerating rat-liver. Am. J. Pathol 145(5):1114–1125.

    PubMed  CAS  Google Scholar 

  • Scherer, E. and Emmelot, P. (1975) Kinetics of induction and growth of precancerous liver-cell foci, and liver tumour formation by Diethylnitrosamine in the rat. Eur. J. Cancer 11:689–696.

    PubMed  CAS  Google Scholar 

  • Sell, S. (1998) Comparison of liver progenitor cells in human atypical ductular reactions with those seen in experimental models of liver injury. Hepatology 27:317–331.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S. (2001) Heterogeneity and plasticity of hepatocyte lineage cells. Hepatology 33(3):738–750.

    Article  PubMed  CAS  Google Scholar 

  • Sell, S. and Dunsford, H. A. (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am. J. Pathol. 134:1347–1363.

    PubMed  CAS  Google Scholar 

  • Sell, S. and Pierce, G. B. (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest. 70(1):6–22.

    PubMed  CAS  Google Scholar 

  • Sell, S. and Salman, J. (1984) Light- and electromicroscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline deficient diet. Am. J. Pathol. 114: 287–300.

    PubMed  CAS  Google Scholar 

  • Sell, S., Leffert, H. L., et al. (1981) Rapid development of large numbers of alpha-fetoprotein-containing “oval” cells in the liver of rats fed N-2-fluorenylacetamide in a choline-devoid diet. Gann 72(4):479–487.

    PubMed  CAS  Google Scholar 

  • Sell, S., Hunt, J. M., et al. (1991) Synergy between hepatitis B virus expression and chemical hepatocarcinogens in transgenic mice. Cancer Res. 51(4):1278–1285.

    PubMed  CAS  Google Scholar 

  • Sells, M. A., Katyal, S. L., et al. (1979) Induction of foci of altered, gamma-glutamyltranspeptidase-positive hepatocytes in carcinogen-treated rats fed a choline-deficient diet. Br. J. Cancer 40(2): 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya-Sarua, H., Kasahara, Y., et al. (1996) Human serum dipeptidyl peptidase IV (DPPIV) and its unique properties. J. Clin. Lab. Anal. 10(6):435–440.

    Article  Google Scholar 

  • Shinozuka, H., Lombardi, B., et al. (1978) Enhancement of DL-ethionine-induced liver carcinogeneis in rats fed a choline-devoid diet. J. Natl. Cancer Inst. 61:813–817.

    PubMed  CAS  Google Scholar 

  • Shiojiri, N., Inujima, S., et al. (2001) Cell lineage analysis during liver development using the spf(ash)-heterozygous mouse. Lab. Invest. 81(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri, N., Lemire, J. M., et al. (1991) Cell lineages and oval cell progenitors in rat liver development. Cancer Res. 51(10):2611–2620.

    PubMed  CAS  Google Scholar 

  • Shivapurkar, N., Wilson, M. J., et al. (1984) Hypomethylation of DNA in ethionine-fed rats. Carcinogenesis 5:989–992.

    Article  PubMed  CAS  Google Scholar 

  • Simper, R., McBride, A., et al. (2001) Phenotypic analysis of putative embryonic progenitors for rat hepatocyte and ductal cells. FASEB J. 15:A943.

    Google Scholar 

  • Sirica, A., Cole, S., et al. (1994b) A unique rat model of bile ductular hyperplasia in which liver is almost totally replaced with well-differentiated bile ductules. Am. J. Pathol. 144:1257–1268.

    PubMed  CAS  Google Scholar 

  • Sirica, A. E., ed. (1992). The Role of Cell Types in Hepatocarcinogenesis, CRC, Boca Raton, FL.

    Google Scholar 

  • Sirica, A. E. (1995) Ductular hepatocytes. Histol. Histopathol. 10:433–456.

    PubMed  CAS  Google Scholar 

  • Sirica, A. E. and Cihla, H. P. (1984) Isolation and partial characterizations of oval and hyperplastic bile ductular cell-enriched populations from the livers of carcinogen and noncarcinogen-treated rats. Cancer Res. 44(8):3454–3466.

    PubMed  CAS  Google Scholar 

  • Sirica, A. E. and Williams, T. W. (1992) Appearance of ductular hepatocytes in rat liver after bile duct ligation and subsequent zone three necrosis by carbon tetrachloride. Am. J. Pathol. 40:129–136.

    Google Scholar 

  • Sirica, A. E., Gainey, T. W., et al. (1994) Ductular hepatocytes, evidence for a bile ductular cell origin in furan-treated rats. Am. J. Pathol. 145:375–383.

    PubMed  CAS  Google Scholar 

  • Smith, G. J., Kunz, H. W., et al. (1990) Histopathology and cell culture characteristics of liver cells from grc- and grc+ rats given diethylnitrosamine [published erratum appears in Cell Biol. Toxicol. 1990;6(4):423]. Cell Biol. Toxicol. 6(2):205–217.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. G., Tee, L. B., et al. (1996) Appearance of oval cells in the liver of rats after long-term exposure to ethanol. Hepatology 23(1):145–154.

    Article  PubMed  CAS  Google Scholar 

  • Solt, D. and Farber, E. (1976) New principle for the analysis of chemical carcinogenesis. Nature 263:701–703.

    Article  CAS  Google Scholar 

  • Steiner, J., Perz, A., et al. (1966) Cell proliferation dynamics in the liver: a review of quantitative morphological techniques applied to the stud of physiological and pathological growth. Exp. Mol. Pathol. 5:146–181.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Oyamada, M., et al. (1988) Elevation of serum alpha-fetoprotein and proliferation of oval cells in the livers of LEC rats. Jpn. J. Cancer Res. 79(7):821–827.

    Article  PubMed  CAS  Google Scholar 

  • Tateno, C. and Yoshizato, K. (1996) Growth and differentiation in culture of clonogenic hepatocytes that express both phenotypes of hepatocytes and biliary epithelial cells. Am. J. Pathol. 149:1593–1605.

    PubMed  CAS  Google Scholar 

  • Tateno, C., Takai-Kajihara, K., et al. (2000) Heterogeneity of growth potential of adult rat hepatocytes in vitro. Hepatology 31:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Terada, N., Hamazaki, T., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880):542–545.

    Article  PubMed  CAS  Google Scholar 

  • Theise, N. D., Nimmakayalu, M., et al. (2000) Liver from bone marrow in humans. Hepatology 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Theise, N., Badve, S., et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31(1): 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, N. L., Hixson, D. C., et al. (1991) A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady state RNA levels and an altered protein. Biochem. J. 273:497–502.

    PubMed  CAS  Google Scholar 

  • Thorgeirsson, S. S. (1996) Hepatic stem cells in liver regeneration. FASEB J. 10:1249–1256.

    PubMed  CAS  Google Scholar 

  • Van der Kooy, D. and Weiss, S. (2000) Why stem cells? Science 287(5457):1439–1441.

    Article  PubMed  Google Scholar 

  • Van Eyken, P., Sciot, R., et al. (1988) Intrahepatic bile duct developement in the rat: a cytokeratin-immunohistochemical study. Lab. Invest. 59(1):52–59.

    PubMed  Google Scholar 

  • Weisburger, E. K. (1989). Chemical carcinogenesis in experimental animals and humans. In: The Patholbiology of Neoplasia. (Sirica, A. E., ed.), Plenum Press, New York, pp. 39–52.

    Chapter  Google Scholar 

  • Wesley, U. V., Albino, A. P., et al. (1999) A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J. Exp. Med. 190(3):311–322.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. W. and Leduc, E. H. (1958) Role of cholangioles in restoration of the liver of the mouse after dietary injury. J. Pathol. Bacteriol. 76:441–449.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J. C., Merlino, G., et al. (1994) Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor a. Proc. Natl. Acad. Sci. USA 91:674–678.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Namkung, M., et al. (1995) Expression of functional cytochrome P4501A1 in human embryonic hepatic tissues during organogenesis. Biochem. Pharmacol. 49:717–726.

    Article  PubMed  CAS  Google Scholar 

  • Yasui, O., Miura, N., et al. (1997) Isolation of oval cells from long-evans cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology 25:329–334.

    PubMed  CAS  Google Scholar 

  • Yavorkovsky, L., Lai, E., et al. (1995) Participation of small intraportal stem cells in the restitutive response of the liver to periportal necrosis induced by allyl alcohol. Hepatology 21(6):1702–1712.

    PubMed  CAS  Google Scholar 

  • Yin, L., Sun, M., et al. (2002) Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats. Hepatology 35(2):315–324.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Q., Que, L. G., et al. (2002) Adenovirus-mediated gene transfer to nonparenchymal cells in normal and injured liver. Am. J. Physiol. Gastrointest. Liver Physiol. 282(3):G565–G572.

    Google Scholar 

  • Zajicek, G., Ariel, L., et al. (1988) The streaming liver III. Littoral cells accompany the streaming hepatocyte for the biliary tree. Liver 8:213–218.

    PubMed  CAS  Google Scholar 

  • Zhang, M. and Thorgeirsson, S. (1994) Modulation of connexins during differentiation of oval cells into hepatocytes. Exp. Cell Res. 213:37–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hixson, D.C. (2004). Animal Models for Assessing the Contribution of Stem Cells to Liver Development. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-411-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-411-5_32

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-367-1

  • Online ISBN: 978-1-59259-411-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics