Skip to main content

Abstract

The “quality” of bone, as well as its quantity, contributes to the biomechanical performance of the skeleton and encompasses aspects of both macromolecular composition and microarchitectural arrangement. Histology is usually at the forefront of analysis at this level, because noninvasive scanning methods lack the resolution and are often costly, and biochemical methods do not provide the topography. This chapter outlines some of the old and new microanatomical methods that our laboratory has found particularly useful when applied to undecalcified bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaron JE, Makins NB, Francis RM, et al: Staining of the calcification front in human bone using contrasting fluorochromes in vitro. J Histochem Cytochem 32: 1251–1261, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Aaron JE, Carter DH: Rapid preparation of fresh-frozen undecalcified bone for histological and histochemical analysis. J Histochem Cytochem 35: 361–369, 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Aaron JE, Makins NB, Sagreiya K: The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop 215: 260–271, 1987.

    PubMed  Google Scholar 

  4. Aaron JE, Francis RM, Peacock M, et al: Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop 243: 294–305, 1989.

    PubMed  Google Scholar 

  5. Aaron JE, de Vernejoul M-C, Kanis JA: The effect of sodium fluoride on trabecular architecture. Bone 12: 307–310, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Aaron JE, de Vernejoul M-C, Kanis JA: Bone hypertrophy and trabecular generation in Paget’s disease and in fluoride-treated osteoporosis. J Bone Miner Res 17: 399–413, 1992.

    Article  CAS  Google Scholar 

  7. Aaron JE, Johnson DR, Kanis JA, et al: An automated method for the analysis of trabecular bone structure. Comput Biomed Res 25: 1–6, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Aaron JE, Shore PA, Shore RC, et al: Trabecular architecture in women and men of similar bone mass with and without fracture: II. Three-dimensional histology. Bone 27: 277–282, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Amling M, Hahn M, Wening VJ, et al: The microarchitecture of the axis as the predisposing factor for fracture of the base of the odontoid process. J Bone Joint Surg [Am] 76: 1840–1846, 1994.

    CAS  Google Scholar 

  10. Atkinson PJ: Variation of trabecular structure of vertebrae with age. Calcif Tissue Res 1: 24–32, 1967.

    Article  PubMed  CAS  Google Scholar 

  11. Birkenhäger-Frenkel DH, Groen JJ, Bédier de Prairie JA, et al: A simple physico-chemical method of assessment of osteoporosis. Voeding 22: 634–639, 1961.

    Google Scholar 

  12. Birkenhager-Frenkel DH, Schmitz PIM, Breuls PNWM, et al: Biological variation as compared to inter-observer variation and intrinsic error of measurement within bone biopsies. In: PJ Meunier, ed: Bone Histomorphometry. Second International Workshop, Société de la Nouvelle Imprimerie Foumié, Toulouse, France, 1977: 63–67.

    Google Scholar 

  13. Carter DH, Barnes JM, Aaron JE: Histomorphometry of fresh-frozen iliac crest bone biopsies. Calcif Tissue Int 44: 387–392, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Carter DH, Sloan P, Aaron JE: Immunolocalization of collagen types I and III, tenascin and fibronectin in intramembraneous bone. J Histochem Cytochem 39: 599–606, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Carter DH, Sloan P, Aaron JE: Trabecular generation de novo. A morphological and immunohistochemical study of primary ossification in the human femoral anlagen. Anat Embryol (Berl) 186: 229–240, 1992.

    Article  CAS  Google Scholar 

  16. Chung HW, Wehrli FW, Williams JL, et al: NMR micro-imaging of trabecular bone. J Bone Miner Res 10: 1452–1461, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Compston JE: Connectivity of cancellous bone: assessment and mechanical implications. Bone 15: 463–466, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. Croucher PI, Garrahan NJ, Compston JE: Assessment of cancellous bone structure: Comparison of strut analysis, trabecular pattern factor and marrow space star volume. J Bone Miner Res 11: 955–961, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. De Hoff RT, Aigeltinger E, Craig K: Experimental determination of the topological properties of 3-D microstructures. J Microsc 95: 69–91, 1972.

    Article  Google Scholar 

  20. De Hoff RT: Quantitative serial sectioning analysis. J Microsc 131: 25–263, 1982.

    Google Scholar 

  21. Dempster DW: The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res 15: 20–23, 2000.

    Article  PubMed  CAS  Google Scholar 

  22. Dequecker J, Remans J, Franssen R, et al: Aging patterns of trabecular and cortical bone and their relationship. Calcif Tissue Int 7: 23–30, 1971.

    Article  Google Scholar 

  23. Dequecker J: Bone Loss in Normal and Pathological Conditions. Leuven University Press, 1972.

    Google Scholar 

  24. Evans RA, Dunstan CR, Hills EE: Extent of resorbing surfaces based on histochemical identification of osteoclasts. Metab Bone Dis 25: 29–34, 1980.

    Google Scholar 

  25. Fazzalari NL, Parkinson LH: Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J Bone Miner Res 12: 632–639, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Feldkamp L, Goldstein S, Parfitt A, et al: The direct examination of 3-D bone architecture in vitro by computed tomography. J Bone Miner Res 1: 3–11, 1989.

    Google Scholar 

  27. Flautre B, Hardouin P: Microradiographic aspect on iliac bone tissue in post-menopausal women with and without vertebral crush fractures. Bone 15: 477–481, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Franklin RM, Martin MT: Staining and histochemistry of undecalcified bone embedded in a water soluble plastic. Stain Technol 55: 313–321, 1980.

    PubMed  CAS  Google Scholar 

  29. Gardsell P, Johnell O, Nielson B: Predicting fractures in women by using forearm densitometry. Calcif Tissue Int 44: 235–242, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Garrahan NJ, Mellish RWE, Compston JE. A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142: 341–349, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Garrahan NJ, Mellish RW, Vedi S, et al: Measurement of mean trabecular plate thickness by a new computerized method. Bone 8: 227–230, 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Geraets WGM, van der Stelt PF, Netelenbos CJ, et al: A new method for automatic recognition of the radiographic trabecular pattern. J Bone Miner Res 5: 227–233, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Goldstein SA: The mechanical properties of bone: dependence on the anatomical location and function. J Biomech 20: 1055–1061, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Goldstein SA, Goulet R, McCubbrey D: Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53: S127 - S133, 1993.

    Article  PubMed  Google Scholar 

  35. Gundersen HJG, Boyce RW, Nyengaard JR, et al: The ConnEulor unbiased estimation of connectivity using physical disectors under projection. Bone 14: 217–222, 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Hahn M, Vogel M, Pompesins-Kempa M, et al: Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 13: 327–330, 1992.

    Article  PubMed  CAS  Google Scholar 

  37. Hipp JA, Janujwicz A, Simmons CA, et al: Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11: 286–292, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Hodgskinson R, Currey JD: The effects of structural variation on the Young’s modulus of nonhuman cancellous bone. Proc Inst Mech Eng 204: 43–52, 1990.

    CAS  Google Scholar 

  39. Hodgskinson R, Currey JD: The effect of variations in structure on the Young’s modulus of cancellous bone: comparison of human and non-human material. Proc Inst Mech Eng 204: 115–121, 1990.

    CAS  Google Scholar 

  40. Hordon LD, Raisi M, Aaron JE, et al: Trabecular architecture in women and men of similar bone mass with and without vertebral fracture. Bone 27: 271–276, 2000.

    Article  PubMed  CAS  Google Scholar 

  41. Kinney JH, Lane NE, Haupt DL: In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10: 264–270, 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Mandelbrot BB: Fractals: Form Chance and Dimension. WH Freeman, San Francisco, CA, 1977.

    Google Scholar 

  43. Mellish RWE, Ferguson-Pell MW, Cochran GVB, et al: A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6: 689–696, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Muller R, Hildebrand T, Hauselmann HJ, et al: In vivo reproducibility of three-dimensional structural properties of non-invasive bone biopsies using 3D-pQCT. J Bone Miner Res 11: 1745–1750, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Naccache NJ, Shinghal R: An investigation into the skeletonization approach of Hilditch. Pattern Recogn 17: 279, 1984.

    Article  Google Scholar 

  46. Odgaard A, Anderson K, Melson F, et al: A direct method for fast three-dimensional serial reconstruction. J Microsc 159: 335–342, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Odgaard A, Gundersen HJG: Quantification of connectivity in cancellous bone with special emphasis on 3-D reconstruction. Bone 14: 173–182, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Parfitt A, Villanueva A, Kleerekoper M, et al: Relationship between surface volume and thickness of iliac crest trabecular bone in aging and in osteoporosis. J Clinical Invest 72: 1396–1409, 1983.

    Article  CAS  Google Scholar 

  49. Parfitt AM, Drezner MK, Glorieux FH, et al: Bone histomorphometry: standardization of nomenclature, symbols and units (Report of the ASBMR Histomorphometry Nomenclature Committee). J Bone Miner Res 2: 595–610, 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Parfitt AM: Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13: 541–547, 1992.

    Google Scholar 

  51. Parfitt, AM: Overview of fracture pathogenesis. Calcif Tissue Int 53: S2, 1993.

    Article  Google Scholar 

  52. Parisien M, Mellish RWE, Silverberg SJ, et al: Maintenance of cancellous bone connectivity in primary hyperparathyroidism: trabecular strut analysis. J Bone Miner Res 7: 913–919, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Ritzel H, Amberg M, Posl M, et al: The thickness of human cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty seven autopsy specimens. J Bone Miner Res 12: 89–95, 1997.

    Article  PubMed  CAS  Google Scholar 

  54. Schnitzler CM, Pettifor JM, Mesquita JM, et al: Histomorphometry of iliac crest in 346 normal black and white South African adults. Bone Miner 10:183–199, 1990.

    Google Scholar 

  55. Shahtaheri SM, Aaron JE, Johnson DR, et al: The impact of mammalian reproduction on cancellous bone architecture. JAnat 194: 407–421, 1999.

    Google Scholar 

  56. Shahtaheri SM, Aaron JE, Johnson DR, et al: Changes in trabecular bone architecture in women during pregnancy. Br J Obstet Gynaecol 106: 432–438, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Shore PA, Shore RC, Aaron JE: A three-dimensional histological method for direct determination of the number of trabecular termini in cancellous bone. Biotechnic Histochem 75: 183–192, 2000.

    Article  CAS  Google Scholar 

  58. Spiers FW, Beddoe AH: “Radial” scanning of trabecular bone: consideration of the probability distribution of path lengths through cavities and trabeculae. Phys Med Biol 22: 670–680, 1977.

    Article  PubMed  CAS  Google Scholar 

  59. Vesterby A, Gundersen H, Melson F: Star volume of bone marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10: 7–13, 1989.

    Article  PubMed  CAS  Google Scholar 

  60. Vesterby A: Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebrae. Bone 11:149–155, 1990.

    Article  PubMed  CAS  Google Scholar 

  61. Vogt JH: Investigations on the bone chemistry of man. I. Ash content of the spongy substance of the iliac crest. Acta Med Scand 135: 221–230, 1949.

    Article  CAS  Google Scholar 

  62. Wakamatsu E, Sissons H: The cancellous bone of the iliac crest. Calcif Tissue Res 4: 147–161, 1969.

    Article  PubMed  CAS  Google Scholar 

  63. Weinstein RS, Majumdar S, Genant HK: Fractal geometry applied to the architecture of cancellous bone biopsy specimens. Bone 13: A38, 1992.

    Article  Google Scholar 

  64. Whitehouse WJ, Dyson E, Jackson C: The scanning electron microscope in studies of trabecular bone from a human vertebral body. JAnat 103: 481–496, 1971.

    Google Scholar 

  65. Whitehouse WJ: The quantitative morphology of anisotropic trabecular bone. J Microsc 101: 153–168, 1974.

    Article  PubMed  CAS  Google Scholar 

  66. Whitehouse WJ: Irregularities and asymmetries in trabecular bone in the inominate and elsewhere. Metab Bone Dis 25: 271–278, 1980.

    Google Scholar 

  67. Yanuka M, Dullien FAL, Elrick DE: Serial sectioning and digitization of porous media for two and three dimensional analysis and reconstruction. J Microsc 135: 159–168, 1984.

    Article  Google Scholar 

  68. http://math.bu.edu/DYSYS/chaosgame/node6.html.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aaron, J.E., Shore, P.A. (2003). Bone Histomorphometry. In: An, Y.H., Martin, K.L. (eds) Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-417-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-417-7_25

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-277-3

  • Online ISBN: 978-1-59259-417-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics