Skip to main content

Methods for Transmission and Scanning Electron Microscopy of Bone and Cartilage

  • Chapter
Handbook of Histology Methods for Bone and Cartilage

Abstract

Ultrastructural studies of bone and cartilage using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) present unique challenges for technical preparation and scientific interpretation. Preparative methods have been described elsewhere; space limitations do not allow us to cite all authors who have contributed to this field. Chemical fixation and specimen preparation for TEM for bone studies have been reviewed by several authors.3,14,15,23 Reviews of preparation methods for SEM have been published by Boyde et al.7,9,10 Specialized techniques directed toward preserving the bone-cell-implant interface are discussed elsewhere in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Hashizume H, Ushiki T: An EDTA-KOH method to expose bone cells for scanning electron microscopy. J Electron Microsc 41: 113 - 115, 1992.

    CAS  Google Scholar 

  2. Akesson K, Grynpas MD, Hancock RGV, et al: Energy-dispersive X-ray microanalysis of the bone mineral content in human trabecular bone: a comparison with ICPES and neutron activation analysis. Calcif Tissue Int 55: 236 - 239, 1994.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson C: Manual for the Examination of Bone. CRC Press, Inc., Boca Raton, FL, 1982: 81 - 92.

    Google Scholar 

  4. Baslé MF, Mauras Y, Audran M, et al: Concentration of bone elements in osteoporosis. J Bone Miner Res 5: 41 - 47, 1990.

    Article  PubMed  Google Scholar 

  5. Boivin G, Morel G, Meunier PJ, et al: Ultrastructural aspects after cryoultramicrotomy of bone tissue and sutural cartilage in neonatal mice calvaria. Biol Cell 49: 227 - 230, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Bonucci E, Silvestrini G: Ultrastructure of the organic matrix of embryonic avian bone after en bloc reaction with various electron-dense “stains.” Acta Anat (Basel) 156: 22 - 33, 1996.

    CAS  Google Scholar 

  7. Boyde A: Methodology of calcified tissue specimen preparation for scanning electron microscopy. In: Dickson GR, ed: Methods of Calcified Tissue Preparation. Elsevier, Amsterdam, The Netherlands, 1984: 251 - 307.

    Google Scholar 

  8. Boyde A, Jones SJ: Back-scattered electron imaging of skeletal tissues. Metabol Bone Dis Rel Res 5: 145 - 150, 1983.

    Article  Google Scholar 

  9. Boyde A, Jones SJ: Scanning electron microscopy of cartilage. In: Hall BK: Cartilage, Vol. 1. Structure, Function, and Biochemistry. Academic Press, New York, NY, 1983: 105 - 148.

    Chapter  Google Scholar 

  10. Boyde A, Maconnachie E, Reid SA, et al: Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scanning Electron Microsc 4: 1537 - 1554, 1986.

    Google Scholar 

  11. Boyde A, Shapiro IM: Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochemistry 69: 85 - 94, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Bromage TG: Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64: 161 - 178, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Clark JM, Rudd E: Cell patterns in the surface of rabbit articular cartilage revealed by the backscatter mode of scanning electron microscopy. J Orthop Res 9: 275 - 283, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Dickson GR: Chemical fixation and the preparation of calcified tissues for transmission electron microscopy. In: Dickson GR, ed: Methods of Calcified Tissue Preparation. Elsevier, Amsterdam, The Netherlands, 1984: 79 - 148.

    Google Scholar 

  15. Doty SB, Schofield BH: Ultrahistochemistry of calcified tissues. In: Dickson GR, ed: Methods of Calcified Tissue Preparation. Elsevier, Amsterdam, the Netherlands, 1984: 149 - 198.

    Google Scholar 

  16. Fuller K, Thong JTL, Breton BC, et al: Automated three-dimensional characterization of osteoclastic resorption lacunae by stereoscopic scanning electron microscopy. J Bone Miner Res 9: 17 - 23, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Hargest TE, Gay CV, Schraer H, et al: Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determined by quantitative electron probe analysis. J Histochem Cytochem 33: 275 - 286, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Hashizume H, Abe K, Ushiki T: Detection of mineral density on the surface of mouse parietal bones: Backscattered electron imaging of low accelerating voltage scanning electron microscopy. Arch Histol Cytol 60: 195 - 204, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Milling HJ, Krefting ER: Cryopreparation for microprobe analysis of calcified tissue. In: Dickson GR, ed: Methods of Calcified Tissue Preparation. Elsevier, Amsterdam, The Netherlands, 1984: 219 - 249.

    Google Scholar 

  20. Hunziker EB, Herrmann W, Schnek RK, et al: Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructureImplications for the theories of mineralization and vascular invasion. J Cell Biol 98: 267 - 276, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Hunziker EB, Ludi A, Herrmann W: Preservation of cartilage matrix proteoglycans using cationic dyes chemically related to ruthenium hexaammine trichloride. J Histochem Cytochem 40: 909 - 917, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Hunziker EB, Michel M, Studer D: Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc Res Technol 37: 271 - 284, 1997.

    Article  CAS  Google Scholar 

  23. Hunziker EB, Schenk RK: Cryomethods for transmission electron microscopy of calcifying cartilage. In: Dickson GR, ed: Methods of Calcified Tissue Preparation. Elsevier, Amsterdam, The Netherlands, 1984: 199 - 218.

    Google Scholar 

  24. Jones SJ, Boyde A, Ali NN, et al: Variation in the sizes of resorption lacunae made in vitro. Scanning Electron Microsc 4: 1571 - 1580, 1986.

    Google Scholar 

  25. Landis WJ: Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage. Scanning Electron Microsc 2: 555 - 570, 1979.

    Google Scholar 

  26. Landis WJ, Paine MC, Glimcher MJ: Use of acrolein vapors for the anhydrous preparation of bone tissue for electron microscopy. J Ultrastruct Res 70: 171 - 180, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Leng CG, Yu Y, Ueda H, et al: The ultrastructure of anionic sites in rat articular cartilage as revealed by different preparation methods and polyethyleneimine staining. Histochem J 30: 253 - 261, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Marks SC Jr, Cielinski MJ, Sundquist KT: Bone surface morphology reflects local skeletal metabolism. Microsc Res Technol 33: 121 - 127, 1996.

    Article  CAS  Google Scholar 

  29. Notzli H, Clark J: Deformation of loaded articular cartilage prepared for scanning electron microscopy with rapid freezing and freeze-substitution fixation. J Orthop Res 15: 76 - 86, 1997.

    Article  PubMed  CAS  Google Scholar 

  30. Nuehring LP, Steffens WL, Rowland GN: Comparison of the ruthenium hexammine trichloride method to other methods of chemical fixation for preservation of avian physeal cartilage. Histochem J 23: 201 - 214, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Obrant KJ, Odselius R: Electron microprobe analysis and histochemical examination of the calcium distribution in human bone trabeculae: a methodological study using biopsy specimens from post-traumatic osteopenia. Ultrastruct Pathol 7: 123 - 131, 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Ozawa HYT: An application of energy-dispersive X-ray microanalysis for the study of biological calcification. J Histochem Cytochem 31: 210 - 213, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Reid SA: Micromorphological characterization of normal human bone surfaces as a function of age. Scanning Microsc 1: 579 - 597, 1987.

    PubMed  CAS  Google Scholar 

  34. Reid SA, Boyde A: Changes in the mineral density distribution in human bone with age: Image analysis using backscattered electrons in the SEM. J Bone Miner Res 2: 13 - 22, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Richards RG, Kääb MJ: Microwave-enhanced fixation of rabbit articular cartilage. J Microsc 181: 269 - 276, 1995.

    Article  Google Scholar 

  36. Sauren YMHF, Mieremet RHP, Groot CG, et al: An electron microscopical study on the presence of proteoglycans in the calcified bone matrix by use of cuprolinic blue. Bone 10: 287 - 294, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Segawa K, Takiguchi R: A method for high-resolution scanning electron microscopy of organic cartilaginous components. J Electron Microsc Techn 18: 203 - 204, 1991.

    Article  CAS  Google Scholar 

  38. Shepard N, Mitchell N: Improved chondrocyte morphology and glycogen retention in the secondary center of ossification following osmium-potassium ferrocyanide fixation. J Electron Microsc Techn 11: 83 - 89, 1989.

    Article  CAS  Google Scholar 

  39. Tomlin JL, Lawes TJ, Blunn GW, et al: Fractographic examination of racing greyhound central (navicular) tarsal bone failure surfaces using scanning electron microscopy. Calcif Tissue Res 67: 260 - 266, 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruber, H.E., Wiggins, W.W. (2003). Methods for Transmission and Scanning Electron Microscopy of Bone and Cartilage. In: An, Y.H., Martin, K.L. (eds) Handbook of Histology Methods for Bone and Cartilage. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-417-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-417-7_34

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-277-3

  • Online ISBN: 978-1-59259-417-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics