Skip to main content

Study of Brain Noradrenergic Neurons by Use of In Vivo Voltammetry

  • Chapter
Voltammetry in the Neurosciences

Part of the book series: Contemporary Neurosciences ((CNEURO))

Abstract

Since the introduction of in vivo electrochemistry in the study of brain neurochemistry, most applicatons have been made within the nigrostriatal dopamine (DA) system. There are many reasons investigators have been so attracted by this brain region: The striatum contains the highest density of DA-containing neuronal terminals of all the brain. This region is also the largest catecholamine (CA) area of the brain with an almost exclusive dopaminergic innervation. It is easily accessible to investigation with carbon electrodes. Finally, many biochemical data are available concerning the metabolism of DA within this area. From the early in vivo electrochemical studies it was learned that the in vivo study of catechol metabolism in the brain is a relatively difficult task, requiring selective and sensitive methods of detection. As a result, we, like other investigators, have attempted to develop an electrochemical method allowing for selective in vivo monitoring of DA metabolism in the striatum (Gonon et al., 1980). This method enables us to study various features of DA metabolism in the striatum (Gonon et al., 1981b, 1984a; Gonon and Buda, 1985; Gonon, this volume), as well as in other dopaminergic regions (Buda et al., 1981). The use of carbon fiber microelectrodes, because of their size and sensitivity, allow for investigation of other catecholaminergic regions, such as those innervated by noradrenaline (NA)-containing neuronal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R. N. and Marsden, C. A. (1982) Electrochemical Detection Methods for Monoamine Measurements In Vitro aid In Vivo, In Handbook in Psychopharmacology, vol. 15, (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.

    Google Scholar 

  • Aghajanian, G. K. and Cedarbaum, J. M. (1979) Central Noradrenergic Neurons: Interaction of Autoregulatory Mechanisms With Extrinsic Influences in Catecholamines: Basic and Clinical Frontiers vol. 1, (E. Usdin, I. J. Kopin, and J. Barchas, eds.), Pergamon, New York.

    Google Scholar 

  • Aghajanian, G. K. and Rogawski, M. A. (1983) The physiological role of alpha-adrenoceptors in the CNS: New concepts from single-cell studies. Trends Pharmacol. Sci. 6, 315–317.

    Article  Google Scholar 

  • Aghajanian, G. K., Cedarbaum, J. M., and Wang, R. Y. (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res. 136, 570–577.

    Article  PubMed  CAS  Google Scholar 

  • Amaral, D. G. and Sinnamon, H. M. (1977) The locus coeruleus: Neurobiology of a central noradrenergic nucleus. Prog. Neurobiol. 9, 147–196.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D. M., Ross, C. A., Pickel, V. M., Joh, T. H., and Reis, D. J. (1982) Distribution of dopamine-, noradrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: Demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J. Comp. Neurol. 212, 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones, G. and Bloom, F. E. (1981a) Activity of norepinephrinecontaining locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886.

    PubMed  CAS  Google Scholar 

  • Aston-Jones, G. and Bloom, F. E. (1981b) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1, 887–900.

    PubMed  CAS  Google Scholar 

  • Berod, A., Hartman, B. K., Keller, A., Joh, T. H., and Pujol, J. F. (1982) A new double labelling technique using tyrosine hydroxylase and dopamine-ß-hydroxylase immunochemistry: Evidence for dopaminergic cells lying in the pons of the beef brain. Brain Res. 240, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., Battenberg, E., Rossier, J., Ling, N., and Guillemin, R. (1978) Neurons containing 13-endorphin in rat brain exist separately from those containing enkephalin: Immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75, 1591–1595.

    Article  PubMed  CAS  Google Scholar 

  • Brownstein, M., Saavedra, J. M., and Palkovits, M. (1974) Norepinephrine and dopamine in the limbic system of the rat. Brain Res. 79, 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Buda, M., Gonon, F., Cespuglio, R., Jouvet, M., and Pujol, J. F. (1981) In vivo electrochemical detection of catechols in several dopaminergic brain regions of anesthetized rats. Eur. J. Pharmacol. 73, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Buda, M., De Simoni, M. G., Gonon, F., and Pujol, J. F. (1983) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. I. Nature and origin of contribuors to the oxidation current at +0.1 V. Brain Res. 273, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum, J. M., and Aghajanian, G. K. (1977) Catecholamine receptors on locus coeruleus neurons: Pharmacological characterization. Eur. J. Pharmacol. 44, 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum, J. M. and Aghajanian, G. K. (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J. Comp. Neurol. 178, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Cespuglio, R., Faradji, H., Hahn, Z., and Jouvet, M. (1984) Voltammetric Detection of Brain 5-Hydroxyindolamines by Means of Electrochemically Treated Carbon Fiber Electrodes: Chronic Recordings for Up to One Month With Movable Cerebral Electrodes in the Sleeping or Waking Rat, in Measurements of Neurotransmitter Release in Vivo IBRO Handbook series. Methods in Neurosciences, vol. 6, (C. A. Marsden, ed.), John Wiley, Chichester.

    Google Scholar 

  • Cheney, D. L., Le Fevre, H. F., and Racagni, G. (1975) Choline acetyltransferase activity and mass fragmentographic measurement of acetylcholine in specific nuclei and tracts of the rat brain. Neuropharmacology 14, 801–809.

    Article  PubMed  CAS  Google Scholar 

  • Conti, J., Strope, E., Adams, R. N., and Marsden, C. A. (1978) Voltammetry in brain tissue: Chronic recording of stimulated dopamine and 5-hydroxytryptamine release. Life Sci. 23, 2705–2716.

    Article  PubMed  CAS  Google Scholar 

  • Curet, O., Dennis, T., and Scatton, B. (1985) The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity. Brain Res 335, 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström, A., and Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones. Acta Physiol. Scand. 62 (suppl. 232), 1–55.

    Google Scholar 

  • Dayton, M. A., Brown, J. C., Stutts, K. H., and Wightman, R. M. (1980) Faradaic electrochemistry at microvoltammetric electrodes. Anal. Chem. 52, 946–950.

    Article  CAS  Google Scholar 

  • De Simoni, M. G., Gonon, F., Buda, M., and Pujol, J. F. (1983) Cholinergic control of catechol metabolism in the rat locus coeruleus as studied by in vivo voltammetry. Eur. J. Pharmacol. 95, 65–70.

    Article  PubMed  Google Scholar 

  • Dinan, T. G. and Aston-Jones, G. (1984) Acute haloperiodol increases impulse activity of brain noradrenergic neurons. Brain Res. 307, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Engberg, G. and Svensson, T. H. (1980) Pharmacological analysis of a cholinergic receptor mediated regulation of brain norepinephrine neurons. J. Neural. Transm. 49, 137–150.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, M. I. K., Herman, J. P., Kanyicska, B., and Palkovits, M. (1979) Dopamine noradrenaline and 3,4-dihydroxyphenylacetic acid (DOPAC) levels of individual brain nuclei. Effects of haloperiodol and pargyline. J. Neural. Transm. 45, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., Aston-Jones, G., and Bloom, F. E. (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci USA 77, 3033–3037.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., Bloom, F. E., and Aston-Jones, G. (1983) Nucleus locus coeruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844–914.

    PubMed  CAS  Google Scholar 

  • Gonon, F., and Buda, M. J. (1985) Regulation of dopamine release by impulse flow and by autoreceptors as studied by in vivo voltammetry in the rat striatum. Neuroscience 14, 765–774.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Buda, M., Cespuglio, R., Jouvet, M., and Pujol, F. J. (1980) In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: Dopamine or DOPAC? Nature 286, 902–904.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Fombarlet, C., Buda, M., and Pujol, J. F. (1981a) Improvement of pyrolytic carbon fiber electrodes by electrochemical treatments. Anal. Chem. 53, 1386–1389.

    Article  CAS  Google Scholar 

  • Gonon, F., Buda, M., Cespuglio, R., Jouvet, M., and Pujol, J. F. (1981b) Voltammetry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid. Brain Res. 223 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Buda, M., De Simoni, G., and Pujol, J. F. (1983a) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. II. Pharmacological and behavioral study. Brain Res. 273, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Cespuglio, R., Buda, M., and Pujol, J. F. (1983b) In Vivo Electrochemical Detection of Monoamine Derivatives, in Methods in Biogenic Amine Research, ( S. Parvez, T. Nagatsu, J. Nagatsu, and H. Parvez, eds.), Elsevier, North-Holland.

    Google Scholar 

  • Gonon, F., Navarre, F., and Buda, M. (1984a) In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Anal. Chem. 56, 573–575.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F., Buda, M., and Pujol, J. F. (1984b) Treated Carbon Fibre Electrodes For Measuring Catechols and Ascorbic Acid Treated Carbon Fibre Electrodes, in Measurements of Neurotransmitter Release IBRO Handbook series Methods in Neurosciences vol. 6, ( C. A. Marsden, ed.), John Wiley, Chichester.

    Google Scholar 

  • Groves, P. M. and Wilson, C. J. (1980) Monoaminergic presynaptic axons and dendrites in rat locus coeruleus seen in reconstructions of serial sections. J. Comp. Neurology 193, 853–862.

    Article  CAS  Google Scholar 

  • Grzanna, R. and Molliver, M. E. (1980) The locus coeruleus in the rat: An immunohistochemical delineation. Neuroscience 5, 21–40.

    Article  PubMed  CAS  Google Scholar 

  • Guyenet, P. G. and Aghajanian, G. K. (1979) Ach substance P and metenk ephalin in the locus coeruleus: Pharmacological evidence for independent sites of action. Eur. J. Pharmacol. 53, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt, T. K., Fuxe, K., Goldstein, M., and Johansson, O. (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 166–307.

    Article  Google Scholar 

  • Jouvet, M. (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 64, 166–307.

    CAS  Google Scholar 

  • Kalia, M., Fuxe, K., and Goldstein, M. (1985) Rat medulla oblongata II. Dopaminergic, noradrenergic and adrenergic neurons, nerve fibers and presumptive terminal processes. J. Comp. Neurol. 233, 308–332.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, R. M., Palkovits, M., Kopin, I. J., and Jacobowitz, D. M. (1974) Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res. 77, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Kovach, P. M., Ewing, A. G., Wilson, R. L., and Wightman, R. M. (1984) In vitro comparison of the selectivity of electrodes for in vivo electrochemistry. J. Neurosci. Meth. 10, 215–227.

    Article  CAS  Google Scholar 

  • Lane, R. F., Hubbard, A. T., Fukunaga, K., and Blanchard, R. J. (1976) Brain catecholamines: Detection in vivo by means of differential pulse voltammetry at surface-modified platinum electrodes. Brain Res. 114, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall, O. and Björklund, A. (1978) Organization of Catecholamine Neurons in the Rat Central Nervous System, in Handbook of Psychopharmacology, vol. 9, (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum, New York.

    Google Scholar 

  • Ljungdahl, A., Hökfelt, T., and Nilsson, G. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3, 861–943.

    Article  PubMed  CAS  Google Scholar 

  • Louilot, A., Buda, M., Gonon, F., Simon, H., Le Moal, M., and Pujol, J. F. (1985) Effect of haloperidol and sulpiride on dopamine metabolism in nucleus accumbens and olfactory tubercule: A study by in vivo voltammetry. Neuroscience 14, 775–782.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C. A., Brazell, M. P., and Maidment, N. T. (1984) An Introduction to In Vivo Electrochemistry, in Measurement of Neurotransmitter Release In Vivo IBRO Handbook series Methods in Neurosciences, vol. 16, (C. A. Marsden, ed.), John Wiley, Chichester.

    Google Scholar 

  • Marwaha, J. and Aghajanian, G. K. (1982) Relative potencies of alpha-1 and alpha-2 antagonists in the locus coeruleus, dorsal raphe and dorsal lateral geniculate nuclei: An electrophysiological study. J. Pharmacol. Exp. Ter. 222, 287–293.

    CAS  Google Scholar 

  • Mermet, C. and Gonon, F. (1986) In vivo voltammetric monitoring of noradrenaline release and catecholamine metabolism in the hypothalamic paraventricular nucleus. Neuroscience,in press.

    Google Scholar 

  • Milon, H. and McRae-Degueurce, A. (1982) Pharmacological investigation on the role of dopamine in the rat locus coeruleus. Neurosci. Let. 30, 297–301.

    Article  CAS  Google Scholar 

  • Moore, R. Y. and Bloom, F. E. (1979) Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci. 2, 113–168.

    Article  PubMed  CAS  Google Scholar 

  • Pickel, V. M., Joh, T. M., Reiss, D. J., Leeman, S. E., and Miller, R. J. (1979) Electron microscopic localization of substance P and enkephalin in axon terminals related to dendrites of catecholaminergic neurons. Brain Res. 160, 387–400.

    Article  PubMed  CAS  Google Scholar 

  • Ponchon, J. L., Cespuglio, R., Gonon, F., Jouvet, M., and Pujol, J. F. (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  • Quintin, L., Buda, M., Hilaire, G., Bardelay, C., Ghignone, M., and Pujol, J. F. (1986a) Catecholamine metabolism in the rat locus coeruleus as studied by in vivo differential pulse voltammetry. III: Evidence for the existence of an alpha-2-adrenergic tonic inhibition in behaving rats. Brain Res.,in press.

    Google Scholar 

  • Quintin, L., Hilaire, G., and Pujol, J. F. (1986b) Variations in DOPAC concentration are correlated to single cell firing changes in the rat locus coeruleus. Neuroscience,in press.

    Google Scholar 

  • Quintin, L., Gonon, F., Buda, M., Ghignone, M., Hilaire, G., and Pujol, J. F. (1986c) Clonidine modulates locus coeruleus metabolic hyperactivity induced by stress in behaving rats. Brain Res. 362, 366–369.

    Article  PubMed  CAS  Google Scholar 

  • Ross, M. E., Park, D. H., Teitelman, G., Pickel, V. M., Reis, D.J., and Joh, T. H. (1983) Immunohistochemical localization of choline acetyltransferase using a monoclonal antibody: A radioautographic method. Neuroscience 10, 907–922.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, A., Birdsall, J. M., Field, P. M., and Raisman, G. (1979) Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of 3H-propylbenzilylcholine mustard in the midbrain and hindbrain. Brain Res. 1, 167–183.

    Article  CAS  Google Scholar 

  • Salzman, P. M. and Roth, R. H. (1980a) Poststimulation catecholamine synthesis and tyrosine hydroxylase activation in central noradrenergic neurons. I. In vivo stimulation of the locus coeruleus. J. Pharmacol. Exp. Ther. 212, 64–73.

    Google Scholar 

  • Salzman, P. M. and Roth, R. H. (1980b) Post-stimulation catecholamine synthesis and tyrosine hydroxylase activation in central noradrenergic neurons. II. Depolarized hippocampal slices. J. Pharmacol. Exp. Ther. 212, 74–84.

    PubMed  CAS  Google Scholar 

  • Sawchenko, P. E. and Swanson, L. W. (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Rev 4, 275–325.

    Article  Google Scholar 

  • Scatton, B., Dennis, T., and Curet, O. (1984) Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways. Brain Res. 298, 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Hökfelt, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L. (1979) Ibotenic acid-induced neuronal degeneration: A morphological and neurochemical study. Exp. Brain Res 37, 199–216.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H., Le Moal, M., Stinus, L., and Calas, A. (1979) Anatomical relationships between the ventral mesencephalic tegmentum A 10 region and the locus coeruleus as demonstrated by anterograde and retrograde tracing techniques. J. Neur. Transco. 44, 77–86.

    Article  CAS  Google Scholar 

  • Suaud-Chagny, M. F., Steinberg, R., Mermet, C., and Gonon, F. (1986) In vivo voltammetric monitoring of catecholamine metabolism in Al and A2 areas of the rat medulla oblongata. J. Neurochem.,in press.

    Google Scholar 

  • Svensson, T. H., and Usdin, T. (1978) Feedback inhibition of brain noradrenaline neurons by tricyclic antidepressants: Alpha-receptor mediation. Science 202, 1089–1091.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W. (1976) The locus coeruleus: A cytoarchitectonic, golgi and immunohistochemical study in the albino rat. Brain Res. 110, 39–56.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W. and Hartman, B. K. (1976) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-(3hydroxylase as a marker. J. Comp. Neurol. 163, 467–506.

    Article  Google Scholar 

  • Versteeg, D. M. G., Van Der Gugten, J., De Jong, W., and Palkovits, M. (1976) Regional concentrations of noradrenaline and dopamine in rat brain. Brain Res. 113, 563–574.

    Article  PubMed  CAS  Google Scholar 

  • Young III, W. S. and Kuhar, M. G. (1980) Noradrenergic alpha-1 and alpha-2 receptors: Light microscopic autoradiographie localization. Proc. Natl. Acad. Sci. USA 77, 1696–1700.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buda, M., Gonon, F.G. (1987). Study of Brain Noradrenergic Neurons by Use of In Vivo Voltammetry. In: Justice, J.B. (eds) Voltammetry in the Neurosciences. Contemporary Neurosciences. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-463-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-463-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6951-7

  • Online ISBN: 978-1-59259-463-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics