Skip to main content

Development of Nonviral DNA Delivery Systems

  • Chapter
Cellular Drug Delivery

Abstract

DNA delivery holds great therapeutic potential, but several barriers have frustrated many creative approaches over the last decade. The presence of an established antiviral immunity in many patients and the rapid induction of an adaptive immune response in naïve patients continues to block many attempts to introduce DNA by viral vectors. Nonviral delivery strategies avoid the problems of viral-coat proteins, but encountered new challenges of low and transient expression related to physiological and innate immune barriers. Naked DNA must overcome serum nucleases, conserved immune receptors, nonspecific clearance, cellular membrane barriers, endosomal degradation, and intracellular trafficking to ensure optimal localization and expression (Fig. 1). This chapter reviews the obstacles to nonviral DNA delivery and highlights current formulation strategies designed to ensure efficient localization and expression of therapeutic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahato RI,Kawabata K, Takakura Y,and Hashida M. In vivo disposition characteristics of plasmid DNA complexed With cationic liposomes. J Drug Targeting 1995b; 3: 149–157

    Google Scholar 

  2. Borchard, G. Chitosans for gene delivery. Adv Drug Deliv Rev 2001; 52: 145–150.

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Zhang PC, Lu HF, et al. New polyphosphoramidate with a spermidine side chain as a gene carrier. J Control Release 2002; 83: 157–168.

    Article  PubMed  CAS  Google Scholar 

  4. Yi SW, Yune TY, Kim TW, et al. A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm Res 2000; 17: 314–320.

    Article  PubMed  CAS  Google Scholar 

  5. Sternberg B, Sorgi F, Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett 1994; 356: 361–366.

    Article  PubMed  CAS  Google Scholar 

  6. Barthel F, Remy JS, Loeffler JP, Behr JP. Gene transfer optimization with liposperminecoated DNA. DNA Cell Biol 1993; 12: 553–560.

    Article  PubMed  CAS  Google Scholar 

  7. Blessing T, Remy JS, Behr JP. Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc Natl Acad Sci USA 1998; 95: 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  8. Boukhnikachvili T, Aguerre-Chariol, O, Airiau M, et al. Structure of in-serum transfecting DNA-cationic lipid complexes. FEBS Lett 1997; 409: 188–194.

    Article  PubMed  CAS  Google Scholar 

  9. Pitard B, Oudrhiri N, Vigneron JP, et al. Structural characteristics of supramolecular assemblies formed by guanidinium-cholesterol reagents for gene transfection. Proc Natl Acad Sci USA 1999; 96: 2621–2626.

    Article  PubMed  CAS  Google Scholar 

  10. Zou SM, Erbacher P, Remy JS, Behr JP. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2000; 2: 128–134.

    Article  PubMed  CAS  Google Scholar 

  11. Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science 1999; 286: 120–123.

    Article  PubMed  CAS  Google Scholar 

  12. Mahat RI, Monera OD, Smith LC, Rolland A. Peptide-based gene delivery. Curr Opin Mol Ther 1999; 1: 226–243.

    PubMed  CAS  Google Scholar 

  13. Murphy EA, Waring AJ, Murphy JC, Willson RC, Longmuir KJ. Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid. Nucleic Acids Res 2001; 29: 3694–3704.

    Article  PubMed  CAS  Google Scholar 

  14. Sorgi FL, Bhattacharya S, Huang L. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther 1997; 4: 961–968.

    Article  PubMed  CAS  Google Scholar 

  15. Lasic D and Martin F. Stealth Liposomes. Boca Raton, FL, CRC Press, Inc., 1995.

    Google Scholar 

  16. Litzinger DC, Brown JM, Wala I, et al. Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochim Biophys Acta 1996; 1281: 139–149.

    Article  PubMed  Google Scholar 

  17. Schiffelers RM, Bakker-Woudenberg IA, Snijders SV, Storm G. Localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue: influence of liposome characteristics. Biochim Biophys Acta 1999; 1421: 329–339.

    Article  PubMed  CAS  Google Scholar 

  18. Mahato RI, Kawabata K, Nomura T, et al. Physicochemical and pharmacokinetic characteristics of plasmid DNA cationic liposome complexes. J Pharm Sci 1995a; 84: 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  19. Bragonzi A, Dina G, Villa A, et al. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther 2000; 7: 1753–1760.

    Article  PubMed  CAS  Google Scholar 

  20. Thierry AR, Lunardi-Isakandar Y, Bryant JL, et al. Systemic gene therapy: Biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA 1995; 92: 9742–9746.

    Article  PubMed  CAS  Google Scholar 

  21. Woodle MC, Martin Fi, Yau-Young A, Redemann CT. Liposomes with enhanced circulation time. US5013556, 2000.

    Google Scholar 

  22. Lichtenbeld HC, Yuan F, Michel CC, Jain RK. Perfusion of single tumor microvessels: application to vascular permeability measurement. Microcirculation 1996; 3: 349–357.

    Article  PubMed  CAS  Google Scholar 

  23. Hofland HE, Masson C, Iginla S, et al. Folate-targeted gene transfer in vivo. Mol Ther. 2002; 5: 739–744.

    Article  PubMed  CAS  Google Scholar 

  24. Ogris M, Wagner E. Targeting tumors with non-viral gene delivery systems. Drug Discov Today 2002; 7: 479–485.

    Article  PubMed  CAS  Google Scholar 

  25. Song LY, Ahkong QF, Rong Q, et al. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta 2002; 1558: 1–13.

    Article  PubMed  CAS  Google Scholar 

  26. Wightman L, Patzelt E, Wagner E, Kircheis R. Development of transferrin-polycation/DNA based vectors for gene delivery to melanoma cells. J Drug Target 1999; 7: 293–303.

    Article  PubMed  CAS  Google Scholar 

  27. Chadwick SL, Kingston HD, Stern M, et al. Safety of a single aerosol administration of escalating doses of the cationic lipid GL-67/DOPE/DMPE-PEG5000 formulation to the lungs of normal volunteers [published erratum appears in Gene Ther 1998 Apr;5(4):569]. Gene Ther 1997; 4: 937–942.

    Article  PubMed  CAS  Google Scholar 

  28. Driskell RA, Engelhardt JF. Current status of gene therapy for inherited lung diseases. Annu Rev Physiol 2003; 65: 585–612.

    Article  PubMed  CAS  Google Scholar 

  29. Rose AC, Goddard CA, Colledge WH, et al. Optimisation of real-time quantitative RT-PCR for the evaluation of non-viral mediated gene transfer to the airways. Gene Ther 2002; 9: 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  30. Kan O, Kingsman S, Naylor S. Cytochrome P450-based cancer gene therapy: current status. Expert Opin Biol Ther 2002; 2: 857–868.

    Article  PubMed  CAS  Google Scholar 

  31. Tamura T, Sakata T. Application of in vivo electroporation to cancer gene therapy. Curr Gene Ther 2003; 3: 59–66.

    Article  PubMed  CAS  Google Scholar 

  32. Xu L, Pirollo KF, Chang EH. Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release 2001; 74: 115–128.

    Article  PubMed  CAS  Google Scholar 

  33. Stopeck AT, Jones A, Hersh EM, et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res 2001; 7: 2285–2291.

    PubMed  CAS  Google Scholar 

  34. Tenenbaum L, Chtarto A, Lehtonen E, et al. Neuroprotective gene therapy for Parkinson’s disease. Curr Gene Ther 2002; 2: 451–483.

    Article  PubMed  CAS  Google Scholar 

  35. Leone P, Janson CG, Bilianuk L, et al. Aspartoacylace gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 2000; 48: 27–38.

    Article  PubMed  CAS  Google Scholar 

  36. Pradat PF, Kennel P, Naimi-Sadaoui S, et al. Viral and non-viral gene therapy partially prevents experimental cisplatin-induced neuropathy. Gene Ther 2002; 9: 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  37. Robertson JS, Cichutek K. European Union guidance on the quality, safety and efficacy of DNA vaccines and regulatory requirements. Dev Biol (Basel) 2000; 104: 53–56.

    CAS  Google Scholar 

  38. Comerota AJ, Throm RC, Miller KA, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002; 35: 930–936.

    Article  PubMed  Google Scholar 

  39. Schumacher B, Hannekum A, Pecher P. [Neoangiogenesis by local gene therapy: a new therapeutic concept in the treatment of coronary disease]. Z Kardiol 2000; 89 (Suppl 7): 23–30.

    PubMed  Google Scholar 

  40. Rutanen J, Markkanen J, Yla-Herttuala S. Gene therapy for restenosis: current status. Drugs 2002; 62: 1575–158.

    Article  PubMed  CAS  Google Scholar 

  41. Uyechi LS, Gagne L, Thurston G, Szoka FC Jr. Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther 2001; 8: 828–836.

    Article  PubMed  CAS  Google Scholar 

  42. Zabner J, Fasbender AJ, Moninger T, et al. Cellular and Molecular Barriers to Gene Transfer by a Cationic lipid. J Biol Chem 1995; 270: 18997–19007.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou X, Huang L. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1994; 1189: 195–203.

    Article  PubMed  CAS  Google Scholar 

  44. Feigner PL, Ringold GM. Cationic liposome-mediated transfection. Nature 1989; 337: 387–388.

    Article  Google Scholar 

  45. Legendre J-Y, Szoka F. Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc Natl Acad Sci USA 1993; 90: 893–897.

    Article  PubMed  CAS  Google Scholar 

  46. Lechardeur D, Lukacs GL. Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2002; 2: 183–194.

    Article  PubMed  CAS  Google Scholar 

  47. Legendre J-Y, Szoka FC. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res 1992; 9: 1235–1242.

    Article  PubMed  CAS  Google Scholar 

  48. Reddy JA, Abburi C, Hofland H, et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 2002; 9: 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  49. Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001; 8: 28–40.

    Article  PubMed  CAS  Google Scholar 

  50. Wolschek MF, Thallinger C, Kursa M, et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology 2002; 36: 1106–1114.

    Article  PubMed  CAS  Google Scholar 

  51. Aoki Y, Hosaka S, Kawa S, Kiyosawa K. Potential tumor-targeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif. Cancer Gene Ther 2001; 8: 783–787.

    Article  PubMed  CAS  Google Scholar 

  52. Ferkol T, Perales JC, Eckman E, et al. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J Clin Invest 1995; 95: 493–502.

    Article  PubMed  CAS  Google Scholar 

  53. Balyasnikova IV, Yeomans DC, McDonald TB, Danilov SM. Antibody-mediated lung endothelium targeting: in vivo model on primates. Gene Ther 2002; 9: 282–290.

    Article  PubMed  CAS  Google Scholar 

  54. Hashida M, Nishikawa M, Yamashita F, Takakura Y. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev 2001; 52: 187–196.

    Article  PubMed  CAS  Google Scholar 

  55. Wu J, Nantz MH, Zern MA. Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci 2002; 7: d717 - d725.

    Article  PubMed  CAS  Google Scholar 

  56. Stankovics J, Crane A M, Andrews E, et al. Overexpression of human methylmalonyl CoA mutase in mice after in vivo gene transfer with asialoglycoprotein/polylysine/DNA complexes. Human Gene Ther 1994; 5: 1095–1104.

    Article  CAS  Google Scholar 

  57. Harding JA, Engbers CM, Newman MS, et al. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)- grafted immunoliposomes. Biochim Biophys Acta 1997; 1327: 181–192.

    Article  PubMed  CAS  Google Scholar 

  58. Tagawa T, Manvell M, Brown N, et al. Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide mu and plasmid DNA. Gene Ther 2002; 9: 564–576.

    Article  PubMed  CAS  Google Scholar 

  59. Harashima H, Shinohara Y, Kiwada H. Intracellular control of gene trafficking using liposomes as drug carriers. Eur J Pharm Sci 2001; 13: 85–89.

    Article  PubMed  CAS  Google Scholar 

  60. de Lima MC, Simoes S, Pires P. Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 1999; 16: 103–109.

    Google Scholar 

  61. Pereira FB, Goni FM, Nieva JL. Liposome destabilization induced by the HIV-1 fusion peptide effect of a single amino acid substitution. FEBS Lett 1995; 362: 243–246.

    Article  PubMed  CAS  Google Scholar 

  62. Saravolac EG, Ludkovski O, Skirrow R, et al. Encapsulation of plasmid DNA in stabilized plasmid-lipid particles composed of different cationic lipid concentration for optimal transfection activity. J Drug Target 2000; 7: 423–437.

    Article  PubMed  CAS  Google Scholar 

  63. Zhou X, Klibanov A, Huang L. Improved encapsulation of DNA in pH-sensitive liposomes for transfection. J Liposome Res 1992; 2: 125–139.

    Article  Google Scholar 

  64. Kaneda Y, Iwai K, Uchida T. Introduction and expression of the human insulin gene in adult rat liver. J Biol Chem 1989; 264: 12126–12129.

    PubMed  CAS  Google Scholar 

  65. Kato K, Dohi Y, Yoneda Y, et al. Use of the hemagglutinating virus of Japan (HVJ)-liposome method for analysis of infiltrating lymphocytes induced by hepatitis B virus gene expression in liver tissue. Biochim Biophys Acta 1993; 1182: 283–290.

    Article  PubMed  CAS  Google Scholar 

  66. Sawa Y, Suzuki K, Bai HZ, et al. Efficiency of in vivo gene transfection into transplanted rat heart by coronary infusion of HVJ liposome. Circulation 1995; 92: 479–482.

    Article  CAS  Google Scholar 

  67. Tomita N, Higaki J, Kaneda Y, et al. Hypertensive rats produced by in vivo introduction of the human renin gene. Circ Res 1993; 73: 898–905.

    Article  PubMed  CAS  Google Scholar 

  68. Tornita N, Higaki J, Morishita R, et al. Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Commun 1992; 186: 129–134.

    Article  Google Scholar 

  69. Morishita R, Gibbons GH, Kaneda Y, et al. Novel in vitro gene transfer method for study of local modulators in vascular smooth muscle cells. Hypertension 1993; 21: 894–899.

    Article  PubMed  CAS  Google Scholar 

  70. Hung MC, Hortobagyi GN, Ueno NT. Development of clinical trial of E1A gene therapy targeting HER-2/neu-overexpressing breast and ovarian cancer. Adv Exp Med Biol 2000; 465: 171–180.

    Article  PubMed  CAS  Google Scholar 

  71. Kaneda Y, Uchida T, Kim J, et al. The improved efficient method for introducing macromolecules into cells using HVJ (Sendai virus) liposomes with gangliosides. Exp Cell Res 1987; 173: 56–69.

    Article  PubMed  CAS  Google Scholar 

  72. Farhood H, Serbina N, Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Bba-Biomembranes 1995; 1235: 289–295.

    Article  PubMed  Google Scholar 

  73. Litzinger DC, Huang L. Phosphatidylethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim Biophys Acta 1992; 1113: 201–227.

    Article  PubMed  CAS  Google Scholar 

  74. Remy J-S, Sirlin C, Vierling P, Behr JP. Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjugate Chem 1994;5:647–654,.

    Google Scholar 

  75. Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  76. Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996; 35: 5616–5623.

    Article  PubMed  CAS  Google Scholar 

  77. Chan CK, Jans DA. Using nuclear targeting signals to enhance non-viral gene transfer. Immunol Cell Biol 2002; 80: 119–130.

    Article  PubMed  CAS  Google Scholar 

  78. Johnson-Saliba M, Jans DA. Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets 2001; 2: 371–399.

    Article  PubMed  CAS  Google Scholar 

  79. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980; 22: 479–488.

    Article  PubMed  CAS  Google Scholar 

  80. Gao X, Huang L. Cytoplasmic expression of a reporter gene by co-delivery of T7 RNA polymerase and T7 promoter sequence with cationic liposomes. Nucleic Acids Res 1993; 21: 2867–2872.

    Article  PubMed  CAS  Google Scholar 

  81. Gao X, Jaffurs D, Robbins PD, Huang L. A sustained, cytoplasmic transgene expression system delivered by cationic liposomes. Biochem Biophys Res Commun 1994; 200: 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  82. Wang C-Y, Huang L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochemistry 1989; 28: 9508–9514.

    Article  PubMed  CAS  Google Scholar 

  83. Wynshaw-Boris A, Lugo TG, Short JM, et al. Identification of a cAMP regulatory region in the gene for rat cytosolic phosphoenolpyruvate carboxykinase (GTP). Use of chimeric genes transfected into hepatoma cells. J Biol Chem 1984; 259: 12161–12169.

    PubMed  CAS  Google Scholar 

  84. Shockett PE, Schatz DG. diverse strategies for tetracyline-regulated inducivle gene expression. Proc Natl Acad Sci USA 1996; 93; 5173–5176.

    Article  PubMed  CAS  Google Scholar 

  85. Medzhitov R, Janeway CA Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173: 89–97.

    Article  PubMed  CAS  Google Scholar 

  86. Lien E, Ingalls RR. Toll-like receptors. Crit Care Med 2002; 30: S1 - S11.

    Article  CAS  Google Scholar 

  87. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of th Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394–397.

    Article  PubMed  CAS  Google Scholar 

  88. Tokunaga T H, Yammamoto S, Shimada H, et al. Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 1984; 72: 955–962.

    PubMed  CAS  Google Scholar 

  89. Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Genet 1987; 3: 342–346.

    Article  CAS  Google Scholar 

  90. Klinman DM, Yi A, Beaucage SL, et al. CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12, and IFN-y. Proc Natl Acad Sci USA 1996; 93: 2879–2883.

    Article  PubMed  CAS  Google Scholar 

  91. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B cell activation. Nature 1995; 374: 546–549.

    Article  PubMed  CAS  Google Scholar 

  92. Hartmann G, Weeratna RD, Ballas ZK, et al. Delineation of a CpG phosphorothioate oligonucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000; 164: 1617–1624.

    PubMed  CAS  Google Scholar 

  93. Klinman DM, Takeshita F, Gursel I, et al. CpG DNA: recognition by and activation of monocytes. Microbes Infect 2002; 4: 897–901.

    Article  PubMed  CAS  Google Scholar 

  94. Krieg AM. From A to Z on CpG. Trends Immunol 2002; 23: 64–65.

    Article  PubMed  CAS  Google Scholar 

  95. Verthelyi D, Ishii KJ, Gursel M, et al. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 2001; 166: 2372–2377.

    PubMed  CAS  Google Scholar 

  96. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  PubMed  CAS  Google Scholar 

  97. Bauer S, Kirschning CJ, Hacker H, et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98: 9237–9242.

    Article  PubMed  CAS  Google Scholar 

  98. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001; 31: 3026–3037.

    Article  PubMed  CAS  Google Scholar 

  99. Ahmad-Nejad P, Hacker H, Rutz M, et al. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32: 1958–1968.

    Article  PubMed  CAS  Google Scholar 

  100. Sparwasser T, Miethke T, Lipford G, et al. Bacterial DNA causes septic shock. Nature 1997; 386: 336–337.

    Article  PubMed  CAS  Google Scholar 

  101. Paillard F. Promoter attenuation in gene therapy: causes and remedies. Hum Gene Ther 1997; 8: 2009–2010.

    PubMed  CAS  Google Scholar 

  102. Harms JS, Splitter GA. Interferon-y inhibits transgene expression driven by SV40 or CMV promoters but augments expression driven by the mammalian MHC I promoter. Hum Gene Ther 1995; 6: 1291–1297.

    Article  PubMed  CAS  Google Scholar 

  103. Qin L, Ding Y, Pahud DR, et al. Promoter attenuation in gene therapy: Interferon-y and tumor necrosis factor-a inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofland, H.E.J., Sorgi, F.L., Spack, E.G. (2004). Development of Nonviral DNA Delivery Systems. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics