Skip to main content

Hydrogen Sulfide and the Regulation of Neuronal Activities

  • Chapter
Signal Transduction and the Gasotransmitters

Summary

Hydrogen sulfide (H2S) is a well-known toxic gas, and most studies about H2S have been devoted to its toxic effects. Recently, however, three groups discovered that the brain contains relatively high concentrations of endogenous H2S. This discovery accelerated the identification of an H2S-producing enzyme, cystathionine β-synthase (CBS), in the brain. In addition to the well-known regulators for CBS, S-adenosyl-L-methionine and pyridoxal-5′-phosphate, it was recently found that Ca2+/calmodulin-mediated pathways are involved in the regulation of CBS activity. H2S is produced in response to neuronal excitation and alters hippocampal long-term potentiation, a synaptic model for memory. The production of H2S in the brain is also regulated by testosterone. We describe herein recent progress in the study of H2S as a novel gasotransmitter in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramazzini B. Diseases of Workers 1713 (translated from the Latin text De Morbis Artificum by WC Wright, 1940). University of Chicago Press: Chicago. Reprinted 1964 in History Med., vol. 23.

    Google Scholar 

  2. Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 1992;32:109–134.

    Article  PubMed  CAS  Google Scholar 

  3. Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 1989;38:973–981.

    Article  PubMed  CAS  Google Scholar 

  4. Goodwin LR, Francom D, Dieken FP, et al. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 1989;13:105–109.

    PubMed  CAS  Google Scholar 

  5. Savage JC, Gould DH. Determination of sulfides in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 1990;526:540–545.

    Article  PubMed  CAS  Google Scholar 

  6. Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 1982;206:267–277.

    PubMed  CAS  Google Scholar 

  7. Griffith OW. Mammalian sulfur amino acid metabolism: an overview. In: Jakoby WB and Griffith OW, ed. Methods in Enzymology. Academic: New York, 1987, pp. 366–376.

    Google Scholar 

  8. Erickson PF, Maxwell IH, Su U, et al. Sequence of cDNA for rat cystathionine γ-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem J 1990;269:335–340.

    PubMed  CAS  Google Scholar 

  9. Swaroop M, Bradley K, Ohura T, et al. Rat cystathionine β-synthase. J Biol Chem 1992;267: 11,455–11,461.

    CAS  Google Scholar 

  10. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 1996;16:1066–1071.

    PubMed  CAS  Google Scholar 

  11. Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci 2002;22:3386–3391.

    PubMed  CAS  Google Scholar 

  12. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664–666.

    Article  PubMed  CAS  Google Scholar 

  13. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron 1992;8:3–11.

    Article  PubMed  CAS  Google Scholar 

  14. Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988;2:2557–2568.

    PubMed  CAS  Google Scholar 

  15. Verma A, Hirsch DJ, Glatt CE, et al. Carbon monoxide: a putative neural messenger. Science 1993;259:381–384.

    Article  PubMed  CAS  Google Scholar 

  16. O’Dell TJ, Hawkins RD, Kandel ER, Arancio O. Tests of the roles of two diffusible substances in longterm potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 1991;88:11,285–11,289.

    Google Scholar 

  17. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 1991;254:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  18. Haley JE, Wilcox GL, Chapman PF. The role of nitric oxide in hippocampal long-term potentiation. Neuron 1992;8:211–216.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens CF, Wang Y. Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 1993;364:147–149.

    Article  PubMed  CAS  Google Scholar 

  20. Zhuo M, Small SA, Kandel ER, et al. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993;260:1946–1950.

    Article  PubMed  CAS  Google Scholar 

  21. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31–39.

    Article  PubMed  CAS  Google Scholar 

  22. Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000;157:1738–1751.

    Article  PubMed  CAS  Google Scholar 

  23. Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336:385–388.

    Article  PubMed  CAS  Google Scholar 

  24. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990;87:682–685.

    Article  PubMed  CAS  Google Scholar 

  25. Russo CD, Tringali G, Ragazzoni E, et al. Evidence that hydrogen sulphide can modulate hypothalamopituitary-adrenal axis function: in vitro and in vivo studies in the rat. J Neuroend 2000;12:225–233.

    Article  Google Scholar 

  26. Finkelstein JD, Kyle WE, Martin JJ, et al. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun 1975;66:81–87.

    Article  PubMed  CAS  Google Scholar 

  27. Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate. J Biol Chem 1994;269:25,283–25,288.

    CAS  Google Scholar 

  28. Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J 1997;11:331–340.

    PubMed  CAS  Google Scholar 

  29. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, et al., eds. The Metabolic Basis of Inherited Disease. McGraw-Hill: New York, 1989 ,pp. 693–734.

    Google Scholar 

  30. Shan X, Dunbrack RU, Christopher SA, et al. Mutation in the regulatory domain of cystathionine β-synthase can functionally suppress patient-derived mutations in cis. Hum Mol Genet 2001;10:635–643.

    Article  PubMed  CAS  Google Scholar 

  31. Manteuffel-Cymborowska M, Chmurzynska W, Grzelakowska-Sztabert B. Tissue-specific effects of testosterone on S-adenosymethionine formation and utilization in the mouse. Biochim Biophys Acta 1992;1116:166–172.

    Article  PubMed  CAS  Google Scholar 

  32. Eto K, Kimura H. The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. J Neurochem 2002;83:80–86.

    Article  PubMed  CAS  Google Scholar 

  33. Gil B, Pajares MA, Mato JM, et al. Glucocorticoid regulation of hepatic S-adenosylmethionine synthetase gene expression. Endocrinology 1997;138:1251–1258.

    Article  PubMed  CAS  Google Scholar 

  34. Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 2000;267:129–133.

    Article  PubMed  CAS  Google Scholar 

  35. Leonard AS, Hell JW. Cyclic AMP-dependent protein kinase and protein kinase C phosphorylate N-methyl-D-aspartate receptors at different sites. J Biol Chem 1997;272:12,107–12,115.

    Google Scholar 

  36. Tingley WG, Ehlers MD, Kameyama K, et al. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 1997;272:5157–5166.

    Article  PubMed  CAS  Google Scholar 

  37. Harley CW, Malsbury CW, Squires A, et al. Testosterone decreases CA1 plasticity in vivo in gonadectomized male rats. Hippocampus 2000;10:693–697.

    Article  PubMed  CAS  Google Scholar 

  38. Foy MR. 17 beta-estradiol: effect on CA1 hippocampal synaptic plasticity. Neurobiol Learn Mem 2001;76:239–252.

    Article  PubMed  CAS  Google Scholar 

  39. O’Dell TJ, Hawkins RD, Kandel ER, et al. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 1991;88:11,285–11,289.

    Google Scholar 

  40. Schuman EM, Madison DV. A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 1991;254:1503–1506.

    Article  PubMed  CAS  Google Scholar 

  41. Singh R, Pervin S, Shryne J, et al. Castration increases and androgens decrease nitric oxide synthase activity in the brain: physiologic implications. Proc Natl Acad Sci USA 2000;97:3672–3677.

    Article  PubMed  CAS  Google Scholar 

  42. Herlitz A, Yonker JE. Sex differences in episodic memory: the influence of intelligence. J Clin Exp Neuropsychol 2002;24:107–114.

    Article  PubMed  Google Scholar 

  43. Schiavetto A, Kohler S, Grady CL, et al. Neural correlates of memory for object identity and object location: effects of aging. Neuropsychologia 2002;40:1428–1442.

    Article  PubMed  Google Scholar 

  44. Skovby F, Krassikoff N, Francke U. Assignment of the gene for cystathionine beta-synthase to human chromosome 21 in somatic cell hybrids. Hum Genet 1984;65:291–294.

    Article  PubMed  CAS  Google Scholar 

  45. Munke M, Kraus JP, Ohura T, et al. The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am J Hum Genet 1988;42:550–559.

    PubMed  CAS  Google Scholar 

  46. Korenberg JR, Kawashima H, Pulst SM, et al. Molecular definition of a region of chromosome 21 that causes features of the Down Syndrome phenotype. Am J Hum Genet 1990;47:236–246.

    PubMed  CAS  Google Scholar 

  47. Kraus JP. Molecular analysis of cystathionine β-synthase-a gene on chromosome 21. In: Molecular Genetics of Chromosome 21 and Down Syndrome. Prog Clin Biol Res 1990;360:201–214.

    Google Scholar 

  48. Kamoun P. Mental retardation in Down syndrome: a hydrogen sulfide hypothesis. Med Hypotheses 2001;57:389–392.

    Article  PubMed  CAS  Google Scholar 

  49. Boutell JM, Wood JD, Harper PS, et al. Huntingtin interacts with cystathionine β-synthase. Hum Mol Genet 1998;7:371–378.

    Article  PubMed  CAS  Google Scholar 

  50. Barbaux S, Plomin R, Whitehead AS. Polymorphisms of genes controlling homocysteine/folate metabolism and cognitive function. NeuroReport 2000;11:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  51. Kalaria RN. The role of cerebral ischemia in Alzheimer’ s disease. Neurobiol Aging 2000;21:321–330.

    Article  PubMed  CAS  Google Scholar 

  52. De la Torre JC, Mussivand T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol Res 1993;15:146–153.

    PubMed  Google Scholar 

  53. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997;237:527–531.

    Article  PubMed  CAS  Google Scholar 

  54. Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 2001;20:6008–6016.

    Article  PubMed  CAS  Google Scholar 

  55. Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 1996;67:1328–1331.

    Article  PubMed  CAS  Google Scholar 

  56. Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem Biophys Res Commun 2002;293:1485–1488.

    Article  PubMed  CAS  Google Scholar 

  57. Clarke R, Smith D, Jobst KA, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998;55:1449–1455.

    Article  PubMed  CAS  Google Scholar 

  58. Wang R. Two’s company, three’s a crowd—can H2S be the third endogenous gaseous transmitter? FASEB J 2002;16:1792–1798.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kimura, H. (2004). Hydrogen Sulfide and the Regulation of Neuronal Activities. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics