Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Despite advances in preventive health care, medical management, interventional cardiology, and cardiovascular surgery, atherosclerotic disease remains the leading cause of morbidity and mortality in the Western Hemisphere. Cardiovascular disease accounted for 38.5% of all deaths or 1 of every 2.6 deaths in the United States in 2001. Cardiovascular disease mortality was about 60% of “total mortality,” i.e., of over 2,400,000 deaths from all causes, cardiovascular disease was listed as a primary or contributing cause on about 1,408,000 death certificates. Since 1900, cardiovascular disease has been the number one killer in the United States every year except 1918 (1). Treatment of coronary artery disease (CAD) includes risk factor modification, use of antiplatelet agents, medical therapy by decreasing myocardial oxygen demand and coronary vasodilation, and restoring myocardial perfusion using percutaneous coronary interventions (PCI) and coronary artery bypass grafting (CABG). Although significant advances have reduced the mortality of cardiovascular disease, the number of cardiac interventions continues to grow: a total of 1.3 million inpatient cardiac catheterizations, 561,000 percutaneous transluminal coronary angioplasty (PTCA) procedures, and 519,000 coronary artery bypass procedures were performed in 2000 in the United States alone (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. AHA statistics. (http://www.americanheart.org/presenter.jhtml?identifier=4478).

  2. McNeer JF, Conley MJ, Starmer CF, et al. Complete and incomplete revascularization at aortocoronary bypass surgery: experience with 392 consecutive patients. Am Heart J 1974;88(2):176–182.

    Article  PubMed  CAS  Google Scholar 

  3. Jones EL, Craver JM, Guyton RA, et al. Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983;51(1):7–12.

    Article  PubMed  CAS  Google Scholar 

  4. Atwood JE, Myers J, Colombo A, et al. The effect of complete and incomplete revascularization on exercise variables in patients undergoing coronary angioplasty. Clin Cardiol 1990;13(2):89–93.

    Article  PubMed  CAS  Google Scholar 

  5. de Feyter PJ. PTCA in patients with stable angina pectoris and multivessel disease: is incomplete revascularization acceptable? Clin Cardiol 1992;15(5):317–322.

    PubMed  Google Scholar 

  6. Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis—how many patients might be eligible? Am J Cardiol 1999;84(5):598–600, A8.

    Article  PubMed  CAS  Google Scholar 

  7. Laham RJ, Simons M, Tofukuji M, Hung D, Sellke FW. Modulation of myocardial perfusion and vascular reactivity by pericardial basic fibroblast growth factor: insight into ischemia-induced reduction in endothelium-dependent vasodilatation. J Thorac Cardiovasc Surg 1998;116(6):1022–1028.

    Article  PubMed  CAS  Google Scholar 

  8. Laham RJ, Simons M, Sellke F. Gene transfer for angiogenesis in coronary artery disease. Annu Rev Med 2001;52:485–502.

    Article  PubMed  CAS  Google Scholar 

  9. Laham RJ, Simons M. Growth Factor Therapy in Ischemic Heart Disease. In: Rubanyi G, ed. Angiogenesis in Health and Disease. New York: Marcel Decker, 2000:451–475.

    Google Scholar 

  10. Laham RJ, Post M, Sellke FW, Simons M. Therapeutic angiogenesis using local perivascular and pericardial delivery. Curr Interv Cardiol Rep 2000;2(3):213–217.

    PubMed  Google Scholar 

  11. Laham RJ, Rezaee M, Post M, et al. Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 1999;27(7):821–826.

    PubMed  CAS  Google Scholar 

  12. Laham RJ, Oettgen P. Bone marrow transplantation for the heart: fact or fiction? Lancet 2003;361(9351):11–12.

    Article  PubMed  Google Scholar 

  13. Laham RJ, Hung D, Simons M. Therapeutic myocardial angiogenesis using percutaneous intrapericardial drug delivery. Clin Cardiol 1999;22(1 Suppl 1):I–6–9.

    Google Scholar 

  14. Laham RJ, Garcia L, Baim DS, Post M, Simons M. Therapeutic angiogenesis using basic fibroblast growth factor and vascular endothelial growth factor using various delivery strategies. Curr Interv Cardiol Rep 1999;1(3):228–233.

    PubMed  Google Scholar 

  15. Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I openlabel dose escalation study. J Am Coll Cardiol 2000;36(7):2132–2139.

    Article  PubMed  CAS  Google Scholar 

  16. Laham R, Rezaee M, Post M, et al. Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 2000;292:795–802.

    PubMed  CAS  Google Scholar 

  17. Isner JM. Angiogenesis for revascularization of ischaemic tissues [editorial]. Eur Heart J 1997;18(1):1–2.

    PubMed  CAS  Google Scholar 

  18. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996;348(9024):370–374.

    Article  PubMed  CAS  Google Scholar 

  19. Asahara T, Bauters C, Zheng LP, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995;92(9 Suppl):II365–371.

    PubMed  CAS  Google Scholar 

  20. Baumgartner I, Rauh G, Pieczek A, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000;132(11):880–884.

    PubMed  CAS  Google Scholar 

  21. Bauters C, Asahara T, Zheng LP, et al. Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am J Physiol 1994;267:H1263–1271.

    PubMed  CAS  Google Scholar 

  22. Bauters C, Asahara T, Zheng LP, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 1995;21(2):314–325.

    Article  PubMed  CAS  Google Scholar 

  23. Isner JM, Feldman LJ. Gene therapy for arterial disease. Lancet 1994;344(8938):1653–1654.

    Article  PubMed  CAS  Google Scholar 

  24. Isner JM. Therapeutic angiogenesis: a new frontier for vascular therapy. Vasc Med 1996;1(1):79–87.

    PubMed  CAS  Google Scholar 

  25. Hennebry TA, Saucedo JF. “No-pption” patients: a nightmare today, a future with hope. J Inv Cardiol 2004;17(2):93–94.

    Article  Google Scholar 

  26. Rosinberg A, Khan TA, Sellke FW, Laham RJ. Therapeutic angiogenesis for myocardial ischemia. Expert Rev Cardiovasc Ther 2004;2(2):271–283.

    Article  PubMed  CAS  Google Scholar 

  27. Waugh J, Wagstaff AJ. The paclitaxel (TAXUS)-eluting stent: a review of its use in the management of de novo coronary artery lesions. Am J Cardiovasc Drugs 2004;4(4):257–268.

    Article  PubMed  CAS  Google Scholar 

  28. Doggrell SA. Sirolimus-versus paclitaxel-eluting stents in patients with stenosis in a native coronary artery. Expert Opin Pharmacother 2004;5(6):1431–1434.

    Article  PubMed  CAS  Google Scholar 

  29. Grube E, Gerckens U, Muller R, Bullesfeld L. Drug eluting stents: initial experiences. Z Kardiol 2002;91(Suppl 3):44–48.

    Article  PubMed  CAS  Google Scholar 

  30. Wong A, Chan C. Drug-eluting stents: the end of restenosis? Ann Acad Med Singapore 2004;33(4):423–431.

    PubMed  CAS  Google Scholar 

  31. Serruys PW, Lemos PA, van Hout BA. Sirolimus eluting stent implantation for patients with multivessel disease: rationale for the Arterial Revascularisation Therapies Study part II (ARTS II). Heart 2004;90(9):995–998.

    Article  PubMed  CAS  Google Scholar 

  32. McClure S, Webb J. Drug-eluting stents and saphenous vein graft intervention. J Invasive Cardiol 2004;16(5):234–235.

    PubMed  Google Scholar 

  33. Hoye A, Tanabe K, Lemos PA, et al. Significant reduction in restenosis after the use of sirolimus-eluting stents in the treatment of chronic total occlusions. J Am Coll Cardiol 2004;43(11):1954–1958.

    Article  PubMed  CAS  Google Scholar 

  34. Grube E, Buellesfeld L. Everolimus for stent-based intracoronary applications. Rev Cardiovasc Med 2004;5(Suppl 2):S3–8.

    PubMed  Google Scholar 

  35. Reichenspurner H, Boehm DH, Welz A, et al. Minimally invasive coronary artery bypass grafting: port-access approach versus off-pump techniques. Ann Thorac Surg 1998;66(3):1036–1040.

    Article  PubMed  CAS  Google Scholar 

  36. Medina A, de Lezo JS, Melian F, Hernandez E, Pan M, Romero M. Successful stent ablation with rotational atherectomy. Catheter Cardiovasc Interv 2003;60(4):501–504.

    Article  PubMed  Google Scholar 

  37. Mauri L, Reisman M, Buchbinder M, et al. Comparison of rotational atherectomy with conventional balloon angioplasty in the prevention of restenosis of small coronary arteries: results of the Dilatation vs Ablation Revascularization Trial Targeting Restenosis (DART). Am Heart J 2003;145(5):847–854.

    Article  PubMed  Google Scholar 

  38. Lev E, Teplitsky I, Fuchs S, Shor N, Assali A, Kornowski R. Clinical experiences using the FilterWire EX for distal embolic protection during complex percutaneous coronary interventions. Int J Cardiovasc Intervent 2004;6(1):28–32.

    PubMed  Google Scholar 

  39. Stone GW, Rogers C, Hermiller J, et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. Circulation 2003;108(5):548–553.

    Article  PubMed  Google Scholar 

  40. Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 2002;105(11):1285–1290.

    PubMed  Google Scholar 

  41. Tadros P. Successful revascularization of a long chronic total occlusion of the right coronary artery utilizing the frontrunner X39 CTO catheter system. J Invasive Cardiol 2003;15(11):3.

    PubMed  Google Scholar 

  42. Laham RJ, Simons M, Pearlman JD, Ho KK, Baim DS. Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treated by laser myocardial revascularization. J Am Coll Cardiol 2002;39(1):1–8.

    Article  PubMed  Google Scholar 

  43. Laham RJ, Simons M. Basic fibroblast growth factor protein for coronary artery disease. In: Handbook of Myocardial Revascularization and Angiogenesis. New York: Martin Dunitz Ltd, 1999:175–187.

    Google Scholar 

  44. Laham RJ, Mannam A, Post MJ, Sellke F. Gene transfer to induce angiogenesis in myocardial and limb ischaemia. Expert Opin Biol Ther 2001;1(6):985–994.

    Article  PubMed  CAS  Google Scholar 

  45. Laham R, Sellke F, Pearlman J. Magnetic resonance blood-arrival maps provides acccurate assessment of myocardial perfusion and collaterization in therapeutic angiogenesis. Circulation 1998;98:I–373.

    Google Scholar 

  46. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.

    PubMed  CAS  Google Scholar 

  47. Folkman J. Angiogenic therapy of the human heart. Circulation 1998;97(7):628–629.

    PubMed  CAS  Google Scholar 

  48. Folkman J. Therapeutic angiogenesis in ischemic limbs. Circulation 1998;97(12):1108–1010.

    PubMed  CAS  Google Scholar 

  49. Asahara T, Murohara T, Sullivam A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  50. Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 2002;11(2):171–178.

    Article  PubMed  Google Scholar 

  51. Rivard A, Silver M, Chen D, et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 1999;154(2):355–363.

    PubMed  CAS  Google Scholar 

  52. Couffinhal T, Silver M, Kearney M, et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/-mice. Circulation 1999;99(24):3188–3198.

    PubMed  CAS  Google Scholar 

  53. Simons M, Bonow RO, Chronos NA, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000;102(11):E73–86.

    PubMed  CAS  Google Scholar 

  54. Ruel M, Wu GF, Khan TA, et al. Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a swine endothelial dysfunction model. Circulation 2003;108(Suppl 1):II335–340.

    PubMed  Google Scholar 

  55. de Jongste MJ, Staal MJ. Preliminary results of a randomized study on the clinical efficacy of spinal cord stimulation for refractory severe angina pectoris. Acta Neurochir Suppl (Wien) 1993;58:161–164.

    Google Scholar 

  56. de Jongste MJ, Haaksma J, Hautvast RW, et al. Effects of spinal cord stimulation on myocardial ischaemia during daily life in patients with severe coronary artery disease. A prospective ambulatory electrocardiographic study. Br Heart J 1994;71(5):413–418.

    Article  PubMed  Google Scholar 

  57. Hautvast RW, DeJongste MJ, Staal MJ, van Gilst WH, Lie KI. Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. Am Heart J 1998;136(6):1114–1120.

    Article  PubMed  CAS  Google Scholar 

  58. Murray S, Carson KG, Ewings PD, Collins PD, James MA. Spinal cord stimulation significantly decreases the need for acute hospital admission for chest pain in patients with refractory angina pectoris. Heart 1999;82(1):89–92.

    PubMed  CAS  Google Scholar 

  59. Linnemeier G, Rutter MK, Barsness G, Kennard ED, Nesto RW. Enhanced external counterpulsation for the relief of angina in patients with diabetes: safety, efficacy and 1-year clinical outcomes. Am Heart J 2003;146(3):453–458.

    Article  PubMed  Google Scholar 

  60. Linnemeier G, Michaels AD, Soran O, Kennard ED. Enhanced external counterpulsation in the management of angina in the elderly. Am J Geriatr Cardiol 2003;12(2):90–96.

    Article  PubMed  Google Scholar 

  61. Humphreys DR. Treating angina with EECP therapy. Nurse Pract 2003;28(2):7.

    Article  PubMed  Google Scholar 

  62. Blazing MA, Crawford LE. Enhanced external counterpulsation (EECP): enough evidence to support this and the next wave? Am Heart J 2003;146(3):383–384.

    Article  PubMed  Google Scholar 

  63. Michaels AD, Accad M, Ports TA, Grossman W. Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation. Circulation 2002;106(10):1237–1242.

    Article  PubMed  Google Scholar 

  64. Michaels AD, Linnemeier G, Soran O, Kelsey SF, Kennard ED. Two-year outcomes after enhanced external counterpulsation for stable angina pectoris (from the International EECP Patient Registry [IEPR]). Am J Cardiol 2004;93(4):461–464.

    Article  PubMed  Google Scholar 

  65. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 1999;33(7):1833–1840.

    Article  PubMed  CAS  Google Scholar 

  66. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004;25(8):634–641.

    Article  PubMed  CAS  Google Scholar 

  67. Pauly DF, Pepine CJ. Ischemic heart disease: metabolic approaches to management. Clin Cardiol 2004;27(8):439–441.

    Article  PubMed  Google Scholar 

  68. Slavov S, Djunlieva M, Ilieva S, Galabov B. Quantitative structure-activity relationship analysis of the substituent effects on the binding affinity of derivatives of trimetazidine. Arzneimittelforschung 2004;54(1):9–14.

    PubMed  CAS  Google Scholar 

  69. Feola M, Biggi A, Francini A, et al. Trimetazidine improves myocardial perfusion and left ventricular function in ischemic left ventricular dysfunction. Clin Nucl Med 2004;29(2):117–118.

    Article  PubMed  Google Scholar 

  70. Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 2004;291(3):309–316.

    Article  PubMed  CAS  Google Scholar 

  71. Louis AA, Manousos IR, Coletta AP, Clark AL, Cleland JG. Clinical trials update: The Heart Protection Study, IONA, CARISA, ENRICHD, ACUTE, ALIVE, MADIT II and REMATCH. Impact of Nicorandil on Angina. Combination Assessment of Ranolazine in Stable Angina. ENhancing Recovery in Coronary Heart Disease Patients. Assessment of Cardioversion Using Transoesophageal Echocardiography. AzimiLide post-Infarct surVival Evaluation. Randomised Evaluation of Mechanical Assistance for Treatment of Chronic Heart failure. Eur J Heart Fail 2002;4(1):111–116.

    Article  PubMed  Google Scholar 

  72. Marzilli M, Mariani M. About EMIP-FR and reperfusion damage in AMI: a comment to the comment. Eur Heart J 2001;22(11):973–975; author reply 978.

    Article  PubMed  CAS  Google Scholar 

  73. Effect of 48-h intravenous trimetazidine on short-and long-term outcomes of patients with acute myocardial infarction, with and without thrombolytic therapy; a double-blind, placebo-controlled, randomized trial. The EMIP-FR Group. European Myocardial Infarction Project—Free Radicals. Eur Heart J 2000;21(18):1537–1546.

    Google Scholar 

  74. Guler N, Eryonucu B, Gunes A, Guntekin U, Tuncer M, Ozbek H. Effects of trimetazidine on submaximal exercise test in patients with acute myocardial infarction. Cardiovasc Drugs Ther 2003;17(4):371–374.

    Article  PubMed  Google Scholar 

  75. Chaitman BR, Skettino SL, Parker JO, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol 2004;43(8):1375–1382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Laham, R.J., Baim, D.S. (2005). No-Option Patients. In: Laham, R.J., Baim, D.S. (eds) Angiogenesis and Direct Myocardial Revascularization. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-934-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-934-9_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-153-0

  • Online ISBN: 978-1-59259-934-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics