Skip to main content

Drug Resistance Mechanisms in Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and Opportunistic Anaerobic Protozoa

  • Chapter
Antimicrobial Drug Resistance

Resistance of organisms to toxic agents is a survival mechanism fundamental for adaptation and evolution of life. As a counterpart, drug resistance is a medical problem in cancer and infectious diseases, with not many alternatives available. Entamoeba histolytica, Giardia lamblia (syn. duodenalis or intestinalis), and Trichomonas vaginalis (Fig. 1) are anaerobic and microaerophilic pathogens capable of developing drug resistance. Over one billion individuals worldwide harbor these and other anaerobic protozoa such as Blastocystis hominis, Cryptosporidium parvum, Isospora spp., Cyclospora spp., and Microsporidia (1). Most infected people live in poor countries. Unhygienic sanitary conditions and poor health education are the causes for infectious protozoan prevalence, and they can be eradicated by implementing drainage, parasite-free water supply, and sexual education for all people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Upcroft, P. & Upcroft, J. A. (2001). Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev. 14, 150–164.

    Article  PubMed  CAS  Google Scholar 

  2. WHO (1995). An overview of selected curable sexually transmitted diseases. Global program on AIDS.

    Google Scholar 

  3. Lloyd, G. L., Case, J. R., De Frias, D. & Brannigan, R. E. (2003). Trichomonas vaginalis orchitis with associated severe oligoasthe-noteratospermia and hypogonadism. J. Urol. 170, 924.

    Article  PubMed  Google Scholar 

  4. Fowler, K. B. & Pass, R. F. (1991). Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J. Infect. Dis. 164, 259–264.

    PubMed  CAS  Google Scholar 

  5. Laga, M., Manoka, A., Kivuvu, M., Malele, B., Tuliza, M., Nzila, N. et al. (1993). Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 7, 95–102.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-Rivera, G., Rodriguez, M. A., Ocadiz, R., Martinez-Lopez, M. C., Arroyo, R., Gonzalez-Robles, A. & Orozco, E. (1999). Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein. Mol. Microbiol. 33, 556–568.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia, A. F., Chang, T. H., Benchimol, M., Klumpp, D. J., Lehker, M. W. & Alderete, J. F. (2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol. Microbiol. 47, 1207–1224.

    Article  PubMed  CAS  Google Scholar 

  8. Sousa, M. C., Goncalves, C. A., Bairos, V. A. & Poiares-Da-Silva, J. (2001). Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin. Diagn. Lab. Immunol. 8, 258–265.

    PubMed  CAS  Google Scholar 

  9. Luna-Arias, J. P., Sanchez, T., Herrera-Aguirre, M. E., Chavez, P., Garrido, E. & Orozco, E. (2003). Purification of Entamoeba histo-lytica DNA containing organelles (EkhOs): a further characterization. J. Eukaryot. Microbiol. 50, 706–708.

    Article  PubMed  Google Scholar 

  10. Tovar, J., Fischer, A. & Clark, C. G. (1999).The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32, 1013–1021.

    Article  PubMed  CAS  Google Scholar 

  11. Mai, Z., Ghosh, S., Frisardi, M., Rosenthal, B., Rogers, R. & Samuelson, J. (1999). Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol. Cell. Biol. 19, 2198–2205.

    PubMed  CAS  Google Scholar 

  12. Tovar, J., Leon-Avila, G., Sanchez, L. B., Sutak, R., Tachezy, J., van der Giezen, M. et al. (2003). Mitochondrial remnant organelles of Giardia function in iron—sulphur protein maturation. Nature 426, 172–176.

    Article  PubMed  CAS  Google Scholar 

  13. Kulda, J. (1999). Trichomonads, hydrogenosomes and drug resistance. Int. J. Parasitol. 29, 199–212.

    Article  PubMed  CAS  Google Scholar 

  14. Nixon, J. E., Field, J., McArthur, A. G., Sogin, M. L., Yarlett, N., Loftus, B. J. & Samuelson, J. (2003). Iron-dependent hydroge-nases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol. Bull. 204, 1–9.

    Article  PubMed  CAS  Google Scholar 

  15. Muller, M. (1983). Mode of action of metronidazole on anaerobic bacteria and protozoa. Surgery 93, 165–171.

    PubMed  CAS  Google Scholar 

  16. Pratt, W., Fekety, R. (1986). The antimicrobial drugs, Oxford University Press, New York.,

    Google Scholar 

  17. Paget, T. A., Jarroll, E. L., Manning, P., Lindmark, D. G. & Lloyd, D. (1989). Respiration in the cysts and trophozoites of Giardia muris. J. Gen. Microbiol. 135, 145–154.

    PubMed  CAS  Google Scholar 

  18. Samarawickrema, N. A., Brown, D. M., Upcroft, J. A., Thammapalerd, N. & Upcroft, P. (1997). Involvement of superox-ide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J. Antimicrob. Chemother. 40, 833–840.

    Article  PubMed  CAS  Google Scholar 

  19. Brasseur, P. & Favennec, L. (1995). Two cases of giardiasis unsuccessfully treated by albendazole. Parasite 2, 422.

    PubMed  CAS  Google Scholar 

  20. Wassmann, C., Hellberg, A., Tannich, E. & Bruchhaus, I. (1999). Metronidazole resistance in the protozoan parasite Entamoeba his-tolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J. Biol. Chem. 274, 26051–26056.

    Article  PubMed  CAS  Google Scholar 

  21. Yarlett, N., Yarlett, N. C. & Lloyd, D. (1986). Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol. Biochem. Parasitol. 19, 111–116.

    Article  PubMed  CAS  Google Scholar 

  22. Borst, P. & Ouellette, M. (1995). New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol. 49, 427–460.

    Article  PubMed  CAS  Google Scholar 

  23. WHO (1997). Amoebiasis. WHO Wkly. Epidemiol. Rec. 72, 97–100.

    Google Scholar 

  24. Peters, R. S., Gitlin, N. & Libke, R. D. (1981). Amoebic liver abscess. Annu. Rev. Med. 32, 161–174.

    Article  PubMed  CAS  Google Scholar 

  25. Jackson, T. F. (1998). Entamoeba histolytica and Entamoeba dis-par are distinct species; clinical, epidemiological and serological evidence. Int. J. Parasitol. 28, 181–186.

    Article  PubMed  CAS  Google Scholar 

  26. Espinosa-Cantellano, M., Gonzales-Robles, A., Chavez, B., Castanon, G., Arguello, C., Lazaro-Haller, A. & Martinez-Palomo, A. (1998). Entamoeba dispar: ultrastructure, surface properties and cytopathic effect. J. Eukaryot. Microbiol. 45, 265–272.

    Article  PubMed  CAS  Google Scholar 

  27. Orozco, E., Guarneros, G., Martinez-Palomo, A. & Sanchez, T. (1983). Entamoeba histolytica. Phagocytosis as a virulence factor. J. Exp. Med. 158, 1511–1521.

    Article  PubMed  CAS  Google Scholar 

  28. Gatti, S., Cevini, C., Bruno, A., Novati, S. & Scaglia, M. (1995). Transmission of Entamoeba histolytica within a family complex. Trans. R. Soc. Trop. Med. Hyg. 89, 403–405.

    Article  PubMed  CAS  Google Scholar 

  29. Reeves, R. E. (1984). Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv. Parasitol. 23, 105–142.

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez, M. A., Garcia-Perez, R. M., Mendoza, L., Sanchez, T., Guillen, N. & Orozco, E. (1998). The pyruvate:ferredoxin oxi-doreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb. Pathog. 25, 1–10.

    Article  PubMed  CAS  Google Scholar 

  31. Huber, M., Garfinkel, L., Gitler, C., Mirelman, D., Revel, M. & Rozenblatt, S. (1988). Nucleotide sequence analysis of an Entamoeba histolytica ferredoxin gene. Mol. Biochem. Parasitol. 31, 27–33.

    Article  PubMed  CAS  Google Scholar 

  32. Agrawal, A., Singh, L. M. & Sagar, P. (1987). Sensitivity of protein and RNA synthesis to emetine in axenic Entamoeba histolytica. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 266, 575–579.

    CAS  Google Scholar 

  33. Khaw, M. & Panosian, C. B. (1995). Human antiprotozoal therapy: past, present, and future. Clin. Microbiol. Rev. 8, 427–439.

    PubMed  CAS  Google Scholar 

  34. Hanna, R. M., Dahniya, M. H., Badr, S. S. & El-Betagy, A. (2000). Percutaneous catheter drainage in drug-resistant amoebic liver abscess. Trop. Med. Int. Health 5, 578–581.

    Article  PubMed  CAS  Google Scholar 

  35. Samuelson, J. C., Burke, A. & Courval, J. M. (1992). Susceptibility of an emetine-resistant mutant of Entamoeba histolytica to multiple drugs and to channel blockers. Antimicrob. Agents Chemother. 36, 2392–2397.

    PubMed  CAS  Google Scholar 

  36. Orozco, E., Lopez, C., Gomez, C., Perez, D. G., Marchat, L., Banuelos, C. & Delgadillo, D. M. (2002). Multidrug resistance in the protozoan parasite Entamoeba histolytica. Parasitol. Int. 51, 353–359.

    Article  PubMed  CAS  Google Scholar 

  37. Ghosh, S. K., Lohia, A., Kumar, A. & Samuelson, J. (1996). Overexpression of P-glycoprotein gene 1 by transfected Entamoeba histolytica confers emetine-resistance. Mol. Biochem. Parasitol. 82, 257–260.

    Article  PubMed  CAS  Google Scholar 

  38. Gomez, C., Perez, D. G., Lopez-Bayghen, E. & Orozco, E. (1998). Transcriptional analysis of the EhPgp1 promoter of Entamoeba histolytica multidrug-resistant mutant. J. Biol. Chem. 273, 7277–7284.

    Article  PubMed  CAS  Google Scholar 

  39. Marchat, L. A., Gomez, C., Perez, D. G., Paz, F., Mendoza, L. & Orozco, E. (2002).Two CCAAT/enhancer binding protein sites are cis-activator elements of the Entamoeba histolytica EhPgp1 (mdr-like) gene expression. Cell. Microbiol. 4, 725–737.

    Article  PubMed  CAS  Google Scholar 

  40. Lopez-Camarillo, C., Luna-Arias, J. P., Marchat, L. A. & Orozco, E. (2003). EhPgp5 mRNA stability is a regulatory event in the Entamoeba histolytica multidrug resistance phenotype. J. Biol. Chem. 278, 11273–11280.

    Article  PubMed  CAS  Google Scholar 

  41. Banuelos, C., Orozco, E., Gomez, C., Gonzalez, A., Medel, O., Mendoza, L. & Perez, D. G. (2002). Cellular location and function of the P-glycoproteins (EhPgps) in Entamoeba histolytica multid-rug-resistant trophozoites. Microb. Drug Resist. 8, 291–300.

    Article  PubMed  CAS  Google Scholar 

  42. WHO (1996). The World Health Report, 196.

    Google Scholar 

  43. Lujan, H. D., Mowatt, M. R., Byrd, L. G. & Nash, T. E. (1996). Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc. Natl. Acad. Sci. USA 93, 7628–7633.

    Article  PubMed  CAS  Google Scholar 

  44. Namgung, R., Ryu, J. S., Lee, K. T. & Soh, C. T. (1985). The effect of metronidazole and quinacrine on the morphology and excysta-tion of Giardia lamblia. Yonsei Rep. Trop. Med. 16, 28–44.

    Google Scholar 

  45. Townson, S. M., Upcroft, J. A. & Upcroft, P. (1996). Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Mol. Biochem. Parasitol. 79, 183–193.

    Article  PubMed  CAS  Google Scholar 

  46. Townson, S. M., Hanson, G. R., Upcroft, J. A. & Upcroft, P. (1994). A purified ferredoxin from Giardia duodenalis. Eur. J. Biochem. 220, 439–446.

    Article  PubMed  CAS  Google Scholar 

  47. Hoyne, G. F., Boreham, P. F., Parsons, P. G., Ward, C. & Biggs, B. (1989). The effect of drugs on the cell cycle of Giardia intestinalis. Parasitology 99, 333–339.

    Article  PubMed  CAS  Google Scholar 

  48. Brown, D. M., Upcroft, J. A. & Upcroft, P. (1996). A H2O-producing NADH oxidase from the protozoan parasite Giardia duodenalis. Eur. J. Biochem. 241, 155–161.

    Article  PubMed  CAS  Google Scholar 

  49. Upcroft, J. A., Campbell, R. W. & Upcroft, P. (1996). Quinacrine-resistant Giardia duodenalis. Parasitology 112, 309–313.

    Article  PubMed  Google Scholar 

  50. Morgan, U. M., Reynoldson, J. A. & Thompson, R. C. (1993). Activities of several benzimidazoles and tubulin inhibitors against Giardia spp. in vitro. Antimicrob. Agents Chemother. 37, 328–331.

    PubMed  CAS  Google Scholar 

  51. Edlind, T. D. (1989). Susceptibility of Giardia lamblia to aminogly-coside protein synthesis inhibitors: correlation with rRNA structure. Antimicrob. Agents Chemother. 33, 484–488.

    PubMed  CAS  Google Scholar 

  52. Boreham, P. F., Phillips, R. E. & Shepherd, R. W. (1988). Altered uptake of metronidazole in vitro by stocks of Giardia intestinalis with different drug sensitivities. Trans. R. Soc. Trop. Med. Hyg. 82, 104–106.

    Article  PubMed  CAS  Google Scholar 

  53. Upcroft, J., Mitchell, R., Chen, N. & Upcroft, P. (1996). Albendazole resistance in Giardia is correlated with cytoskeletal changes but not with a mutation at amino acid 200 in beta-tubulin. Microb. Drug Resist. 2, 303–308.

    Article  PubMed  CAS  Google Scholar 

  54. Upcroft, J. A., Healey, A., Murray, D. G., Boreham, P. F. & Upcroft, P. (1992). A gene associated with cell division and drug resistance in Giardia duodenalis. Parasitology 104, 397–405.

    Article  PubMed  CAS  Google Scholar 

  55. Upcroft, J. A., Healey, A. & Upcroft, P. (1993). Chromosomal duplication in Giardia duodenalis. Int. J. Parasitol. 23, 609–616.

    Article  PubMed  CAS  Google Scholar 

  56. Upcroft, P. & Upcroft, J. A. (1999). Organization and structure of the Giardia genome. Protist 150, 17–23.

    PubMed  CAS  Google Scholar 

  57. Smith, N. C., Bryant, C. & Boreham, P. F. (1988). Possible roles for pyruvate:ferredoxin oxidoreductase and thiol-dependent per-oxidase and reductase activities in resistance to nitroheterocyclic drugs in Giardia intestinalis. Int. J. Parasitol. 18, 991–997.

    Article  PubMed  Google Scholar 

  58. Ribeiro, K. C., Pereira-Neves, A. & Benchimol, M. (2002). The mitotic spindle and associated membranes in the closed mitosis of trichomonads. Biol. Cell. 94, 157–172.

    Article  PubMed  CAS  Google Scholar 

  59. Sorvillo, F., Smith, L., Kerndt, P. & Ash, L. (2001). Trichomonas vag-inalis, HIV, and African-Americans. Emerg. Infect. Dis. 7, 927–932.

    Article  PubMed  CAS  Google Scholar 

  60. Dunne, R. L., Dunn, L. A., Upcroft, P., O'Donoghue, P. J. & Upcroft, J. A. (2003). Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell. Res. 13, 239–249.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson, P. J., d'Oliveira, C. E., Gorrell, T. E. & Muller, M. (1990). Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 87, 6097–6101.

    Article  PubMed  CAS  Google Scholar 

  62. Horner, D. S., Foster, P. G. & Embley, T. M. (2000). Iron hydroge-nases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 17, 1695–1709.

    PubMed  CAS  Google Scholar 

  63. Rasoloson, D., Tomkova, E., Cammack, R., Kulda, J. & Tachezy, J. (2001). Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 123, 45–56.

    Article  PubMed  CAS  Google Scholar 

  64. Brown, D. M., Upcroft, J. A., Dodd, H. N., Chen, N. & Upcroft, P. (1999). Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis. Mol. Biochem. Parasitol. 98, 203–214.

    Article  PubMed  CAS  Google Scholar 

  65. Land, K. M., Delgadillo-Correa, M. G., Tachezy, J., Vanacova, S., Hsieh, C. L., Sutak, R. & Johnson, P. J. (2004).Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol. Microbiol. 51, 115–122.

    Article  PubMed  CAS  Google Scholar 

  66. Land, K. M., Clemens, D. L. & Johnson, P. J. (2001). Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp. Parasitol. 97, 102–110.

    Article  PubMed  CAS  Google Scholar 

  67. Rasoloson, D., Vanacova, S., Tomkova, E., Razga, J., Hrdy, I., Tachezy, J. & Kulda, J. (2002). Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 148, 2467–2477.

    PubMed  CAS  Google Scholar 

  68. Johnson, P. J., Schuck, B. L., Delgadillo, M. G. (1994). Analysis of a single-domain P-glycoprotein-like gene in the early-diverging pro-tist Trichomonas vaginalis. Mol. Biochem. Parasitol. 66, 127–137.

    Article  PubMed  CAS  Google Scholar 

  69. Crowell, A. L., Sanders-Lewis, K. A. & Secor, W. E. (2003). In vitro metronidazole and tinidazole activities against metronida-zole-resistant strains of Trichomonas vaginalis. Antimicrob. Agents Chemother. 47, 1407–1409.

    Article  PubMed  CAS  Google Scholar 

  70. Nigro, L., Larocca, L., Massarelli, L., Patamia, I., Minniti, S., Palermo, F. & Cacopardo, B. (2003). A placebo-controlled treatment trial of Blastocystis hominis infection with metronidazole. J. Travel Med. 10, 128–130.

    PubMed  Google Scholar 

  71. Griffiths, J. K. (1998). Human cryptosporidiosis: epidemiology, transmission, clinical disease, treatment, and diagnosis. Adv. Parasitol. 40, 37–85.

    Article  PubMed  CAS  Google Scholar 

  72. Franssen, F. F., Lumeijm, J. T. & van Knapen, F. (1995). Susceptibility of Encephalitozoon cuniculi to several drugs in vitro. Antimicrob. Agents Chemother. 39, 1265–1268.

    PubMed  CAS  Google Scholar 

  73. Haresh, K., Suresh, K., Khairul Anus, A. & Saminathan, S. (1999). Isolate resistance of Blastocystis hominis to metronidazole. Trop. Med. Int. Health 4, 274–277.

    Article  PubMed  CAS  Google Scholar 

  74. Perkins, M. E., Riojas, Y. A., Wu, T. W. & Le Blancq, S. M. (1999). CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc. Natl. Acad. Sci. USA 96, 5734–5739.

    Article  PubMed  CAS  Google Scholar 

  75. Vasquez, J. R., Gooze, L., Kim, K., Gut, J., Petersen, C. & Nelson, R. G. (1996). Potential antifolate resistance determinants and genotypic variation in the bifunctional dihydrofolate reductase-thymidylate synthase gene from human and bovine isolates of Cryptosporidium parvum. Mol. Biochem. Parasitol. 79, 153–165.

    Article  PubMed  CAS  Google Scholar 

  76. Rossi, P., Urbani, C., Donelli, G. & Pozio, E. (1999). Resolution of microsporidial sinusitis and keratoconjunctivitis by itraconazole treatment. Am. J. Ophthalmol. 127, 210–212.

    Article  PubMed  CAS  Google Scholar 

  77. Canning, E. U. & Hollister, W. S. (1991). In vitro and in vivo investigations of human microsporidia. J. Protozool. 38, 631–615.

    PubMed  CAS  Google Scholar 

  78. Monis, P. T. & Thompson, R. C. (2003). Cryptosporidium and Giardia-zoonoses: fact or fiction? Infect. Genet. Evol. 3 2330–244.

    Google Scholar 

  79. Wang, A. L. & Wang, C. C. (1986). Discovery of a specific double-stranded RNA virus in Giardia lamblia. Mol. Biochem. Parasitol. 21, 269–276.

    Article  PubMed  CAS  Google Scholar 

  80. Snipes, L. J., Gamard, P. M., Narcisi, E. M., Beard, C. B., Lehmann, T. & Secorm, W. E. (2000). Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J. Clin. Microbiol. 38, 3004–3009.

    PubMed  CAS  Google Scholar 

  81. Vanacova, S., Tachezy, J., Kulda, J. & Flegr, J. (1997). Characterization of trichomonad species and strains by PCR fingerprinting. J. Eukaryot. Microbiol. 44, 545–552.

    PubMed  CAS  Google Scholar 

  82. Upcroft, J. A., Campbell, R. W., Benakli, K., Upcroft, P. & Vanelle, P. (1999). Efficacy of new 5-nitroimidazoles against metronidazole-susceptible and -resistant Giardia, Trichomonas, and Entamoeba spp. Antimicrob. Agents Chemother. 43, 73–76.

    PubMed  CAS  Google Scholar 

  83. Kazimierczuk, Z., Upcroft, J. A., Upcroft, P., Gorska, A., Starosciak, B. & Laudy, A. (2002). Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives. Acta Biochim. Pol. 49, 185–195.

    PubMed  CAS  Google Scholar 

  84. Andrzejewska, M., Yepez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Synthesis, anti-protozoal and anticancer activity of substituted 2-trifluoromethyl-and 2-pentafluoroethylbenzimidazoles. Eur. J. Med. Chem. 37, 973–978.

    Article  PubMed  CAS  Google Scholar 

  85. Alanis, A. D., Calzada, F., Cedillo-Rivera, R. & Meckes, M. (2003). Antiprotozoal activity of the constituents of Rubus coriifo-lius. Phytother. Res. 17, 681–682.

    Article  PubMed  CAS  Google Scholar 

  86. Khan, I. A., Avery, M. A., Burandt, C. L., Goins, D. K., Mikell, J. R., Nash, T. E. et al. (2000). Antigiardial activity of isoflavones from Dalbergia frutescens bark. J. Nat. Prod. 63, 1414–1416.

    Article  PubMed  CAS  Google Scholar 

  87. Harris, J. C., Plummer, S., Turner, M. P. & Lloyd, D. (2000). The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology 146, 3119–3127.

    PubMed  CAS  Google Scholar 

  88. Seshadri, V., McArthur, A. G., Sogin, M. L. & Adam, R. D. (2003). Giardia lamblia RNA polymerase II: amanitin-resistant transcription. J. Biol. Chem. 278, 27804–27810.

    Article  PubMed  CAS  Google Scholar 

  89. Coombs, G. H. & Mottram, J. C. (2001). Trifluoromethionine, a prodrug designed against methionine gamma-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis. Antimicrob. Agents Chemother. 45, 1743–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Arturo González Robles, Departamento de Patología Experimental, CINVESTAV IPN, México, for the parasite micrographs. The work on E. histolytica was supported by the European Economic Community and CONACYT, México.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Orozco, E., Marchat, L.A., Gómez, C., López-Camarillo, C., Pérez, D.G. (2009). Drug Resistance Mechanisms in Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and Opportunistic Anaerobic Protozoa. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-180-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-180-2_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-592-7

  • Online ISBN: 978-1-59745-180-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics